Hasiera

Grupo de Investigación de Control Inteligente

Esta es la página web del Grupo de Investigación de Control Inteligente adscrito a la Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU).

En esta página podrá encontrar información actualizada del grupo, proyectos, documentos descargables, etc.

Esperemos que sea de su agrado.

Un cordial saludo.

Noticias

Nuevo artículo aceptado

Fecha de primera publicación: 25/01/2012

El artículo "Intelligent Multi-Objective Nonlinear Model Predictive Control (iMO-NMPC): Towards the ‘on-line' optimization of highly complex control problems" ha sido aceptado para su publicación en la revista "Expert Systems with Applications" (Vol.39, Issue 7).

Esta revista, con índice de impacto 1.924 (2.193 en 5 años), se enfoca en divulgar aplicaciones de sistemas expertos e inteligentes en industria, gobierno o universidades.

El artículo está enmarcado en las investigaciones que lleva a cabo principalmente el colaborador Juanjo Valera para la realización de su tésis doctoral.

¡Esperemos que el resto del año prosiga la misma dinámica de buenas noticias!

Abstract

The benefits of using the Nonlinear Model Predictive Control (NMPC) for the response optimization of highly complex controlled plants are well known. Nevertheless the complexity and associated high computational cost make its implementation and reliability the focus of the discussion. This paper proposes an Intelligent and Multi-Objective NMPC (iMO-NMPC) scheme where several, and often conflicting, control objectives can be competing simultaneously in the control problem. In the iMO-NMPC, the combination of a Neural Network, a Multi-Objective Genetic Algorithm and a Fuzzy Inference System, help us in the nonlinear search for near-optimal control actions, aiming to fulfil all the specified control objectives simultaneously. The proposed scheme adds an expert stage that can adaptively change the degree of importance (weight) of each control objective according to the state of the plant. Therefore, once the nonlinear multi-objective optimization problem is solved at each sampling time and the non-inferior control solutions belonging to the set of Pareto are obtained, the most appropriate one is selected by using the control objectives weights inferred from the expert stage. Some experimental results showing the iMO-NMPC effectiveness and the details about its implementation over control systems with low sampling times are also presented and discussed in this paper.