Global bifurcations of homoclinic solutions for nonautonomous ordinary differential equations

Authors:

- Iacopo P. Longo, Imperial College London (iacopo.longo@imperial.ac.uk)
- Christian Pötzsche, University of Klagenfurt (christian.poetzsche@aau.at)
- Robert Skiba, Nicolaus Copernicus University (robert.skiba@mat.umk.pl)

Abstract: We establish an alternative classification of the shape of global bifurcating branches of bounded solutions to Carathéodory ordinary differential equations. Our approach is based on the parity associated to a path of index 0 Fredholm operators and the Evans function as a recent tool in nonautonomous bifurcation theory. Similarly to the classical Rabinowitz alternative, we establish that a bifurcating branch of bounded solutions either returns to a given branch, or it fails to be compact. Under further assumptions on the Carathéodory equation (and the known solution branch) one can even establish that the bifurcating branch is unbounded.

References:

- I.P. Longo, C. Pötzsche, R. Skiba. Global bifurcation of homoclinic solutions, manuscript 2024.
- [2] C. Pötzsche, R. Skiba. A continuation principle for Fredholm maps II: Application to homoclinic solutions, Math. Nachr. 293(6) (2020) 1174–1199.
- [3] C. Pötzsche, R. Skiba. Evans function, parity and nonautonomous bifurcation, manuscript, 2024.