Subject

XSL Content

Quantum Technologies

General details of the subject

Mode
Face-to-face degree course
Language
English

Description and contextualization of the subject

This module covers the principles and practices of quantum simulation, an essential aspect of quantum technologies. Students will explore how quantum systems can be used to simulate complex physical systems that are challenging to model with classical computers. The course includes theoretical foundations, algorithmic techniques, and practical applications in various fields.

Teaching staff

NameInstitutionCategoryDoctorTeaching profileAreaE-mail
BLANCO PILLADO, JOSE JUANUniversity of the Basque CountryVisitante IkerbaskeDoctorNot bilingualTheoretical Physicsjosejuan.blanco@ehu.eus
CASANOVA MARCOS, JORGEUniversity of the Basque CountryInvestigador Ramón Y CajalDoctorNot bilingual** n o c o n s t a e l a r e a * ó " á r e a p r o v i s i o n a l"jorge.casanova@ehu.eus
RICO ORTEGA, ENRIQUEUniversity of the Basque CountryVisitante IkerbaskeDoctorNot bilingualPhysical Chemistryenrique.rico@ehu.eus

Competencies

NameWeight
Problem solving70.0 %
Understanding the topics and being able to present them15.0 %
To be able to present a topic not explicitly included in the syllabus15.0 %

Study types

TypeFace-to-face hoursNon face-to-face hoursTotal hours
Lecture-based243256
Seminar81220
Applied classroom-based groups81624

Assessment systems

NameMinimum weightingMaximum weighting
Oral examination0.0 % 50.0 %
Practical tasks50.0 % 50.0 %
Presentations15.0 % 50.0 %
Questions to discuss15.0 % 70.0 %

Ordinary call: orientations and renunciation

En caso de que las condiciones sanitarias impidan la realización de

una evaluación presencial, se activará una evaluación no presencial de

la que será informado el alumnado puntualmente.

Temary

I. Quantum Simulation

- Introduction to Quantum Simulation: Overview of Quantum Technologies, Historical Background and Motivation for Quantum Simulations, Comparison with Classical Simulations

- Quantum Algorithms for Simulation, Hamiltonian Simulation, Trotter-Suzuki Decomposition, Variational Quantum Eigensolver (VQE), Quantum Phase Estimation, Quantum Monte Carlo Methods

- Physical Systems and Models, Quantum Many-Body Systems, Lattice Models (e.g., Hubbard Model), Spin Systems, Fermionic and Bosonic Systems

- Numerical Techniques and Implementation, Discretization and Approximation Methods, Error Mitigation and Noise Reduction, Software and Quantum Simulation Platforms (Qiskit, etc.)

- Case Studies and Practical Applications: Case Study: Simulating Material Properties, Case Study: Quantum Simulations in High Energy Physics, Practical Exercises Using Quantum Simulation Software

- Future Directions and Challenges, Scalability and Hardware Limitations, Advances in Quantum Algorithms, Emerging Applications and Interdisciplinary Approaches



II. NV centers, Trapped ions

- Quantum control. Two-level systems quantum control. The rotating wave approximation. Electron spin resonances. Coherent electron-nucleus couplings. The nitrogen vacancy center in diamond. Quantum sensing and polarization. Dynamical decoupling techniques.

- Quantum information processing.

Trapped ion systems. Laser-driven and microwave-driven setups. Controlled entanglement generation in trapped ions for quantum computing.

Bibliography

Basic bibliography

Part I.



Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.

Aspuru-Guzik, A., & Walther, P. (2012). Photonic quantum simulators. Nature Physics, 8, 285–291.

Georgescu, I. M., Ashhab, S., & Nori, F. (2014). Quantum simulation. Reviews of Modern Physics, 86(1), 153.

Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6), 467–488.

Preskill, John. "Quantum Computing in the NISQ era and beyond." arXiv preprint arXiv:1806.06862 (2018).

Sanders, Ben H., et al. "Quantum simulation of complex materials." Nature Physics 16.12 (2020): 1303-1308.

Devoret, Michel H., et al. "Superconducting circuits for quantum information: An outlook." Science 339.6124 (2013): 161-166.



Part II.



Malcom H. Levitt, Spin dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2008).

Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology (2014).

Programmable quantum simulations of spin systems with trapped ions (2021).



XSL Content

Suggestions and requests