Approximate Inverse LU preconditioning applied to least squares problems

Authors:

- José Marín, Universitat Politècnica de València (jmarinma@imm.upv.es)
- José Mas, Universitat Politècnica de València (jmasm@imm.upv.es)

Abstract:

In this work we consider the application of approximate inverse LU preconditioners to compute preconditioners for the iterative solution of sparse least squares problems of the form

$$
\begin{equation*}
\min _{x}\|b-A x\|_{2} \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}(m \geq n)$ is a large and sparse matrix with full column rank. We consider the solution of (1) with the preconditioned CGLS method, [3] which implicitly applies the conjugate gradient method to the normal equations

In this work we apply the V-AISM preconditioner introduced in [2] which is a variant of the AISM preconditioner [1]. The main difference is that the Sherman-Morrison formula is applied multiplicatively that allows for a compact representation of the partial factors. The results of numerical experiments show that this new preconditioner is efficient compared with other approximate inverse preconditioners that appear in the bibliography.

Acknowledgements Supported by Conselleria de Innovació, Universitats, Ciència i Societat Digital, Generalitat Valenciana (CIAICO/2021/162).

References:

[1] Bru, R., Cerdán, J., Marín, J. and Mas, J., Preconditioning sparse nonsymmetric linear systems with the Sherman-Morrison formula. SIAM J. on Sci. Comput., 25: 701-715 (2003).
[2] Bru, R., Cerdán, J., Marín, J. and Mas, J., An inverse LU preconditioner based on the Sherman-Morrison formula Analele Stiintifice ale Universitatii Ovidius Constanta, Volume 32(1):105-126 (2024). DOI: 10.2478/auom-2024-0006.
[3] A. Björck. Numerical methods for Least Squares Problems. SIAM, Philadelphia, 1996.
[4] Hager, W. W, Updating the inverse of matrix. SIAM Rev., 31(2): 221-239, 1989.
[5] Sherman, J. and Morrison, W. J., Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist., 21, 124-127, 1950.

