HORIZON EUROPE

HE-CavityMag

CavityMag: Cavity quantum electrodynamics control of magnetic phases in twisted van der Waals heterostructures

Specific programme: HORIZON-TMA-MSCA-PF-EF

UPV/EHU Partner Status: Beneficiary
UPV/EHU PI: Ángel Rubio Secades

Project start:  01/05/2023
Project end: 30/04/2025

Brief description:

To further increase performance and reduce energy consumption in technological devices, a new paradigm is needed exploiting quantum mechanical phenomena. An attractive route to enter this paradigm is by interfacing light and magnetic excitations in new optomagnetic devices, which ensures processing frequencies comparable with electronics and hold great promise for future memory, spintronics and quantum computing devices. This, however, requires a deeper understanding of strongly coupled light-matter systems and the interplay between magnetic, electronic, photonic and lattice excitations. A promising platform to explore exotic magnetic phenomena is magnetic van der Waals (vdW) materials, since the competition of anisotropy, quantum fluctuations and spin-orbit coupling make these materials prime candidates to host such states and susceptible to material engineering techniques. This can be exploited in cavity quantum electrodynamics (c-QED) and Moiré engineering to control the magnetic state. By combining c-QED with Moiré engineering, the goal of CavityMag is to construct schemes to control the magnetic state of vdW materials and to induce exotic magnetic phases. This will be achieved by developing state-of-the-art computational tools based on quantum electrodynamical density functional theory (QED-DFT) in combination with effective spin-photon models. This computational framework will be used to perform a systematic study of light-induced magnetic phases in twisted vdW materials, to gain a deeper understanding of how microscopic magnetic interactions can be modified, and to establish concrete protocols to control the macroscopic magnetic state. It will also be used to guide experimental efforts by identifying candidate materials and parameter regimes likely to host exotic states of great promise for the construction of new high performance and energy efficient technological devices

Introduction_ProjectsObtained

Projects obtained by the UPV/EHU in the Horizon 2020 Programme for Research and Innovation.

Marie Sklodowska Curie Individual Fellowships

Industrial Leadership (LEIT)

Societal Challenges

Info_Organizacion-participacion

 OTHER PUBLIC AND PRIVATE FUNDING EUROPEAN PROGRAMMES (2014-2020)

INTERREG V

See projects

COST Actions

See projects

LIFE Action Grants

See projects

Joint Programming Initiatives (JPIs)

See projects

ERA NET Initiatives

See projects

ERASMUS Programme

See projects
 

OTHER EUROPEAN & INTERNATIONAL RESEARCH PROGRAMMES

See projects

OTHER RESEARCH PROGRAMMES

See projects

Proyectos de investigación internacionales con participación UPV/EHU (2007-2014)

SUMMARY OF EUROPEAN AND INTERNATIONAL RESEARCH PROJECTS AWARDED TO UPV/EHU (2007-2014)
Programa Subprograma Listado proyectos
7th Framework Programme (FP7) Cooperation Download (pdf, 245KB)
Capacities Download (pdf, 120KB)
People Download (pdf, 112KB)
Ideas Download (pdf, 100KB)
Interreg Download (pdf, 700KB)
Competitiveness and Innovation Programme (CIP) Download (pdf, 95KB)
Acciones COST Download (pdf, 105KB)
Otros Programas de Investigación Europeos e Internacionales Download (pdf, 138KB)

 

info_masinformacionehurope