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i



ii

laboratory (and former LCAM) in Orsay several times, which eventually led me to meet

Serena. Only for that, I could write an entire page of acknowledgments! I will be brief.

Thank you for these special years of close collaboration and friendship, from which I

have learned a lot of physics and boosted my curiosity, particularly on the magic WPP

method. As well as for sharing codes, tricks, time, and in general, for teaching physics,

history, diplomacy, and helping me climbing cloudy peaks. Spasibo!

I also thank M. J. Puska for his collaboration in the posters and in the paper con-

cerning the study of the conductance of Na nanocontacts.

Below I continue with the people I have shared these thesis years. Espero dut jende

gutxi ahaztea!

Adriantxo doktore judoka dotorearekin hasiko naiz, gure hizketaldiekin mundua mila

bider konpondu dugulako. Ondoren departamentuko jendearekin (eta ohiak): Olalla,

Edu, Axpe, Ane, Eneko, Javi, Zipi ta Zape, David de Cos, eta abar eta abar, eta ahaztu

gabe, departamentuko txokoan dauden bi gaztetxoei Aitziber eta Nerea ;-)

Donostia aldean Xabi, batez ere azkeneko urteetan berraurkitutako laguna, mila

esker zure laguntzarengatik eta bazkalondoko kafeengatik, laster zuri datorkizu idazten

hasteko eguna! Eta hemen CFM-n, besteak beste, Peter, Ludo, eta eskerrak Iñigori
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Chapter 1
Overview and aims of the thesis

Introduction

The understanding and control of quantum size effects (QSEs), i.e., variations of the

properties of a physical system as a function of its size, due to the discretization of the

electronic states resulting from the quantum confinement, is one of the central issues

in nanoscience. This area of physics covers a broad range of (mesoscopic) systems

having reduced dimensionality [1], frequently in the nanoscale (1–1000 nm), such as

thin films confined in one-dimension (2D systems), nanowires and nanotubes confined

in two dimensions (1D systems) and quantum dots confined in three dimensions (0D

systems).

The miniaturization of the electronic components has been the natural pathway

for the progress in computer chips technology. On the one hand, when entering the

nanoscale it is found that the “rules” governing the behavior of the systems are not

scalable, due to the electronic confinement mentioned above, giving rise to quantum

phenomena. On the other hand, nanotechnology holds a promise of taking advantage

of these new phenomena, which in a long term future might lead to the development

of solid state quantum computers [2, 3].

In particular, the study of electron transport properties in metallic nanowires is

important because they represent the ultimate limit of the wires for the realization

of electronic nanocontacts between electronic devices [4]. However, not only is the

nanowire a natural component of (molecular) electronic devices, but it can also serve

as an efficient chemical and biological sensor [5].

1



2 Overview and aims of the thesis

Special attention has been paid to confined electron systems in semiconductor thin

layers in heterostructures, where the quantization of the electronic states in the direc-

tion perpendicular to the film interface provides observable QSEs, which have enabled

technological achievements such as the development of quantum well lasers [6]. On

the other hand, metallic thin overlayers are of great interest in surface science,

as they belong to the class of nanostructures showing electron confinement at metal

surfaces. One of the aims in this field is to engineer surfaces with desirable electronic

and magnetic properties. It has diverse perspectives, such as the development of nano-

electronics based on surface states, in analogy with plasmon nanophotonics [7].

Many of the systems showing confined electronic states at surfaces, such as quantum

corrals, vacancy islands and atomic chains, are (directly) accessible only using the

scanning tunneling microscopy (STM). At variance, the electronic states formed by

electron confinement in thin metal overlayers, called quantum well states (QWSs),

can be studied with photoemission and inverse photoemission techniques, so they are

a subject of intense research activity already for decades [8, 9].

In this thesis we have focused on some theoretical aspects of the electronic structure,

dynamics and spectroscopy of two nanosized metallic systems: Pb thin overlayers on

Cu(111) surfaces and the nanocontacts formed during the stretching process of a Na

nanowire. The former is one of the most studied metal-overlayer/metal systems and its

characteristic feature is that stationary states, i.e., QWSs are formed in the direction

perpendicular to the surface, due to the confinement barriers provided by the vacuum

and the projected band gap of Cu in the (111) crystallographic direction [10,11]. The

latter system is one of the first metallic nanocontacts in which the conductance quan-

tization has been demonstrated [12, 13]. In this case the confinement takes place in

the two directions perpendicular to the wire axis. Both systems are interesting due to

the relative simplicity of their configurations, and the possibility of describing them

by simple models, which allows us to perform a transparent physical analysis of their

fundamental properties. Furthermore, it is an encouraging task to study theoretically

systems characterized by low-dimensional electron gases, which are relatively easy to

prepare and to probe by different experimental means.

Our studies are based on a variety of complementary theoretical tools which involve

many-body and one-electron, stationary and time-dependent treatments of the electron

systems. These are:

• The density functional theory (DFT) within the local density approximation

(LDA), which has been used to obtain the electronic (and geometrical) structure

of metallic systems and the one-electron effective potentials. (Chapter 2).
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• Many-body perturbation theory within the GW approximation has been used

for the study of the finite lifetimes of electron (hole) excitations originated in the

inelastic electron-electron scattering. (Chapter 3).

• The wave packet propagation method (WPP) has been used to calculate diverse

properties of the systems described with the one-electron effective potentials.

This versatile method allows to obtain the density of states, the one-electron

decay rates and wave functions of resonant states, as well as the one-electron

transmission probability through various (tunneling) junctions. (Chapter 4).

The problems studied in this thesis have required a significant dedication to the

detailed study of the theoretical methods mentioned above. Thus, we provide ex-

tended presentations to describe them. The corresponding chapters are based on the

experience acquired at different levels of scientific computing, i.e., use, modification

and implementation of numerical codes and eventual interpretation of the results. In

this respect, much of the details can be skipped through a quick reading of the present

manuscript. Nevertheless, the particular equations used in present studies are collected

in specific sections which are referred recurrently through the thesis work.

Among the above methods, the WPP method has been addressed in much more

detail. This is reflected in the diverse applications found for this particular method in

our studies. The corresponding Chapter 4 is indebted to the close collaboration with

the group in Orsay (France), which has developed this approach in the present form.

This presentation might serve as a bridge between the general textbook [14] and highly

condensed reviews [15] in the considered fields.

Pb thin overlayers

Despite the number of works, both theoretical and experimental, dedicated to the study

of Pb thin overlayers (or extended Pb nanoislands) on different substrates, such as

Cu(111) [10,11,16–20], Si(111) [21–24] and Ag(111) [25], as well as for free standing Pb

thin slabs [26–28] and bulk [29], there are still open questions concerning the electronic

structure, dynamics and spectroscopy of the electronic states in Pb thin overlayers.

With respect to the electronic structure, whereas for energies close to the Fermi level

QWSs are formed inside the Pb overlayers on Cu(111), when the energies of the confined

states are close to the vacuum level, QWSs hybridize with image states (ISs). As far

as we know, this fundamental effect has not been studied in detail except for Ref. [30],

where confined states in Au thin overlayers on Pd(111) are studied. Furthermore, this
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is a previously uncovered energy region in Pb/Cu(111), which is studied in the present

thesis. (Chapter 6, Section 6.5).

The lifetime is a fundamental property of electrons in a metal system. Under an

external perturbation of a many-electron system (for example by a laser pulse), an

electron can be excited to a higher energy state. However, this situation is unstable

due to the inelastic scattering with other (quasi-) particles. Then, the electron only

remains for a finite time τ (the lifetime) in this state before it decays to a low lying

state. The fundamental study of the electron dynamics is important for different fields.

For example, excited electrons at surfaces play an important role in surface reactivity

[15, 31,32]. The lifetime of electrons also affects the linewidth in experimental spectra

(photoemission, STS, ...) of electron systems.

The GW approximation has been previously used for the study of surface state and

image state lifetimes in noble metals [31] and also for the lifetime of the QWS formed in

Na/Cu(111) for the coverage of one monolayer [33]. Up to our knowledge, we provide

in the present thesis the first theoretical systematic study of the electron-electron decay

rate (or inverse lifetime) of QWSs and of hybrid QWS-ISs, discussing the effect of the

overlayer thickness. (Chapter 6, Section 6.3).

Apart from the QWSs, when the reflectivity of the confinement barriers is not per-

fect, an electron can be trapped in a quasi-stationary state. An electron in this state

can decay resonantly through an energy conserving process. In Pb/Cu(111) overlayers

quantum well resonances (QWRs) can exist [19] below the Cu gap. Resonant decay

rates of QWRs have been studied previously by Crampin et al. [34] in the Ag/Fe(001)

system. However, it has not been discussed what is the most important decay channel

for the QWRs: the elastic resonant decay or the inelastic electron-electron decay. This

question, important from the point of view of the resolvability of the states in experi-

ments, is addressed in our study of QWRs in Pb/Cu(111). (Chapter 6, Section 6.4).

One of the aims of this thesis is to try to interpret some of the diverse available

experimental data on the systems mentioned above or in similar systems. For this

purpose, one has to understand the spectroscopy of these electronic states. In general,

spectroscopic studies are of great interest for two reasons: (i) There is additional

physics involved in the probing process, because any measurement requires interaction

with the system, and (ii) this interaction is reflected in the spectra. Thus, a detailed

knowledge of the spectroscopic process provides the means for interpreting correctly

the experimental results and allows a reliable characterization of the probed system.

We have performed simulations of STM constant current spectroscopy studies, from

which we extract dZ/dV characteristics in Pb/Cu(111). This work has been motivated
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by recent experimental results on Pb/Cu(111) [20] and Pb/Ag(111) [25]. We have used

a flat-tip approximation to model the STM probe and for describing the STM junction

we have included the electric field induced by the STM in front of the surface. This

electric field provides a linear barrier for the electronic states at the surface, leading

to the formation of field emission resonances (FERs), which are hybridized with

QWSs above the vacuum level of the bare sample. We have studied the electronic

structure, dynamics and spectral properties of these states. (Chapter 7).

Sodium nanocontacts

Concerning the breakage of metallic nanowires, much attention has been paid to the

last stage of the breakage, where a monatomic chain is formed [35–37]. In principle,

this is because of the simpler configuration of the break junction, that allows faster

calculations and also because the interpretation of the results appears easier than,

for example, the study of the formation of embedded clusters during the breaking

process [38–45].

Thus, in several works, the effect of cluster-like structure formations on the conduc-

tance has been overlooked. The study of this phenomenon can serve to understand

the different patterns of the conductance curves, apart from the typical conductance

plateaus obtained during the breaking of metallic nanowires. Eventually, one can try

to find out fingerprints in the conductance curves that can lead to the identification of

the different structures formed in the break junction.

This is the main motivation for the study of Chapter 8, where we focus on the

conductance during the elongation and breakage of Na nanowires described with the

ultimate jellium model. A combined approach is used where the nanowire breakage

is simulated self-consistently within the DFT, and the WPP technique is applied for

ballistic electron transport. This method allows us to calculate quantum mechanically

exact transmission probabilities beyond the semi-classical WKB (Wentzel-Kramers-

Brillouin) approach, previously implemented by E. Ogando et al. in their earlier work

[41].

For certain conditions, the breakage of the nanowire is preceded by the formation

of clusters of magic size in the break junction. This affects the conductance G, in

particular the shape of the G = 3G0 to G = G0(= 2e2/h) step upon elongation. The

observed trends can be explained as due to the transient trapping of ballistic electrons

inside the cluster, leading to a resonant character of the electron transport through
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the break junction. According to our results, the cluster-derived resonances appear as

peak structures in the differential conductance.

Overview

With respect to the results presented in this thesis, we would like to underline below

some contributions, because of their particular relevance for the considered fields, and

specially for experimentalists:

(i) In general, for energies within a few eV around the Fermi level, no quantum size

effect is found in the energy dependence of the inelastic electron-electron lifetime

of the QWSs in Pb/Cu(111) at the high symmetry point in reciprocal space, Γ̄.

Only some deviations from the general behavior have been found for the thinnest

overlayers (1–3 monolayers) considered. (Fig. 6.4).

(ii) However, we predict a noticeable quantum size effect in the electron-electron

lifetime of quantum well states when they acquire an image state character in

Pb/Cu(111). This effect takes its origin in the strong thickness dependence of

the charge spilling into the vacuum for the electronic states with energies close

to the vacuum level. (Fig. 6.10).

(iii) With our calculations we provide a theoretical justification for the possibility

to extract the dispersion of electronic bands in metals from STS studies of the

energies of QWSs (and hybrid QWS-FERs) formed in overlayers of the same

material. (Fig. 7.8a).

(iv) Based on the realistic electronic band structure of bulk Pb metal, we provide a

physically sound explanation for the spectral peak energies observed in a re-

cent experimental STM study probing the QWSs in Pb/Cu(111) [20, 46, 47].

(Fig. 7.8b).

(v) We theoretically support that, in the ballistic regime, the cluster-derived reso-

nances of Na nanocontacts are resolvable in the differential conductance spectra.

(Fig. 8.8).

The rest of the thesis manuscript is organized as follows:

The following three chapters present the theoretical methods used in our work. Chap-

ter 2 is devoted to the electronic structure calculations and effective one-electron po-

tentials within simple models. Chapter 3 presents the many-body theory used for the

calculations of the electron-electron inelastic decay rate within the GW approxima-
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tion. Chapter 4 provides a detailed description of the WPP method. As mentioned

above, these three chapters are extended with the aim of providing a self-contained

presentation.

Chapter 5 provides an overview of the different surface-localized states, confined in

the direction perpendicular to the surface. The properties of these states are illus-

trated within the simplest one-dimensional models. Then, these concepts are used

in the subsequent chapters where the main results of this thesis, including the life-

times (Chapter 6) and constant current STM spectroscopy (Chapter 7) of the QWSs,

QWRs, ISs and FERs found in the Pb/Cu(111) system are discussed. In Chapter 8,

which can be read independently, we provide the results of the conductance of the

different nanocontacts formed during the stretching process of a Na nanowire.

Last Chapter 9, is devoted to the summary of the original results obtained in this

thesis. Appendices collect some additional results, mathematical details and supple-

mentary figures.

Unless otherwise stated, we shall use atomic units throughout this thesis (i.e., e2 =

~ = me = 4πǫ0 = 1).





Chapter 2
Theoretical methods I: Electronic structure

2.1. Introduction

The original density functional theory (DFT) is a reformulation of the many-body prob-

lem of an interacting electron system in terms of the electronic density, which is exact

for the ground state. It is one of the most successful theoretical frameworks for under-

standing the electronic structure of atoms, molecules and condensed phases. But the

DFT is not only a theory, it also comprises a well developed calculation methodology.

The widespreadly used Kohn-Sham (KS) approach to the DFT replaces the interact-

ing many-body problem by an effective noninteracting one. In practice, the KS equa-

tions are solved under non-rigorous approximations and assumptions, basically due to

the lack of knowledge of the exact density functional of the exchange-correlation en-

ergy. The validity of the method is established by its ability to reproduce experimental

results.

In this chapter we start from the very first principles describing a general (nanosized)

metallic system in order to explain the different assumptions and approximations taken

through the path that leads to the (Kohn-Sham) equations determining the electronic

structure (and shape) of the systems considered in this thesis.

Then, in Sections 2.3 and 2.4 we explain the different jellium models we have used

and we write the corresponding form of the KS equations solved within those models

for one-dimensional and cylindrical symmetries.

9
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The modeling of the one-dimensional self-consistent effective potential for the de-

scription of thin Pb overlayers supported on Cu(111) surfaces and the inclusion of the

image potential correction are explained in Section 2.5.

Additional jellium-like model potentials describing the interaction between a metallic

flat tip and a metallic surface are provided in Section 7.2 of Chapter 7. Further details

on the numerical approaches used for solving the one-dimensional Schrödinger equation

are given in Appendix B.

2.2. The many-body problem

2.2.1. The fundamental Hamiltonian

In principle, ordinary matter can be understood by a simple structure: it is composed of

different nuclei and electrons, where the positively charged nuclei essentially provide the

mass and the electrons, carrying the negative electric charge, work as a glue of matter.

Furthermore, we know the fundamental quantum mechanical equation describing such

a system, i.e., the (non-relativistic) many-particle Schrödinger equation

i∂tΨ({r}, {R}, t) = ĤΨ({r}, {R}, t), (2.1)

with Hamiltonian operator given by

∑

i

1

2me
∇2

i +
∑

j

1

2Mj
∇2

j +
1

2

Nnuc∑

j

Nnuc∑

j′ 6=j

ZjZj′

|Rj −Rj′ |

+
1

2

Ne∑

i

Ne∑

i′ 6=i

1

|ri − ri′ |
−

Nnuc∑

j

Ne∑

i

Zj

|Rj − ri|
.

(2.2)

where me is the electron mass and Ne is the number of electrons in the solid and

Nnuc is the number of nuclei with charge and mass Z and M respectively. We use

the short-notation {r} ≡ (r1, σ1, r2, σ2, . . . , rNe
, σNe

) to refer to the electron spatial

coordinates and spins, and similarly, {R} ≡ (R1, σ̃1,R2, σ̃2, . . . ,RNnuc
, σ̃Nnuc

) for the

nuclei. Provided Eq. (2.1) with the initial condition Ψ({r}, {R}, t = t0), the state of

the system is determined for all future times. Usually, for electronic structure studies

the time-independent Schrödinger equation is considered

ĤΨ({r}, {R}) = EΨ({r}, {R}). (2.3)
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In principle, all the information about the system is coded in this equation, however,

it is not directly accessible in this form. The solution to Eq. (2.3) is not a numerically

tractable problem above a given number of particles. Then, an alternative approach is

needed in order to extract the properties of the system.

The first step in simplifying the problem is to decouple the electronic and ionic

motion. Intuitively one can expect that nuclear motion in crystals is very slow with

respect to the electronic motion, so that it might be assumed that the electrons reach

the ground state energy instantaneously for a given configuration of the underlaying

ions. This is known as the Born-Oppenheimer approximation, named after Max Born

and J. Robert Oppenheimer, and it was already proposed in 1927. Formally, for a

given nuclei configuration, we can always consider the solutions [48],

Ψs({r}, {R}) =
∑

i

χsi({R})ψi({r}; {R}), (2.4)

where χ are the linear coefficients and the ψi form a complete set, called the adiabatic

solutions of the following Schrödinger equation:

Heψi({r}; {R}) = ǫiψi({r}; {R}), (2.5)

with ǫi being the corresponding eigenenergies of the electronic system. The electronic

Hamiltonian He is defined for a fixed configuration of the ions as:

Ĥe = T̂e + V̂ee(r) + V̂ne({r}; {R}), (2.6)

where T̂e, V̂ee and V̂ne denote the kinetic and the corresponding electron-electron and

electron-nuclei interaction terms in Eq. (2.2).

In general, the different adiabatic solutions (different i) in Eq. (2.5) are coupled

during the motion of the ions. Neglect of this coupling is known as the adiabatic ap-

proximation and it is justified by the fact thatM ≫ me. Under this approximation, the

ψi are considered as stationary states of the many-body frozen system. Furthermore,

when the energy corrections to ǫi due to the dependence of the electronic wave func-

tion on the nuclear coordinates are also neglected, it is called the Born-Oppenheimer

approximation [49]. Thus, the contribution to the total energy due to the nuclei is

usually set as the zero energy reference.

At this point, we assume that the original molecular quantum mechanical problem

can be approximated by the interacting electronic system under the influence of an

external potential due to the nuclei, described by the Hamiltonian given in Eq. (2.6).
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2.2.2. Kohn-Sham equations

Still the many-body electronic system is an extremely difficult problem, even to be

solved numerically. A big step was taken toward the feasibility of the numerical treat-

ment when the reformulation of the many-body ground state problem was settled with

the theorems by Hohenberg and Kohn [50],

1. If two systems of electrons, one trapped in a potential v1(r) and the other in

v2(r) have the same ground state density n(r), then, necessarily, v1(r)− v2(r) is
a constant. Corollary: the ground state density uniquely determines the potential

and thus all properties of the system, including the many-body wave function.

2. For any positive integer N and potential v(r) the energy density functional

E(v,N)[n] = F [n] +
∫
v(r)n(r)dr obtains its minimal value at the ground-state

density of N electrons in the potential v(r). The minimal value of E(v,N)[n] is

then the ground state energy of this system.

From the above statements, the KS approach consists in replacing the original prob-

lem by that of a noninteracting electron system with the same ground state electron

density. Then, we can formally rewrite the many-body ground state energy as

E[n] = T [n] +

∫

drn(r)Vext +
1

2

∫

dr

∫

dr′
n(r)n(r′)
|r− r′| + Exc[n], (2.7)

where T contains the kinetic energy of a noninteracting electron system with the same

n ground state density of the many-body system. The second term is the energy due

to the Coulomb interaction between the nuclei and electrons (or might contain any

other external field acting on the electrons). The third term is the Hartree energy,

and the last one, Exc, is the exchange-correlation energy containing all the rest many-

body contributions, including part of the true many-body kinetic energy not taken

into account in T [n]. Applying the minimization principle, the following KS equations

are obtained, which have the mathematical structure of the one-electron Schrödinger

equation:
{

−1

2
∇2 + Veff(r)

}

ψi(r) = Eiψi(r), (2.8)

but with a density dependent effective potential given by:

Veff(r) = Vext(r) +

∫
n(r′)
|r− r′|dr

′

︸ ︷︷ ︸

VH

+
δExc[n]

δn(r)
︸ ︷︷ ︸

Vxc

. (2.9)



2.2 The many-body problem 13

The density is calculated by summing the electronic charge density for all the occupied

states up to the Fermi level,

n(r) =

occ∑

i

|ψi(r)|2, (2.10)

where the Fermi level EF is determined by the total number of electrons in the system

N =

∫

n(r)dr. (2.11)

The above equations are solved self-consistently. The important point here is that

the many-body problem of an electron gas at the ground state under an external

potential, in terms of the one-electron Schrödinger equation picture, has been rigorously

reformulated. This is the framework behind the theories which will be used in the

present studies.

Concerning the excitation energies in the above scheme, the unoccupied KS orbitals

do not enter the self-consistent cycle and thus play a limited role in the theory. In

principle, KS eigenvalues are not designed to have a direct physical interpretation,

except for the ones associated with the highest occupied molecular orbital (HOMO)

[51]. Nevertheless, according to the Görling-Levy perturbation theory, quoted from

Ref. [52]:

“... KS [Kohn-Sham] orbital eigenvalues are not just auxiliary quantities

without physical meaning; their difference is a well-defined approximation

to excitation energies of zeroth order in the electron-electron interaction

...”.

Since in the following treatment of the different problems we assume more dramatic

approximations in Vxc, and also in the modeling of systems included in Vext, the usual

justification for considering the KS eigenvalues as approximate excitation energies lies

on the standard and pragmatic procedure: to check a posteriori the reliability of the

calculations when comparing to experimental data [53].

2.2.3. Local density approximation

DFT establishes the existence of Exc as a functional of density, but does not provide

the functional itself or a prescription of how to approximate it. The local density

approximation (LDA) is one of the simplest approximations to Exc and Vxc in order

to provide a practical use of the DFT theory. Basically, it substitutes the unknown
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real exchange-correlation function at each point by the corresponding value of the

homogeneous noninteracting electron system at the corresponding density:

Exc =

∫

ǫxc[n(r)]n(r)dr, (2.12)

where ǫxc is the exchange-correlation energy per electron, which is well known from

Monte-Carlo calculations [54], and several parameterizations for practical use can be

found in the literature. For example, the parametrization due to Perdew and Zunger

is given by

ǫxc(n) =
0.458

rs
︸ ︷︷ ︸

ǫx

− γ

1 + β1
√
rs + β2rs

︸ ︷︷ ︸
ǫc

(2.13)

Vxc = −
0.611

rs
− γ(1 + 7

6β1
√
rs +

4
3β2rs)

(1 + β1
√
rs + β2rs)2

, (2.14)

where the parameters γ = 0.1423, β1 = 1.0529 and β2 = 0.3334 are given in atomic

units [55]. The first term in Eq. (2.13) represents the exact exchange energy, as obtained

from Hartree-Fock calculations [56].

The LDA combined with DFT gives very good results for a large set of weakly

correlated systems. However, there are special cases where the DFT-LDA approach is

known to describe incorrectly certain features, such as the band gaps in semiconductors,

which need special consideration.

Concerning the metallic surfaces, for a correct description of electronic states close to

the vacuum level, a proper non-local exchange-correlation would be needed to correctly

reproduce the interaction between an electron and the charge induced in the metal

surface. The approximate DFT-LDA approach results in an incorrect exponential

decay of the potential. Thus, in Section 2.5 we explain how to correct the self-consistent

potential in order to correctly account for the image potential tail.

2.3. Metallic slabs and the stabilized jellium model

A system with translational invariance in a plane perpendicular to the z-axis is de-

scribed by an only z-dependent effective potential Veff(r) ≡ Veff(z). The solutions to

Eq. (2.8) are then written as

ψnk‖
(r) =

1

L
φn(z)e

ik‖·r‖ , (2.15)
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where L is a normalization length, r‖ = (x, y) and k‖ = (kx, ky). By plugging the

solution above in Eq. (2.8) the following 1D KS equation is obtained

{

−1

2

d2

dz2
+ Veff(z)

}

φn(z) = Enφn(z), (2.16)

with

Veff = Vext +

∫
n−(z′)
|r− r′|dr

′ + Vxc, (2.17)

and the total energy is given by

Enk‖
= En +

k2‖
2m∗n

, (2.18)

where for each n-band, we have introduced a phenomenological effective mass m∗n
accounting for the effects of the underlaying crystal lattice on the parallel motion. For

example, this can account for the surface corrugation effects or more pragmatically, it

might be fitted to the realistic band structure. The electronic structure calculations in

this thesis have been obtained by assuming m∗ = 1, both in perpendicular and parallel

direction.

The Veff potential is enormously simplified in the simple jellium model approach,

where the crystal ions are substituted by a constant positively charged background

n+, corresponding to the charge density of the metal. Then, by manipulating the

electrostatic term (see Appendix B.1) the simple jellium effective potential is finally

written as:

Veff(z) = −2π
∫ ∞

−∞

[
n−(z′)− n+(z′)

]
|z − z′|dz′ + Vxc[n−(z)]. (2.19)

where the electron charge density is given by n−. The crude jellium approximation is

justified for the simple metals by their rather weak ionic pseudopotentials.

The next step in the crystal lattice description beyond the simple jellium model, is

to add a structureless pseudopotential, i.e., to correct the positive background by a

constant shift. This correction, known as the stabilized jellium model, was proposed

by Perdew, and, Shore and Rose, with different approaches but similar results. The

constant shift can be considered as an averaged pseudopotential over the bulk Wigner-

Seitz cell. A mechanically stable metal (dE/drs = 0) is also demanded, which provides

qualitative correct values of properties such as the cohesive energy, surface energy

and bulk modulus. This is an important issue when the study of metallic surfaces is

addressed. In particular, a realistic work function is an important ingredient when
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the energies of calculated electronic states localized at the surface are to be compared

with experiments. Thus, in this thesis (Chapters 6 and 7) we have used the following

effective potential form

Veff(z) = −2π
∫ ∞

−∞

[
n−(z′)− n+(z′)

]
|z − z′|dz′ + Vxc[n−(z)] + Vps(z), (2.20)

with Vps =< δv > only for z inside the crystal, where the following expression has been

used

< δv >= −1

5

[
9π

4

]2/3

r−2s +
1

4π

[
9π

4

]1/3

r−1s +
1

3
rs
dǫc
drs

, (2.21)

for describing the metallic slabs [57]. For example, for flat Pb metal the corresponding

values is < δv >= −1.8 eV. Further details on the construction of the pseudopotentials

for the Pb/Cu(111) are discussed in Section 2.5.

A more sophisticated stabilized jellium model has been proposed [58] (not considered

in this thesis) that takes into account the relaxation in the interlayer spacing in a

metallic slab, and so, accounts for the self-compression. This model can improve the

description for Pb overlayers on Cu(111), at least, for small number of monolayers.

Indeed, introducing self-compression effects by hand [11, 17] has improved slightly the

agreement between theoretical predictions and experimental observation of the most

abundant island heights reported for Pb extended islands grown on Cu(111) surfaces.

Among simple schemes allowing to take into account the relaxation, the ultimate

jellium model can be used. This model is introduced in the following section.

2.4. The ultimate jellium model in axial symmetric

systems

The ultimate jellium model (UJ) is an approach to obtain ground state geometries

within a jellium picture. Once the number of electrons is fixed and the spatial con-

strictions are set (for example, symmetry constrictions), the ground state geometry is

obtained self-consistently. The background positive charge density is fully relaxed in

shape and density so that it equals at every point to the electron density. In this way,

the Coulomb term in the potential always vanishes. Thus, the shape and energy of the

system result from the interplay between the exchange-correlation and kinetic energies.

One characteristic of this model is that there is only one equilibrium charge density

at rs ≈ 4.18 a0, being n = 3/(4πr3s), which is close to that of Na with rs = 3.93 a0 [59].
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The UJ has been shown to reproduce qualitatively ab initio geometries in sodium

clusters [60]. Futhermore, this model has been used also for addressing the study

of the breaking of nanocontacts and the corresponding resonances appearing in the

process [41].

In Chapter 8 we present an electronic transport study of the breaking of Na nanocon-

tacts formed during the stretching of a Na nanowire. This kind of processes in real

experiments have a stochastic nature and the thinest contacts are expected to present

a quasi-cylindrical symmetry. Thus, a natural approach to the study of nanowires is

to consider the perfectly axial symmetric case in order to reduce the complexity of the

analysis, and also because the properties of the system can be calculated easier taking

advantage of the reduced dimensionality of the computational problem. In the rest of

the section below we describe the calculation method based on the DFT-LDA and UJ

model to obtain the one-electron effective potentials developed by E. Ogando et al. in

Ref. [41] within the MIKA package (Appendix B).

We assume a system with axial symmetry along the z direction, so the cylindrical

coordinates (ρ, ϕ, z) are used. Then, demanding periodic boundary conditions in z

direction, the wave functions are sought in the form

ψmnkz(ρ, z, ϕ) = eimϕUmnkz(ρ, z), (2.22)

where Umnkz(ρ, z) are Bloch functions,

Umnkz(ρ, z + Lcell) = eikzLcellUmnkz(ρ, z), (2.23)

with Lcell corresponding to the computational cell size, which is taken large enough to

avoid interaction between the adjacent periodic systems. Then, the KS equations are

transformed to

− 1

2

(
1

ρ

∂

∂ρ
+

∂2

∂ρ2
− m2

ρ2
+

∂2

∂z2
+ 2Veff(ρ, z)

)

Umnkz(ρ, z) = ǫmnkzUmnkz(ρ, z), (2.24)

with electronic density given by

n−(r) = 2
∑

mnkz

(2− δ0m)fmnkz |Umnkz(r)|2. (2.25)

The 2(2−δ0m) factor accounts for the spin andm-subspace degeneracy. The occupation

numbers obey the Fermi-Dirac statistics through the Fermi-Dirac distribution function

f , with the Fermi level determined by the number of electrons in the system. The use
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of the ultimate jellium model means that the Coulomb term is set equal to zero, then

only the exchange-correlation potential defines the KS potential:

Veff = Vxc[n−(ρ, z)], (2.26)

which is evaluated within the LDA given by Eq. (2.14). In addition, a finite tempera-

ture of 1200 K [through f in Eq. (2.25)] is considered to stabilize the solution.

When considering the uniform infinite UJ nanowires of Na, there are radii for which

the energy is at a minimum. They correspond to most stable wires. The first magic

radii here are taken as R = 4.3a0 , 7.7a0 , 10.7a0 ..., which slightly differ from the

previously reported values [41]. These “magic radii” are analogous to the well-known

“magic numbers” of abundance in metal clusters of different sizes.

More details on the simulation of the breaking of a Na nanowire modeled by UJ are

given in Chapter 8 (Section 8.2).

2.5. 1D description of the Pb/Cu(111) system

2.5.1. Pb nanoislands

The Pb/Cu(111) system is described in this thesis with a 1D model potential derived

from self-consistent calculations using the DFT within the LDA (Subsection 2.2). The

potential only depends on the z coordinate perpendicular to the surface. A free-electron

motion parallel to the surface is assumed with effective mass m∗ = 1.

The above model is justified in the study of Pb nanoislands when the lateral dimen-

sions are substantially larger than the mean free path of the electron. In some of the

experiments considered in this thesis, for example in Refs. [20] and [25], the lateral di-

mensions of the Pb islands (see Fig. 2.1) are around 500–1000a0 (25–50 nm). This value

is larger than the mean free path L of the electron, in particular, at energies close to the

Fermi level. Indeed, at this energy, the electron is essentially scattered by the phonons,

where at temperatures as low as 5 K, the electron-phonon decay rate is γe−ph ≈ 20 meV

[61]. Then, the lifetime is given by τ = γ−1e−ph = 32.9 fs and L ∼ vF · τ ≈ 100a0 (5 nm),

where the Fermi velocity is vF = ~

me
kF =

√

2(EF − U0) ∼ 1a0 with U0 ∼ −13.5 eV

being the inner potential (with respect to the vacuum level).

The method to obtain one-dimensional effective potentials for describing metallic

overlayer-substrates was developed by E. Ogando et al. [17–19] and applied to the

study of systems such as Pb/Cu(111), Na/Al(111) and Na/Al(100). In the following
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Figure 2.1.: An example of a topographic scanning tunneling microscopy image of Pb islands
grown on Cu(111) (Courtesy of Rodolfo Miranda).

section we describe the steps involving the construction of these potentials for the

Pb/Cu(111) system.

2.5.2. Bulk pseudopotential

The Cu(111) substrate is represented with an unscreened pseudopotential derived from

the model potential proposed by Chulkov et al. [64], in which an atomic plane structure

in z direction is accounted for by a periodic function. As the Cu surface is covered by

several Pb layers, only the bulk part of the model potential is considered. The bulk

function of the 1D-model potential is given by

VCu(z) = A10 + A1 cos
(
2π
d z
)
, −d

2 < z < d
2 (2.27)
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Figure 2.2.: Electronic band structure of bulk Cu [62], Pb [29,61,63] and Ag [62] along
the Γ−L direction. Energies are given with respect to the Fermi level denoted by
horizontal dashed lines. The shaded areas in Cu and Ag represent the projected band
gap providing the confinement barrier in the substrate for the QWSs in Pb overlayers.
The orbital character of the Pb bands is indicated.

where d = 3.943 a0 is the Cu interlayer distance in the (111) direction and A10 and A1

are fitting parameters, optimized in such a way that the experimental Cu(111) work

function, (4.94 eV [64]), as well as the projected band structure at the Γ point (see

Fig. 2.2), are reproduced by the DFT-LDA calculation for the pristine Cu(111) surface.

Using periodic boundary conditions at ±d/2 the KS equations are solved for the fixed

Veff(z) = VCu(z) potential. Then, from the calculated eigenfunctions and experimental

work function, a mean density parameter rs = 2.55 a0 is recovered, comparable to

the experimental value rs = 2.67 a0. From the density, we can also easily obtain the

exchange-correlation V Cu
xc (z) potential [Eq. (2.14)].

The Hartree term, however, needs special care because, in the periodic treatment

above, due to the absence of the vacuum, the height of the surface dipole-barrier is

not known as the energy origin of the Hartree term inside the bulk is not defined.

This is fixed provisionally by setting the Hartree potential to zero at the boundaries

of the periodic cell. After adding a homogeneous neutralizing positive background of

the previously obtained rs = 2.55 a0, the Hartree potential is retrieved. The periodic
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unscreened pseudopotential, then, is evaluated as

V Cu
unsc = V Cu

eff − V Cu
H − V Cu

xc . (2.28)

In order to use the above pseudopotential in slab calculations the correct Hartree

potential must be found. For this purpose, we construct a semi-infinite slab (15 ML)

by repeating the previously obtained periodic one and we add enough vacuum space.

Here the Cu(111) edge is defined as one half ML above the last atom plane.

Then, the potential is shifted iteratively by a constant until the proper work function

of the Cu(111) surface (4.94 eV) is retrieved in self-consistent calculations with rs =

2.55 a0. The resulting screened pseudopotential is similar to the bulk part of the original

model potential [Eq. (2.27)], but with different parameters.

2.5.3. Pb overlayers on Cu(111)

The Pb overlayer is described by the stabilized jellium model, where addition of a

constant attractive potential inside the metal allows to retrieve the Pb work function

value (Φ = 4.08 eV) consistent with ab initio calculations and experimental data. The

jellium description should hold in the energy range where the pz band of the parent

bulk-electronic structure along Γ-L can be approximated by a free-electron parabola

(see Fig. 2.2).

For each Pb overlayer thickness, the semi-infinite Pb/Cu(111) potential is obtained

by solving self-consistently the 1D KS equations within the LDA. It is convenient to

perform the calculations in a symmetric system as considered in Fig. 2.3. In this

way, the electronic states confined in the Pb overlayer can be easily identified from

the eigenvalues, as they appear as doubly quasi-degenerate. This configuration is also

considered in the numerical method for the many-body calculations of the electronic

state lifetimes, to be presented in the following Chapter 3.

Within the wave packet propagation method (Chapter 4), a very large substrate is

necessary to include outgoing boundary conditions inside the bulk, which is a char-

acteristic technicality of the method. In this particular case, we have built a proper

one-electron effective potential based on the self-consistent one: We have removed one

of the surfaces, and starting from the fifth Cu atomic layer, we have extended the

periodic Cu substrate up to 70 MLs. In this way, the spurious effects due to the

quantization of the continuum states in the supercell geometry are removed.
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CuPb

vacuum vacuum

Pb

Figure 2.3.: Scheme of the metal slab considered in the calculation of the Pb/Cu(111)
electronic structure.

2.5.4. Image potential

The effective one-electron potential Veff obtained by the DFT-LDA scheme does not

reproduce the long-range image charge interaction Vim for an electron being on the

vacuum side above a metallic surface. Nevertheless, for the present study of the states

close to the vacuum level it is of essential importance to account for Vim. We then

modify the Veff potential to include the image potential for an electron in front of a

metallic surface. This is done by considering the following form for the model potential:

Vs(z) =

{
A exp[−λ(z−z0)]−1

4(z−zim)
z ≥ z0

Veff(z) z < z0,
(2.29)

where zim is the image plane position and z0 is an auxiliary parameter. We take zim =

1.23 a0 in front of the Pb jellium edge from Ref. [65], and z0 is set to z0 = zim+0.5 a0,

which has been checked to give a smooth final potential. The rest of the parameters,

A and λ, are fixed by the continuity of Vs(z) and its derivative V ′s(z) at z0:

A =4(z0 − zim)Veff(z0) + 1

λ =
1

(z0 − zim)

([
1− 4(z0 − zim)V ′eff(z0)]

)

A
− 1

)

.
(2.30)



Chapter 3
Theoretical methods II: Excitation lifetimes

in the GW approximation

3.1. Introduction: Electron and hole excitation

lifetimes

3.1.1. Decay rate contributions

Excited electrons can be viewed as electrons being promoted from an occupied state

below the Fermi level to a higher energy unoccupied state. On the other hand, an

electron being removed from the Fermi sea creates a hole, which behaves as an elec-

tron with opposite charge. These excitations are screened “instantaneously” in metals

(τscreen < 1 fs) so that the mutual interaction (excitonic effects) can be neglected.

These screened excited particles are the electron (hole) quasiparticles, which decay

in time. In the case of metallic quantum wells, there are several quasi-particles in the

material which can scatter inelastically an electron excited into a QWS, leading to its

decay. We focus on the contribution of phonons (collective excitations of the under-

laying atomic lattice), other electronic (hole) excitations and scattering by defects.

In general, it is a good approximation to consider that the scattering events con-

tribute additively to the decay rate Γ of the excited states as [15]:

Γ = γ1e + γe−e + γe−ph + γdef . (3.1)

23
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The first term represents the contribution from the energy-conserving resonant electron

transfer mechanism. The second term, γe−e, is the inelastic electron-electron scattering

to lower energies and γe−ph is the corresponding electron-phonon decay rate. The effect

of the defects is accounted for by the last term γdef . In certain cases Eq. (3.1) is not

fulfilled, as has been shown in the study of image state resonances [66], where the

resonant and inelastic decays do not contribute additively to the total decay rate.

The lifetime of the state is determined by the Heisenberg uncertainty principle

(∆E∆t = ~) as ~τ−1 = Γ. Usually, for electronic decay processes at surfaces, the

decay rate is given in meV and the lifetime is measured in femtoseconds [1 femtosec-

ond (fs) = 10−15 seconds]. The two quantities are related by

τ [fs] ≈ 658

Γ [meV]
. (3.2)

A central issue is to identify which of the broadening mechanisms in Eq. (3.1) is the

main one in determining the lifetime of the electronic (hole) states. With this knowledge

one can attempt to design systems with desired surface electronic properties (within

the physically possible). For example, excited electrons at surfaces play an important

role in surface reactivity. Chemical reactions in ad-atoms and ad-molecules, induced

by photons or electrons injected by the STM tip, involve an excited electronic state as

an intermediary step. Then, the lifetime of the excited state determines the efficiency

of the given reaction channel [32].

On the other hand, the existence of “simple” electronic states at surfaces challenges

the precision of state-of-the-art photoemission and scanning tunneling microscope ex-

periments. Together with the theoretical tools for interpreting the results, these states

are also used for the experimental setup calibration. In this case, the lifetime is also a

central quantity in experiments. A short lifetime, for example, might prevent the state

from being probed experimentally.

3.1.2. The electron-electron decay rate

The decay rate of excited electrons and holes in a homogeneous electron gas, in the

high electron density n limit, with energies close to the Fermi level, EF , and low

temperature, is given by the Quinn-Ferrell (QF) formula [67]:

ΓQF ≈ 2.5019 r
5/2
s (E − EF )

2, (3.3)

where rs is the density parameter given by rs = [3/(4πn)]1/3. A quadratic dependence

of the decay rate on energy, as in Eq. (3.3), is usually referred to as a 3D Fermi liquid
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behavior. It has been found that this model, although in principle only valid for the

high density limit, does a good job in estimating the e− e decay rates in metals with

realistic densities. Then, an important issue to address when studying lifetimes of

electron (hole) states is to ask to what extent are the actual lifetimes different from

the 3D Fermi liquid behavior.

Another important issue to be addressed is the dimensionality of the system. In a

2D-gas, similar results to that of Eq. (3.3) are obtained [68], but the energy dependent

part of the solution in this case includes a logarithmic factor ∼ (E−EF )
2 ln |E − EF |−1

instead of the simpler ∼ (E − EF )
2.

Then, the question arises: what is the character (2D or 3D) of the quantum well

state lifetimes, in our case of Pb overlayers? And consequently, what behavior might

be expected for energies close to the Fermi level? The electronic structure for Pb

overlayers grown in (111) direction is clearly quantized at Γ (see for example the band

structure of a Pb slab in Fig. D.2). However, as it has been shown in photoemission

experiments, the lifetimes of QWSs close to the Fermi level, even for small overlayer

thicknesses, follow a 3D Fermi liquid behavior in Pb/Si(111) [24], which has been also

seen in STM studies [25,61]. In principle, the finite size of the overlayer could affect the

screening of the excitations in the metal, which is a central property determining the

electron-electron decay. The screening spatial range in bulk metals can be characterized

by the 3D Thomas-Fermi screening length [24,68], which for Pb (rs = 2.3a0) is:

λs =
1

2

(
π

3n

)1/6

=
1

2

√

π(4/9π)1/3rs = 0.97a0. (3.4)

This value is smaller than 1 ML thickness (5.41a0), which is consistent with the ob-

served 3D character of the lifetimes. Our results to be presented in next chapter are

also consistent with the 3D character reported above. The similarity between the 3D

density of states of a free electron gas and the 2D density of states in an infinite poten-

tial well which coincide at Γ can also provide an insight of why the lifetimes at Γ show

a 3D Fermi liquid character (see also the brief discussion of Fig. D.1 in Appendix D).

Finally, it might happen that the states are not totally localized inside the metal

where the e − e scattering takes place. Then, the decay rate of the state is reduced.

In this case, the decay rate might be estimated (neglecting the non-locality of the

many-body decay and assuming that the inelastic scattering only takes place inside

the metal) by multiplying the bulk metal decay rate value by the penetration of the

wave function inside the metal. This issue is behind the quantum size effects on the

lifetimes reported at the end of next Chapter 6.
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3.2. Hedin’s equations and GW approximation

The density functional theory (DFT) presented in previous Chapter 2 provides the

ground state properties of a many-electron system, however, the many-body lifetime

of the electronic excitations is not directly accessible with this formalism. Then, one

should go beyond ground state DFT theories. For example, the time-dependent DFT

[69, 70] allows, in principle, an exact description of neutral excitations (such as those

involved in absorption of photons) [71].

In this thesis we use the Green’s function theory to address the lifetime of electron

excitations. Whereas the DFT contains a formalism based on the electronic density

n(r), the central quantity in the formalism studying the many-body excitations con-

sidered in this thesis is the Green’s function G (to be defined below). Indeed, G is

directly related to photoemission spectra in the limit of large kinetic energy (“sudden

approximation”) [72,73]. In Fig. 3.1 a direct photoemission and the inverse photoemis-

sion process are represented. In direct photoemission, a hole is created, i.e., a (N − 1)

system is formed from the N -body electron system. On the other hand, in inverse

photoemission the system acquires an additional electron so that a (N + 1) electron

system is created.

The photoemission spectra are usually considered as a faithful map of the density

of occupied or unoccupied states of the probed sample. This is linked to the picture

of independent electrons which occupy some well-defined energy levels in the system.

However the electrons in the sample are not independent, but they form a many-

body system. An electron that leaves the sample will lead the remaining electrons

to relax [71]. This process will affect the photoemission spectra, by renormalizing

the single-particle energy levels and inducing a linewidth broadening. Indeed, the

population decay of electronic states (leading to linewidth broadenings) can be directly

measured in time-resolved two-photon photoemission experiments. One can still retain

the one-electron picture, but dealing with “fictitious” particles called quasielectrons

and quasiholes that derive from the many-body theory to be presented below.

In an interacting N -electron system, the probability amplitude of an additional elec-

tron to be propagated from (r′, t′) to (r, t) for t > t′ is given by the one-electron Green’s

function:

G(r, r′, t, t′) = −i〈N |T [ψ̂(r, t)ψ̂†(r′, t′)]|N〉, (3.5)

where T is the time-ordering operator defined by

T
(
Â(t1)B̂(t2)

)
=

{

Â(t1)B̂(t2) if t1 > t2

B̂(t2)Â(t1) if t2 > t1,
(3.6)
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Direct 
photoemission

Inverse
photoemission

Fermi 
level

Figure 3.1.: Schematic representation of an electron (e−) ejection by a photon of energy
hν in direct photoemission and electron injection in inverse photoemission spectroscopic
experiments for probing electronic and structural properties as well as the electron dynamics
in bulk and nanostructured surfaces. Ei and Ef refer to the initial and final electron states,
respectively. The kinetic energy of the electron Ekin is measured with respect to the vacuum
level (EV ). Adapted from Ref. [71].

with ψ̂ being the electron annihilation field operator in the Heisenberg picture and

|N〉 is the many-body N -electron ground state [72]. When t < t′, Eq. (3.5) describes
the probability amplitude of a hole created in the N -electron system at (r, t) to be

propagated to (r′, t′).

The formulation of the many-body fundamental equation [Eq. (2.1)] in terms of

the Green’s functions, allowed Hedin [74] to develop a perturbative approach to the

many-body problem. This further gives the possibility to reformulate the exact many-

body mathematical problem as a set of integro-differential equations, known as Hedin’s

equations, to be solved self-consistently [72]:

W (12) =v(12) +

∫

v(13)P (34)W (42) d3d4,

Σ(12) =i

∫ ∫

G(13+)W (1, 4)Γ(324) d3d4,

G(12) =G0(12) +

∫ ∫

G0(13)Σ(34)G(42) d3d4,

Γ(123) =δ(1− 2)δ(1− 3)−
∫ ∫ ∫

δΣ(12)

δG(45)
G(46)Γ(673)G(75) d4d5d6d7,

P (12) =− i
∫ ∫

G(13)Γ(342)G(41+) d3d4

(3.7)
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In the notation above (1) ≡ (r, t) refers to the standard spatial and temporal compact

notation and 1+ refers to the t→ t+ iη+ substitution, η+ being a positive infinitesimal

number. P is the time-ordered polarization operator, v is the bare Coulomb interaction,

W is the dynamical screened interaction, and Γ is the vertex function.

The functional derivative in the expression for Γ prevents these equations to be

solved in a straightforward way. Thus, approximations are necessary. The zero order

perturbation term of Γ in terms of W is

Γ0(123) = δ(12)δ(23), (3.8)

from which a set of four equations is obtained

Σ(12) = iG(12)W (12), (3.9a)

G(12) = G0(12) +

∫ ∫

G0(13)Σ(34)G(42)d3d4, (3.9b)

P (12) = −iG(12)G(21), (3.9c)

W (12) = v(12) +

∫ ∫

v(13)P (34)W (42)d3d4. (3.9d)

The approximation in the self-energy given in Eq. (3.9a) is the so-called GW approx-

imation. Since the functional term is not present, these equations might be solved

iteratively until self-consistency is obtained. However, these calculations are still com-

putationally hard, and usually different approximations or levels of self-consistency are

further employed.

It is not a trivial task to go beyond the GW approximation and to still maintain good

predictive power. Furthermore, in practice it has been found that for band structure

calculations, the fully self-consistent GW calculations perform worse than the simple

G0W0 scheme. For the latter, the band-gap error of DFT-LDA in semiconductors

appears corrected [72].

In this thesis the evaluation of the quantities of Eqs. (3.9)[a-d] have been addressed in

a non self-consistent way and under further approximations. In the formalism outlined

in following sections we use the density response function χ [see Eq. (3.33)], which is

related to the polarizability P [72] appearing in Hedin’s equations by:

χ(12) = P (12) +

∫ ∫

P (13)v(34)χ(42)d3d4. (3.10)
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In the literature the formulation of the quantities above can be found in terms of the

inverse dielectric function ǫ−1:

ǫ−1(r, r′, ω) = δ(r− r′) +

∫

dr′′v(r− r′′)χ(r′′, r′, ω). (3.11)

In the rest of the sections we provide the basic equations describing the lifetimes of

electron and hole excitations. Then, we provide the particular set of equations adapted

to one-dimensional potentials.

3.3. The quasiparticle lifetime

Within an intuitive picture, when an electron moves through the many-electron system

in a metal, it pushes or pulls on its neighbors and, as a consequence, it becomes screened

by a cloud of positively charged holes. The real particle plus its cloud is called the

quasiparticle (see Fig. 3.2). It turns out that an electron quasiparticle, to some extent,

behaves as its parent electron, except that the interaction with other quasiparticles

becomes weak in comparison to the electron-electron Coulomb interaction. This weak

interaction is the dynamically screened interaction W .

Quasiparticles can be rigorously defined as excitations appearing in the many-body

system. Indeed, the Green’s function can be written [72] in the spectral representation

as:

G(r, r′, ω) =
∑

j

ψ̃j(r, ω)ψ̃j
†
(r′, ω)

ω − Ej(ω)
, (3.12)

where ψ̃j are solutions to the quasiparticle equation:

Ĥ0ψ̃j(r) +

∫

Σ(r, r′;Ej)ψ̃j(r
′)dr′ = Ejψ̃j(r). (3.13)

Ĥ0 is the one-electron Hamiltonian

Ĥ0(r) = −
1

2
∇2 + Vext(r) +

∫
n(r′)
|r− r′|dr

′, (3.14)

where Vext is the external (mean field) potential and n is the electron density.

The structure of the quasiparticle equation looks similar to other mean-field single-

particle equations (for example the Kohn-Sham equations in Eqs. (2.8) and (2.9)).
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There are important differences, however, between Kohn-Sham orbitals ψ(r) and those

of the quasiparticles ψ̃(r). The latter orbitals, for example, are not required to be

orthogonal. Furthermore, the quasiparticle eigenergies are not necessarily real numbers.

However, empirically it is found that Kohn-Sham and quasiparticles eigenfunctions

are very similar (when the calculation of both on the same system is possible) [75].

Thus, it is plausible to consider the quasiparticle equation as a perturbation to the

Kohn-Sham equation. Then, assuming ψ̃ ≈ ψ and expanding the quasiparticle energy

in a Taylor series about the Kohn-Sham (mean-field) energy EKS
j (assuming small

differences between Ei and E
KS
i ), we obtain:

Ej ≈ EKS
j +

∫ ∫

drdr′ψ∗j (r)ψj(r
′)
[
Σ(r, r′;Ej)− Vxc(r′)δ(r− r′)

]
. (3.15)

The self-energy, depending on the quasiparticle energy, is similarly expanded about

EKS
i :

Σ(r, r′;Ej) ≈ Σ(r, r′;EKS
j ) + (Ej − EKS

j )
∂Σ(r, r′;ω)

∂ω

∣
∣
∣
∣
ω=EKS

j

. (3.16)

Note that the approximate energy is given in general by a complex number, thus we

can split the real and imaginary part:

Ej = ERe
j + iEIm

j . (3.17)

Then, the probability to find a quasiparticle excited at t = 0 in the jth state at r

position will decay in time:

|ψj(r, t)|2 ∝ e2E
Im
j t, (3.18)

from which the inverse lifetime (or decay rate) of the quasiparticle is identified as

1/τ = Γ = −2EIm
j . (3.19)

If the imaginary part of the quasiparticle energy is evaluated in on-shell approximation

(Ej = EKS
j ), the electron-electron inelastic decay rate of the ψj excited state with

energy EKS
j can be calculated by the following expression:

Γj = −2 Im
[∫ ∫

dr dr′ψ∗j (r)Σ(r, r
′, EKS

j )ψj(r
′)

]

. (3.20)
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(a) (b)

+ +

++

quasiparticle FS FS

Figure 3.2.: (a) Screening of the Coulomb potential v(r, r′) by the induced nind positive
hole around the electron (adapted from Ref [75]). (b) Schematic representation (adapted
from Ref. [76]) of the scattering of an external hot electron with a Fermi system (FS) of N
interacting electrons at T = 0. The external electron, in an initial state of energy En > Ej ,
is scattered into an available state of energy Ej (En > Ej > EF ) by exciting the cold Fermi
system from its many-body ground state of energy EFS

0 to some many-body excited state
of energy EFS

i (EFS
i − EFS

0 = En − Ej).

3.4. Electron-electron decay rate in metallic slabs

3.4.1. Equations

In this section we derive the equations used in Chapter 6 for calculating the electron-

electron inelastic decay rate of quantum well states formed in Pb thin overlayers sup-

ported on Cu(111). The Pb/Cu(111) system is described by a z-dependent one-electron

effective potentials derived from DFT calculations. Thus, we consider slabs character-

ized by translational invariance, i.e., a homogeneous free-electron gas, along the surface

(r‖ = (x, y) plane). In this picture a single-particle wave function with two-dimensional

(2D) wave vector k‖ parallel to the slab surface and quantum number j is represented

in the form

Ψjk‖
(r) =

1

L
eik‖·r‖φj(z), (3.21)

where L is a normalization length, and the energies are given by

Ejk‖
= Ej +

k2
‖

2m∗j
, (3.22)

where we have introduced the effective mass in parallel direction for each j band.

Within the considered translational symmetry, the mathematical description is simpli-

fied by taking the 2D Fourier transforms of the quantities involved in the calculation
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of the lifetime presented above [77]. The 2D Fourier series expansion of the self-energy

is defined here as

Σ(r, r′, ω) =
1

L2

∑

q‖

eiq‖·(r‖−r′‖)Σ(z, z′;q‖, ω), (3.23)

where the sum in q‖ is performed in the (auxiliary) superlattice Brillouin zone in the

parallel plane to the surface. By inserting this expression into Eq. (3.20), and using

the wave functions of Eq. (3.21), we write:

Γjk‖
= −2Im

[
∫ d/2

−d/2

∫ d/2

−d/2
dz dz′φ∗j(z)Σ(z, z

′;q‖, ω)φj(z
′)

∫

L2

dr‖
1

L4

∑

q‖

ei(q‖−k‖)·r‖
∫

L2

dr′‖e
i(k‖−q‖)·r′‖



 ,

(3.24)

where the integration order has been rearranged in a convenient way. Then, by not-

ing that the integral in r′ gives a kronecker delta factor δk||,q||
, finally we obtain the

expression of the decay rate for an electronic state with j quantum number and k‖
parallel vector as

Γjk‖
= −2

∫ d/2

−d/2

∫ d/2

−d/2
dz dz′φ∗j(z)ImΣ(z, z′;k‖, ω)φj(z

′). (3.25)

As follows from previous section, within the GW approximation of Eq. (3.9a), the

time-to-energy Fourier transform of the self-energy is written

Σ(r, r′;ω) =

∫

dω′iG(r, r′;ω − ω′)W (r, r′;ω′), (3.26)

which for the symmetry considered above gives

Σ(z, z′;k‖, ω) =

∫ ∞

−∞

dω′

2π

∫
dq‖
(2π)2

W (z, z′;k‖ − q‖, ω
′)iG(z, z′;q‖, ω − ω′), (3.27)

where we have used the standard substitution

1

L2

∑

q‖

−→ 1

(2π)2

∫ ∞

−∞
dq‖. (3.28)
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The next step for simplifying the calculations is to replace the full one-electron

Green’s function G by the noninteracting (time-ordered) Green’s function G0 given by:

G0(z, z′;q‖, ω) = 2
∑

j




φj(z)φ

∗
j(z
′)

ω − Ej −
q2
‖

2m∗
j
− iη

θ

(

EF − Ej −
q2
‖

2m∗j

)

+
φj(z)φ

∗
j(z
′)

ω − Ej −
q2
‖

2m∗
j
+ iη

θ

(

Ej +
q2
‖

2m∗j
− EF

)

 ,

(3.29)

where j runs over the one-dimensional Kohn-Sham eigenfunctions, and θ is the Heavi-

side step function. The two factor in front of the sum accounts for the spin degeneracy,

and iη is a small imaginary number. Since we assume that states of different spins

are not coupled, we drop the two factor in the following expressions . Finally, the 2D

Fourier transform of the imaginary part of the self-energy is given by

ImΣ(z, z′;k‖, Ej) =
1

(2π)2

0≤±(Ej−Ej′)≤±(Ej−EF )
∑

j′

φj′(z)φ
∗
j′(z
′)

×
∫

D
ImW

(

z, z′;k‖ − q‖,

∣
∣
∣
∣
∣
Ej − Ej′ +

k2
‖

2m∗j
−

q2
‖

2m∗j′

∣
∣
∣
∣
∣

)

dq‖,

(3.30)

and the integral in q‖ for each j
′ is performed in the momentum space area D defined

by

0 < ±
(

Ej + k2
‖/(2m

∗
j)− Ej′ − q2

‖/(2m
∗
j′)
)

< ±
(

Ej + k2
‖/(2m

∗
j)− EF

)

, (3.31)

where “+” (“−”) stands for electron (holes) in both equations above. Then, the decay

rate is given as

Γjk‖
=
−2

(2π)2

0≤±(Ej−Ej′)≤±(Ej−EF )
∑

j′

∫ ∫

dzdz′φ∗j(z)φj′(z)

×
[
∫

D
ImW

(

z, z′;k‖ − q‖,

∣
∣
∣
∣
∣
Ej − Ej′ +

k2
‖

2m∗j
−

q2
‖

2m∗j′

∣
∣
∣
∣
∣

)

dq‖

]

φj(z
′)φ∗j′(z

′).

(3.32)

The 2D Fourier transform of the imaginary part of the screened interaction, ImW ,

satisfies the following integral equation:

ImW (z, z′;q‖, ω) =

∫ ∫

dz1dz2 v(z, z1;q‖)Imχ(z1, z2;q‖, ω)v(z2, z
′;q‖). (3.33)
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Here v(z, z′,q‖) is the 2D Fourier transform of the bare Coulomb interaction (with

q = |q‖|)
v(z, z′;q‖) =

2π

q
e−q|z−z

′|, (3.34)

and χ(z, z′;q‖, ω) is the corresponding 2D transform of the density response function

of the interacting electron system. Within the random phase approximation (RPA),

χ(z, z′;q‖, ω) obeys the integral equation,

χ(z, z′;q‖, ω) =χ
0(z, z′;q‖, ω)

+

∫ ∫

χ0(z, z1;q‖, ω)v(z1, z2;q‖)χ(z2, z
′;q‖, ω)dz1dz2.

(3.35)

Here, χ0 is the density response function for the noninteracting electron system. It

can be calculated in terms of eigenfunctions φj(z) and eigenvalues Ej considered in

Eq. (3.22). We use the expression derived by Eguiluz [78] for χ0. Unless otherwise

stated, in the calculations free-electron motion with effective mass m∗j = 1 for all j is

assumed in the plane parallel to the surface. The details on the calculation of χ0 are

given in the following section and in Appendix C.

3.4.2. Numerical implementation

The numerical implementation of the previous equations is based on a symmetry of

the slab system with respect to the z = 0 mirror-plane, as sketched in Fig. 2.3. The

calculation box size, here denoted by d, includes the Cu substrate, the two Pb overlayers

and vacuum spaces at both sides. That means that the physical quantities are invariant

with respect to the z → −z transformation. Because of this invariance, it follows

from Eq. (3.25) that the double-Fourier series of the imaginary part of the screened

interaction W only contains the following terms:

ImW (z, z′;q, ω) =
∞∑

n,n′

ImW+
n,n′(q‖, ω) cos

(
2πn

d
z
)

cos

(
2πn′

d
z′
)

+

∞∑

n,n′ 6=0

ImW−n,n′(q‖, ω) sin
(
2πn

d
z
)

sin

(
2πn′

d
z′
)

.

(3.36)

Then the decay rate of the state φj can be split, depending on the state parity as:

Γjk‖
=

{

Γ++
jk‖

+ Γ+−
jk‖

for even φj

Γ−−jk‖
+ Γ−+jk‖

for odd φj ,
(3.37)
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with

Γ++
jk‖

=− 2

(2π)2

0≤±(Ej−Ej′)≤±(Ej−EF )
∑

j′even

∞∑

n,n′

ImW+
n,n′(k, ω)

×
∫ d/2

−d/2
φ∗j(z)φj′(z) cos

(
2πn

d
z
)

dz

∫ d/2

−d/2
φj(z

′)φ∗j′(z
′) cos

(
2πn′

d
z′
)

dz′,

(3.38)

Γ+−
jk‖

=− 2

(2π)2

0≤±(Ej−Ej′)≤±(Ej−EF )
∑

j′odd

∞∑

n,n′ 6=0

ImW−n,n′(k, ω)

×
∫ d/2

−d/2
φ∗j(z)φj′(z) sin

(
2πn

d
z
)

dz

∫ d/2

−d/2
φ(z′)φ∗j′(z

′) sin

(
2πn′

d
z′
)

dz′,

(3.39)

Γ−−jk‖
=− 2

(2π)2

0≤±(Ej−Ej′)≤±(Ej−EF )
∑

j′odd

∞∑

n,n′

ImW+
n,n′(k, ω)

×
∫ d/2

−d/2
φ∗j(z)φj′(z) cos

(
2πn

d
z
)

dz

∫ d/2

−d/2
φ(z′)φ∗j′(z

′) cos

(
2πn′

d
z′
)

dz′,

(3.40)

and

Γ−+jk‖
=− 2

(2π)2

0≤±(Ej−Ej′)≤±(Ej−EF )
∑

j′even

∞∑

n,n′ 6=0

ImW−n,n′(k, ω)

×
∫ d/2

−d/2
φ∗j(z)φj′(z) sin

(
2πn

d
z
)

dz

∫ d/2

−d/2
φ(z′)φ∗j′(z

′) sin

(
2πn′

d
z′
)

dz′.

(3.41)

For lifetime calculations involving states at the surface (or in an overlayer) we have

seen that Γ++ ≈ Γ+− and Γ−− ≈ Γ−+. On the other hand, within the assumed

symmetry of the calculation box, for a given energy, the QWSs of Chapter 6 localized

in the overlayer, appear as doubly quasidegenerate and with opposite parity. That

means that for the calculations of the lifetimes of a given QWS, we have two states:

φj and φj+1, with even and odd parity, respectively, and energies Ej ≈ Ej+1. Then

the lifetime of a QWS with energy E0 =
1
2(Ej+1 + Ej) has been calculated as:

Γ ≈ Γ++
jk‖

+ Γ−−j+1k‖
. (3.42)
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In particular, for the calculation of the electron excitation decay rates shown in

Fig. 6.10, we have used 31 MLs of Cu substrate and 100a0 of vacuum space in each

side. With these parameters, the differences between quasidegerenate energies are

smaller than 1 meV, and the differences between their linewidths is typically of the

order of 1 meV, with an energy cuttoff of 120 meV.

The integrals over z and z′ appearing in above equations, can be solved analytically

(not shown here) by developing the states φj in their Fourier series in the periodic cell

d. Following the notation by Silkin et al. in Ref. [79],

φj(z) =
1√
d
c+j,0 +

√

2

d

lmax∑

l=1

[

c+j,l cos
(
2π

d
z
)

+ c−j,l sin
(
2π

d
z
)]

. (3.43)

The energy cuttoff determines the lmax used in the truncation of the infinite sum of

Eq. (3.43). As mentioned before, we consider the case of a system with symmetry with

respect to the z = 0 mirror-plane. Then, states with different parity appear, the odd

(c+j,l = 0) and even (c−j,l = 0) ones.

Similar double-Fourier series expansion, as in Eq. (3.36), of the rest of the quantities

allows one to calculate the decay rates by matrix multiplications. The equation for

calculating the imaginary part of the screened interaction in Eq. (3.33) is written then

ImW±n,n′(k, ω) =
∑

n′′,n′′′

d2

µn′′µn′′′
v±n,n′′(k)Imχ

±
n′′,n′′′(k, ω)v

±
n′′′,n′(k), (3.44)

where

µn =

{

1 for n = 0

2 for n ≥ 1,
(3.45)

and n′′, n′′′ 6= 0 for the “−” case. The coefficients vn,n′ of the bare Coulomb potential

can be calculated analytically [78]. The obtention of the χn,n′ coefficients of the inter-

acting density response function is more involved, because the solution of Eq. (3.35) is

required. In the following we explain how this equation is solved.

The noninteracting density-response function at zero Kelvin temperature [79] is given

by

χ0(z, z′;q‖, ω) =
2

L2

∑

j,j′

φj(z)φ
∗
j′(z)φ

∗
j(z
′)φj′(z

′)

×
∑

k‖

fjk‖
− fj′k‖+q‖

Ejk‖
− Ej′k‖+q‖

+ ω + iη
,

(3.46)
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where fjk is used to denote the Heaviside step function θ(EF − Enk‖
), with EF being

the Fermi level and Enk‖
energies are given by Eq. (3.22). The Fourier representation

of Eq. (3.46) is

χ0(z, z;q‖, ω) =
∞∑

n=0

∞∑

n′=0

χ0,+n,n′(q, ω) cos
(
2πn

d
z
)

cos

(
2πn′

d
z

)

+

∞∑

n=1

∞∑

n′=1

χ0,−n,n′(q, ω) sin
(
2πn

d
z
)

sin

(
2πn′

d
z′
)

,

(3.47)

and noting that similar equations hold for χ and v, the interacting density response

equation is reformulated as

χ±n,n′(q, ω) = χ0,±n,n′ +
∑

n′′,n′′′

χ0,±n,n′′(q, ω)v
±
n′′,n′′′(q)χ

±
n′′′,n′(q, ω), (3.48)

which can be expressed in matrix form, χ = χ0 + χ0vχ, so that the solution can be

formally written as:

χ = (1 + χ0v)−1χ0. (3.49)

At the end, problem is reduced to that of finding the inverse of the (1 + χ0v) matrix.





Chapter 4
Theoretical methods III: Wave packet

propagation

4.1. Introduction

The wave packet propagation (WPP) method is a powerful theoretical tool widely

applied both in quantum chemistry and physics. It allows to address on equal footing

the characterization of the static properties of a molecular or mesoscopic system, and

the solution of explicitly dynamical problems such as, e.g., response of the system to

a time-dependent perturbation. It also allows an efficient and simultaneous treatment

of both bound and continuum states, which otherwise is a challenge for numerical

algorithms.

In the case of the (effective) one-electron problem, which is dealt with in this thesis,

the idea underlying the method is the following: The time-dependent Schrödinger

equation for the “active” electron is directly solved on a mesh of spatial points. Thus,

one gets a priori the exact evolution of the electron wave function from the given initial

state. For stationary Hamiltonians the “active” electron serves as a virtual probe. The

proper choice of the initial state allows an efficient extraction of the energy-resolved

scattering matrix, energies of bound states, energies and lifetimes of quasi-stationary

states (resonances), projected density of electronic states, etc. Thus, a rather complete

information on the system can be obtained. It should be emphasized that in contrast

to frequency-domain techniques, where the stationary Schrödinger equation is solved

for each energy, the present time-domain approach allows extraction of the energy-

39
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resolved quantities from the single time propagation. In the case of time-dependent

Hamiltonians the WPP is widely used to obtain the transition probabilities, including

bound-to-continuum transitions.

It is worth noting that the numerical implementation of the state-of-the-art ab initio

treatment of the dynamics of the many-body systems, the time-dependent density

functional theory (TDDFT), borrows many of the aspects of the WPP technique as

used here. Indeed, within TDDFT one considers the time-evolution of several (or

even many) Kohn-Sham orbitals, each of which is analogous to the one-electron wave

packet [80].

The review devoted to the electronic excitations in metals and metal surfaces in

Ref. [15] contains a section reporting the state-of-the-art of the WPP method, as ap-

plied in surface science problems by the group in Orsay (France). Since our implemen-

tation of the WPP technique borrows a lot from above developments, certain overlap

between the material covered in this chapter and that presented in Ref. [15] including

references therein is inevitable. Further details are based on private communications

during the fruitful collaboration stages with the group at Orsay. Thus, the aim of

this chapter is also to provide a useful self-contained resource of the most important

concepts related to the WPP, as considered here. Naturally, the presentation is biased

to the specific problems solved in this thesis and it will be necessarily incomplete. In

particular, we have explored the applicability of the WPP method to electron quantum

well state (QWS) problems and to the study of electron transport properties in metallic

nanocontacts.

We limit the presentation to the one-electron propagation driven by a general time-

independent local potential V (r) that effectively accounts for the electron interaction

with crystal ions and other electrons (see Chapter 2). Section 4.2 presents the general

equations and most common techniques for solving them numerically. Section 4.3 is

devoted to the absorbing potentials used for implementing the outgoing wave boundary

conditions and to mimic electron population decay of excited states. Section 4.4 ex-

plains the extraction of information about the system from the scattered wave packet,

and the prescriptions for constructing a proper initial wave packet configuration. Sec-

tions 4.5 and 4.6 are devoted to the specific propagation schemes applied to the study of

the electronic properties of the Pb/Cu(111) system and Na nanocontacts, respectively.

The last Section 4.7 contains the equations relating the measurable macroscopic ballis-

tic transport quantities with the mesoscopic scattering properties of nanosized systems.

Care must be taken with notations because the same symbol might be used through

the chapter for different quantities. Thus, in general, the scope of the symbol is limited

to the corresponding subsection.
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4.2. Solving the time-dependent Schrödinger equation

(TDSE)

4.2.1. TDSE

The quantum mechanical evolution of the electron wave function ψ(r, t) is described

by the (non-relativistic) time-dependent Schrödinger equation (TDSE)

i∂tψ = Ĥψ, (4.1)

with Hamiltonian

Ĥ = −1

2
∇2 + V̂ (r, t). (4.2)

Provided the initial condition ψ(r, t = t0) ≡ ψ0 the formal solution to Eq. (4.1) can be

written as

ψ(r, t) = Û(t− t0)ψ0, (4.3)

with the evolution operator Û(t− t0) given by

Û(t− t0) = T exp[−i
∫ t

t0

Ĥ(t′)dt′], (4.4)

where T is the time-ordering operator defined by Eq. (3.6). For a conservative quan-

tum system, i.e., ∂V/∂t=0, which is assumed through the rest of the chapter, the

Hamiltonian is time-independent and the evolution operator is given by

Û(t− t0) = exp[−iĤ(t− t0)]. (4.5)

Without lost of generality, we set t0 = 0.

The simplest form of the time-propagation is obtained when the eigenspectrum of

the Hamiltonian is known. The eigenspectrum of the Hamiltonian operator is obtained

by solving the time-independent Schrödinger equation (TISE)

Ĥφn(r) = Enφn(r). (4.6)

The eigenstates {φn} form a complete basis set (we use a discrete set notation but

results are generalizable to a continuous set, i.e., the summation might imply an in-

tegration in the continuous spectrum part). Then, we can expand the solution of the

TDSE in the eigenstate basis. Indeed,

ψ0 =
∑

n

anφn(r), (4.7)
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where an =< φn|ψ0 >, i.e., it is a projection of the initial state on the eigenstate. Then,

from Eqs. (4.3) and (4.5) we find that the solution of the TDSE can be expressed as:

ψ(r, t) =
∑

n

anφn(r)e
−iEnt. (4.8)

4.2.2. Gaussian wave packets

A textbook example of the solutions to the TDSE is the propagation in time of a Gaus-

sian wave packet (GWP) in one-dimensional (1D) free space. GWPs play an important

role as initial states in the WPP calculations presented in this thesis. Therefore, we

find it useful to recall the analytical properties of the free GWP propagation. A GWP

centered at z = 0 and characterized by the width ∆z and average momentum k0 is

represented here as

ψ(z) = Ae−z
2/∆z2eik0z, (4.9)

where A is the normalization constant given by

A =
(
2

π

)1/4 1√
∆z

. (4.10)

An important feature of the GWP is that its Fourier transform is also a GWP in the

reciprocal space:

ψ̃(k) ≡
∫

1√
2π
e−ikzψ(z)dz = A

√
2

∆k
e−(k−k0)

2/∆k2

. (4.11)

Thus, the wave packet is localized both in direct and reciprocal space. The widths in

both spaces are related as:

∆z =
2

∆k
. (4.12)

The time evolution of a GWP can be explicitly calculated (see Ref. [14] for a detailed

derivation). It is useful to consider first the inverse Fourier transform of ψ̃(k), which

can be interpreted as an expansion in terms of the plane wave basis. Since plane waves

are eigenstates of the free particle Hamiltonian, it follows from Eq. (4.8) that the time

evolution of the GWP can be represented by

ψ(z, t) =

∫

ψ̃(k)
1√
2π
eikze−iω(k)tdk, (4.13)
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where obviously ω(k) = k2/2. Performing the integral we obtain [81]:,

ψ(z, t) = A(t)e−(z−k0t)
2/|∆z(t)|2eik0zeiϕ(t)e−i

k20
2
t, (4.14)

with the phase ϕ given by

ϕ(t) = 2
t

∆z2
(z − k0t)2
|∆z(t)|2 −

1

2
arg∆z(t), (4.15)

where the arg function returns the argument of a complex number. Here A(t) is the

normalization constant depending on time

A(t) =
(
2

π

)1/4 1
√

|∆z(t)|
, (4.16)

with the time-dependent width given by the norm of the following complex quantity

∆z(t) = ∆z + 2i
t

∆z
. (4.17)

From the above expressions it follows that a GWP maintains its Gaussian shape, as

given by the general expression in Eq. (4.14), during the free propagation. Furthermore,

the center of the wave packet always advances with a constant group velocity vg =

∂ω/∂k|k=k0 = k0. However, the width of the wave packet in direct space increases

in time as |∆z(t)| =
√

∆z2 + 4t2/∆z2. This is a consequence of the different phase

velocities of the plane waves composing the wave packet. On the other hand, the

width of the GWP in k-space is always the same, because the momentum probability

distribution |ψ̃(k)|2 does not depend on time.

Then, for constructing an ingoing GWP, it is not enough to set a non-zero group

velocity k0 towards the direction of incidence. The broadening velocity of the wave

packet d
dt |∆z(t)| (which in the limit t→∞ reaches ∆k) should be much slower than its

group velocity. When this is not fulfilled, in overall the wave packet is also propagated in

the opposite direction (it contains outgoing components). We will return to a detailed

discussion in Subsection (4.4.4).

4.2.3. Grid representation

Here we consider the issue of the wave function representation. It is clear that due

to the limited memory resources of computers, it is impossible to represent a general
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wave function exactly. We can, however, represent the solution approximately by an

expansion in a finite basis {ϕn},

|ψ0 >≈
N∑

n=1

an|ϕn >, (4.18)

where an =< ϕn|ψ0 >. In other words, we have projected the wave function on

a finite Hilbert space. The above representation requires a desired finite set N of

complex numbers (furthermore, these numbers are also finite in the sense that they

are represented by a truncated arithmetic, which leads to the numerical noise). In the

Galerkin approximation, where the coupling with the non-projected space is neglected,

the truncated solution in Eq. (4.18) still fulfills the time-dependent equation, provided

that the Hamiltonian is replaced by the one projected on the space defined by the

truncated basis. We will consider first the eigenfunctions of the original Hamiltonian

as the basis to be truncated. Then, the solution can be represented as

ψ(N)(z, t) =

N∑

n=1

anϕn(z)e
−iEnt, (4.19)

which is the truncated counterpart of the solution given in Eq. (4.8). In general,

however, the solution is expanded by a general basis. In this case, the diagonalization of

the projected Hamiltonian does not retrieve the original eigenvalues and eigenfunctions

but approximated ones (Ẽn,ϕ̃n). Then the propagation above is approximated by

ψ(N)(z, t) ≈
N∑

n=1

ãnϕ̃n(z)e
−iẼnt, (4.20)

where ãn =< ϕ̃n|ψ0 >. This solution is said to be a spectral propagation [14].

Returning to the issue of representing approximately the solution, both in electronic

structure calculations via the TISE and in time-dependent propagations, the discretiza-

tion in a real-space grid is one of the most common representations. In this case, we

also deal with a finite number of complex numbers describing the solution, as in the

truncated spectral representation of Eq. (4.18). The intermediate values of the solu-

tion can be always approximated by common local interpolation schemes [82], where

the derivatives entering the operators are naturally approximated by finite difference

schemes.

On the other hand, one can use global interpolation schemes. This approach is based

on a family of global functions spanning the physical space of the problem at hand with
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the appropriate boundary conditions. The use of this global approach for interpolating

the solution is known as the collocation method [83]. A closely related concept is the

pseudo-spectral representation.

In brief, a grid representation can be loosely considered as a projection of the so-

lution onto a finite set of Dirac’s delta functions. On the other hand, if we consider

the expansion of the solution within a (orthogonal) finite basis set, the Dirac’s delta

functions expanded in this basis are expected to be broadened around their grid point.

The functions of the pseudo-spectral basis are characterized also by this local character.

The requirement of a global interpolation of the solution (by the collocation method)

by using a finite orthogonal basis set, defines a set of grid-points and weights at each

grid-point that determines the precise relation between the pseudo-spectral basis and

the above mentioned broadened Dirac’s delta functions. The remarkable feature of the

pseudo-spectral functions is that their value is one at their own grid-point and van-

ish at the other grid-points, thus simplifying function evaluations and integrals in real

space. Indeed, the matrix elements of a local potential in a pseudo-spectral basis are

represented as V (ẑ)ij = V (zj)δij .

As an example, the band-limited (−K < k < K) Fourier spectral basis set composed

of exponential functions {exp(ikz)/
√
2π} (which is at the core of the Fourier Method

explained in appendix B) determines a pseudo-spectral basis in a uniform mesh (with

equal weight at each grid-point zj and ∆z step) composed of sinc functions θj(z) =

sinc[K(z−zj)] with K = π/Dz. These functions are one at their corresponding zj and

zero in the rest of the grid-points. These pseudo-spectral functions are also known as

a discrete variable representation basis [84], although in Ref. [14] this denomination is

reserved to the pseudo-spectral functions derived from classical polynomials.

4.2.4. Time propagation

Except for a few limited number of simple cases, like the one of the GWP propagation,

in general it is not possible to obtain (even approximate) analytical solutions to the

TDSE. Thus, we are forced to use numerical methods. A convenient starting point is

the formal solution given in Eq. (4.3). Then, the numerical strategy is based on find-

ing an appropriate method for evaluating the evolution operator given by Eq. (4.5).

The choice of the specific approach is closely related to the issue of the wave function

representation addressed before. The development in a finite basis set or discretiza-

tion on a mesh of spatial points determines the way one calculates the action of the

Hamiltonian or the exponential of the Hamiltonian on the wave function. There are

two different approaches: the short-time propagation and the global propagation. In
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the short-time propagation approach, the time evolution of the wave packet is obtained

by several consecutive small time steps ∆ti propagations, i.e., the evolution operator

is represented as

Û(t) = e−iĤt =
∏

N

e−iĤ∆ti (4.21)

where obviously t =
∑N

i=1∆ti. The advantage of the decomposition in Eq. (4.21)

is that we can evaluate the action of the short-time evolution operator ψ(t + ∆ti) =

Û(∆ti)ψ(t) with approximate methods, which are not applicable to the global propa-

gation scheme. However, the error in the numerical evaluation of the short-evolution

operator Û(∆t) is accumulated during the entire propagation.

Projection of the initial state on the eigenbasis of the Hamiltonian allows one to

obtain directly the solution at any time, as follows from Eq. (4.8). In this respect this

is a way of performing a global time propagation. However, finding eigenstates of the

Hamiltonian can be an extremely time-consuming numerical task. This is precisely

the reason for the development of the WPP techniques (see the schematic diagram of

Fig. 4.1) allowing to avoid the eigenstate calculation. Presently, the Chebyshev method

is considered as the method of choice for the global time propagation. In this method

the evolution operator is approximated by a truncated Chebyshev complex polynomial

expansion [14]. Due to the optimal representation associated with this expansion, an

exponential convergence with the number of polynomials is obtained. That is why this

method is considered as a benchmark for other methods.

For short-time propagation, several methods have been developed in the literature.

We quote here the most commonly used ones. The detailed discussion of the specific

techniques used in this thesis work is presented later. (i) In the Lanczos method

the evolution operator is projected on the finite basis covering the Krylov subspace.

The latter is formed by the repeated actions of the Hamiltonian Ĥ on ψ(t). (ii) The

second order difference method (SOD), also known as leap-frog method, is another

common method for WPP. (iii) An implicit method related to the SOD is the Crank-

Nicholson propagation scheme. On the other hand, (iv) the dynamic Fourier method

[85] combined with the split-operator technique [86] is one of the most popular among

pseudo-spectral methods [14].

When the WPP method is applied to the propagation of electronic states (instead

of heavy particles, as it is usual for molecular dynamics studies in quantum chemistry)

one has to take care of the possible rapid variation of the wave function. The Coulomb

cusp close to the charged core is one of the examples illustrating this effect. The

representation of the system, in this case, results in an effective basis or grid-projected

Hamiltonian with very large eigenvalues. On the other hand, the SOD method, being
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Figure 4.1.: Schematic diagram showing most common methods for WPP. The dashed line
represents the influence of the grid representation on the evaluation of the action of an
operator onto the wave function. The direct propagation method refers to the propagation
through the representation of the solution in terms of the eigenfunctions, which requires
the diagonalization of the Hamiltonian. Note also that the inclusion of absorbing potentials
(thus the Hermiticity of the Hamiltonian) also determines the suitability of a method for a
given problem.

conditionally stable, requires a time step ∆t < 1/|E|max, where |E|max is the largest

in absolute value eigenvalue of the effective Hamiltonian matrix. Thus, for the case

of the electronic WPP, the SOD method can appear completely inefficient because of

the too small time step needed for stable propagation. Similarly, although the Lanczos

technique is unconditionally stable, the technical aspects of the method result in a

comparable constraint on the time step. In the global propagation with the Chebyshev

method, the number of polynomials grows as |E|max. This also makes the method

inefficient in many applications concerning the propagation of electronic wave packets.

The dynamic Fourier method and the Crank-Nicholson method, together with the split-

operator technique, appear to be free from these difficulties [15]. In what follows, we

describe in detail these convenient propagation schemes used in our calculations.
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4.2.5. Crank-Nicholson propagation scheme

One of the simplest approximations for the short-time evolution operator is obtained

by expanding Û(∆t) in Fourier series and keeping only a limited number of terms:

|ψ(t+∆t) > =

∞∑

n=0

1

n!

(
−iĤ∆t

)n |ψ(t) >

=

N∑

n=0

1

n!

(
−iĤ∆t

)n |ψ(t) > +O(∆tN+1). (4.22)

The approximate evolution operators obtained in this way are not unitary. The evolu-

tion in time does not conserve the norm and therefore, the convergence of the propa-

gated solution is not guaranteed. For the particular case in which N = 1, one obtains

|ψ(t+∆t) >= (1− iĤ∆t)|ψ(t) > +O(∆t2). (4.23)

This propagation scheme can be interpreted as the Euler method: a first-order explicit

numerical method for integrating a partial differential equation.

An improvement to the above approximation is obtained by considering a second

order central difference (SOD) for the time-derivative. It can be derived from the

following expression [87],

|ψ(t+∆t) > −|ψ(t−∆t) >=
(
exp[−iĤ∆t]− exp[iĤ∆t]

)
|ψ > . (4.24)

Expanding the exponentials one obtains the third-order time propagation scheme:

|ψ(t+∆t) >= |ψ(t−∆t) > −2i∆tĤ|ψ(t) > +O(∆t3). (4.25)

From the known |ψ(t − ∆t) > and |ψ(t) > one gets |ψ(t + ∆t) >. Initialization of

the propagation requires two time-points, for which the Euler method can be used at

the first step. As previously mentioned, the SOD method is conditionally stable with

stability condition ∆t < 1/|E|max. To avoid the instability problem, the following

exact expression is taken as a starting point:

exp

(

iĤ
∆t

2

)

|ψ(t+∆t) >= exp

(

−iĤ∆t

2

)

|ψ(t) > . (4.26)

Expanding in Taylor series both sides and considering the terms up to first order, we

reach the implicit expression

(1 + iĤ
∆t

2
)|ψ(t+∆t) >= (1− iĤ∆t

2
)|ψ(t) > +O(∆t3), (4.27)
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which is called Crank-Nicholson or Cayley approximation [88]. From Eq. (4.27) a

unitary approximation to the evolution operator is straightforward to obtain as:

Û(t+∆t, t) =
(1− iĤ∆t

2 )

(1 + iĤ∆t
2 )

+O(∆t3). (4.28)

This approximation is of third order accuracy in ∆t, as can be immediately seen by

comparing the Taylor series expansion of the denominator in Eq. (4.28) and the series

given by Eq. (4.22). In mathematics Eq. (4.28) is known as a Caley transform of the

skew-Hermitian operator iĤ∆t
2 .

In practice we will work with the expression given by Eq. (4.27) to calculate an

intermediate step of the effect of the evolution operator (see Section 4.6). For the

three-point finite differences used for the spatial derivatives entering the Hamiltonian,

a system of linear equations connecting the wave function values at the mesh points can

be derived. These equations can be efficiently solved with standard numerical linear

algebra packages.

4.2.6. Split-operator technique

The split-operator technique is a powerful tool for evaluating the action of the short-

time propagation operator exp(−iĤ∆t) onto a wave function in a convenient way. It

consists in splitting the action of each term inside the Hamiltonian Ĥ by factorizing

the exponential operator. This allows us to conveniently pick up one of the short-time

propagation schemes found in Table 4.I. In practice, the first order split formula [88]

can be used,

e(Â+B̂)∆t = eÂ∆teB̂∆t + [Â, B̂]O(∆2), (4.29)

or the more accurate second order split

e(Â+B̂)∆t = eÂ
∆t
2 eB̂∆teÂ

∆t
2 +O(∆t3). (4.30)

The latter is the choice in this thesis. This technique is accurate up to ∆t3, although

accuracy also depends on the commutation relation between the Â and B̂ operators.

4.2.7. Dynamic Fourier method

The dynamic Fourier method, also known as fast Fourier method [14], is a pseudo-

spectral method for propagating the wave function in a real space grid. Like in the
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Table 4.I.: Comparison of time propagation methods. Note that although the SPO is
usually utilized with the FFT-technique, it can be used in combination with the rest of the
short-time propagation schemes. N stands for the dimension of the Krylov space in the
Lanczos method. Although the Chebyshev method, in principle, is conditionally stable, the
characteristic exponential convergence with the number of polynomials makes the method
accurate up to the machine precision. (Adapted from Table II of Ref. [87]).

Method SPO Cayley SOD Lanczos Chebyshev

Norm Conserved Cons. Cons. Cons. Not Cons.

Stability Stable Stable Cond. stable Stable Exp. convergence

Error ∆t3 ∆t3 ∆t3 ∆tN Exp. convergence

Fourier grid Hamiltonian (FGH) method (see Section B.3 of Appendix B), the aim of

the method is to calculate locally the effect of the Hamiltonian Ĥ = T̂ + V̂ , where

the effect of the local potential V is calculated in direct space and that of the kinetic

energy operator in the k-space (where T̂ is diagonal). It is used in combination with

the split-operator technique to factorize

e−iĤ∆t ≈ e−iV∆t/2e−iT̂∆te−iV∆t/2, (4.31)

where V , instead of T , is split for convenience (assuming that we start with the initial

wave function in direct space representation). The fast Fourier transform (FFT) algo-

rithm provides an efficient way for changing the wave representation between direct and

k-space for a large mesh of points. The numerical effort of a FFT scales semilinearly

as O(N logN), whereas a straightforward evaluation of the discrete Fourier transform

scales as O(N2). Another advantage is that no extra memory for any Hamiltonian

matrix allocation is needed (in contrast with the FGH method), because the solution

is updated dynamically. This method has been used in the 1D propagation explained

in Section 4.5, and also in the 2D propagation in cylindrical coordinates for calculating

the action of the kinetic energy operator in the axial-symmetric direction, as explained

in Section 4.6.
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4.3. Absorbing potentials

4.3.1. Absorption at grid boundaries

In scattering problems outgoing wave boundary conditions appear naturally. A straight-

forward, but not practical way, to treat the outgoing asymptotic propagation of a scat-

tered wave packet in numerical simulations is to set a large calculation box, keeping

enough space for the wave packet to be propagated during the finite calculation time.

However, this approach would require a huge computer memory to allocate the entire

grid. It would be desirable to apply a method that allows us to suppress the effect

of the boundaries arising from the finite size of the calculation grid. The goal is to

obtain the same time evolution as in the infinite space, while performing the WPP

calculations in the finite region comprising scatterer and perhaps, a small amount of

the asymptotic region. One would like to let the outgoing wave packet to exit the

calculation grid, without reflection from its boundary. The quest for the most efficient

approach has been and continues to be a subject of active research [89–91].

Among different methods to treat open boundary conditions, we have chosen complex

absorbing potentials (CAPs) placed at the boundaries of the calculation grid [85,92,93].

The advantage of this method is the straightforward implementation and compatibility

with the dynamic Fourier method. The CAPs have to be tuned to the problem at hand,

since the absorption is only optimal within a given energy range. For example, at the

left boundary of the grid along z-axis, denoted here as zmin, we might have a negative

imaginary absorbing potential of the form:
{

Vabs = −i C1

Cα
2
[C2 − (z − zmin)]

α if (z − zmin) ≤ C2

Vabs = 0 otherwise,
(4.32)

where C1 and C2 are positive constants. We have used α = 2 in all the calculations

along this thesis. The strength of the potential C1 and its range C2 are adjusted to

have desirable low reflection within the energy range of interest. It is worth noting that

the range of the potential C2 has to be several times larger than the largest electron

wavelength to be absorbed. To give specific examples: In the study of the Pb/Cu(111)

system in Chapters 6 and 7, we have used C1 ∼ 0.01÷ 0.1 a0 and C2 ∼ 100÷ 1000 a0
whereas in the study of Na nanocontacts, in Chapter 8, C1 = 0.16 a0 and C2 = 100 a0
have been used.

When absorbing potentials are introduced as explained above, the Hamiltonian of

the system becomes non-Hermitian, with the consequent loss of the norm of the wave

packet. However this loss mimics the sought effect of the departure of the particles
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from the region of space limited by the finite size computation box. Along with their

pure technical role in imposing the outgoing wave boundary conditions, CAPs can be

used in the WPP scheme to represent “physical” loss of number of particles due to

many-body inelastic effects, as discussed below.

4.3.2. Effective many-body absorbing potential

Since the WPP used in this work is a one-electron approach, scattering with quasipar-

ticles in the system is not taken into account. In principle, the WPP only considers

the elastic population decay of the quasi-stationary states (resonances). The main

effect of the quasiparticles in the electron propagation is the state population decay

via inelastic scattering. Usually, this effect is reflected in the density of states as an

additional broadening of the bound or resonant states. However, this is not always

true for resonant states. A discussion can be found in Ref. [66], where a WPP study

of the lifetimes of the image state resonances is addressed.

The many-body effects can be simulated by absorbing potentials, similar to the

procedure used in low energy electron diffraction calculations [94]. In metals one can

effectively account for the inelastic decay, by including the following absorbing potential

in the Hamiltonian, only active in the spatial region R where the inelastic scattering

is assumed to take place:

Vmb(r) = −
i

2

(
γe−e + γe−ph

)
for r ∈ R. (4.33)

So, inelastic effects are included through γe−e and γe−ph (metal dependent constants),

which are the electron-electron and electron-phonon scattering decay rates, respec-

tively.

Then, it is easy to see the suitability of the above many-body potential for simulating

the decay rate of bound states. The first-order perturbation energy of the φn bound

state with energy En is

E
′

n = En+ < φn|Vmb|φn >, (4.34)

and, since Vmb is as a complex quantity, the bound state will decay in time as

φne
−Ent −→ e−γ

(n)
mb t/2φne

−Ent, (4.35)

where γ
(n)
mb = 2i < φn|Vmb|φn > is the many-body induced decay rate of the state. It

should be noted that, in general, the bound state does not overlap with the region R
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where the scattering events are effectively accounted. Then, the decay rate, induced

by the absorbing potential, can be estimated as

− i
γ
(n)
mb

2
=< φn|Vmb|φn >= −i

wn

2
(γe−ph + γe−e), (4.36)

where wn is the weight of the wave function in R :

wn =

∫

R
φ∗nφn dr. (4.37)

In the particular case of states confined in Pb overlayers considered in Chapter 6, γe−e
strongly depends on the energy, whereas γe−ph can be considered as a constant. In

fact, at 5 Kelvin temperature the many-body decay rates in Pb are: γe−ph ≈ 20 meV

and γe−e ≈ 0–300 meV for energies up to a few eV above the Fermi level. This energy

dependence implies that, in order to obtain semiquantitative WPP results, in principle,

it is necessary to perform an independent calculation for each energy or small energy

region with the corresponding value of γe−e.

4.4. Information extraction

In principle, the solution ψ(r, t) of Eq. (4.1) contains all the information about the

system characterized by the potential V (r). The possibility to access the properties of

the system is only a matter of adequate choice of the initial conditions. In this section

we present the formulation allowing to perform the resonance analysis and to extract

the scattering matrix from the propagated solution ψ(r, t) of the TDSE. In particular,

we discuss the calculation of the projected density of electronic states and the one-

electron transmission and reflection probabilities in case of the 1D potential barrier.

The former is discussed in Subsection 4.4.1. For the latter quantities we provide two

different methods, namely, the amplitude method and the flux method. Subsection

4.4.4 is devoted to the discussion of the conditions to be fulfilled by the initial wave

packet in scattering calculations, which is a fundamental issue in the present WPP

approach.
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4.4.1. Projected density of states

The link between the initial wave packet and the density of states is given by the

time-to-energy Laplace transform L(ω) applied to the propagated wave,

L(ω)ψ(r, t) ≡
∫ ∞

0

ei(ω+iη)tψ(r, t)dt =

∫ ∞

0

ei(ω+iη)te−iĤtψ0dt, (4.38)

where η → +0. Further development gives,

lim
η→+0

∫ ∞

0

ei(ω−Ĥ+iη)tψ0dt = lim
η→+0

[

ei(ω−Ĥ)t

i(ω − Ĥ + iη)

]∞

0

ψ0

= i lim
η→+0

(
1

ω − Ĥ + iη

)

︸ ︷︷ ︸

G+
ω

ψ0. (4.39)

The term inside the brackets is the retarded Green function G+
ω . Expansion of G+

ω in

the basis of the eigenfunctions |φj > of Ĥ gives

lim
η→+0

1

ω − Ĥ + iη
= lim

η→+0

∑

j

|φj >< φj |
ω − Ej + iη

, (4.40)

where Ej is the corresponding eigenvalue. Then, projecting |ψ0 > on Eq. (4.39) we

obtain

< ψ0|G+
ω |ψ0 >= lim

η→+0

∑

j

|cj |2
ω − Ej + iη

, (4.41)

where cj =< φj |ψ0 > and recalling the Sokhatsky-Weierstrass theorem [95], the energy

integral gives (here i ≡
√
−1):

i

∫ ∞

−∞
dω < ψ0|G+

ω |ψ0 >=

iP
∫ ∞

−∞
dω

(
1

ω − Ej

)

+ π
∑

j

|cj |2
∫ ∞

−∞
dω δ(ω − Ej), (4.42)

where P denotes the Cauchy principal value. The first term in the right hand side

(RHS) of Eq. (4.42) is an imaginary number, whereas the second term is real. Note

that by setting |cj |2 = 1 the latter term turns out to be π times the number of states.

Then, it is natural to define the projected density of states (PDOS) onto ψ0 as

n(ω) =
1

π
Re < ψ0|G+

ω |ψ0 >=
∑

j

|cj |2δ(ω − Ej), (4.43)
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or alternatively

n(ω) =
1

π
Re[ lim

η→+0
lim
T→∞

∫ T

0

dt ei(ω+iη)t

∫

dzψ∗0(z)ψ(z, t)
︸ ︷︷ ︸

A(t)

], (4.44)

where A(t) is the autocorrelation function. Observe that in Eq. (4.43) the cj are the

coefficients of the initial wave packet decomposition into the eigenbasis. Thus, only

those states of the system which are already in overlap with the initial state can be

accessed by the WPP. This feature allows us to either show up or suppress the states

of a given symmetry.

In the PDOS one can find two kind of contributions, those of bound states and those

of the continuum. Furthermore, in the continuum energy region some special states can

emerge: quasi-stationary states or resonances. These states are solutions of the TISE

with the Siegert or outgoing wave boundary conditions [96], i.e., (∂z∓ikz)ψ(z)|z→±∞ =

0. These solutions form a discrete set of states with complex eigenvalues E = ER− i
2γ,

where ER is the resonant energy and γ is the width. Quasi-stationary states will

show up in several quantities, such as the scattering cross-sections and (as we will

see later on) in the PDOS usually through Breit-Wigner profiles [97], from which one

can extract the resonant parameters, namely, ER and γ by Lorentzian fits. Although

there are several methods for the extraction of these resonance parameters, such as

the stabilization method [98] and the complex scaling method [99], the WPP approach

appears to be efficient and versatile for this task.

Due to their smoothness and compactness, static GWPs localized in the spatial

region of interest are used as initial states for the calculation of PDOS in this work.

They can be also weighted by a special function (or by a previously calculated state)

of a given symmetry. For an overall sampling of the eigenstates of the Hamiltonian

within certain energy window, we might use a set of several GWPs. This allows us to

avoid unexpected suppressions of eigenstates, due to the eventual coincidence of the

initial state ψ0 with nodes of their wave function, or because of symmetry reasons.

Using several GWPs also improves the convergence of the PDOS as compared to the

use of a unique GWP.

For the particular case of the study of QWRs in metallic overlayers in Chapter 6,

the use of Gaussians localized inside the overlayer did give PDOS results strongly

dependent on the initial wave packet position and width. The resonance analysis

turned out to be difficult in this case. The origin of the above difficulty is found in the

high number of oscillations in the wave functions of the underlying continuum. The

homogeneous sampling of the states with GWPs centered inside the quantum well is
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then complicated. We found that the results for PDOS can be largely improved when

the initial state is given by a narrow set of GWPs centered at the overlayer-vacuum

interface. The expected physical resonance peaks in the PDOS are then obtained. This

is because on the vacuum side, far enough from the surface, the wave functions decay

exponentially and they are free from oscillations.

Apart from the above considerations, it is important to take into account that the

infinite time limit in the integral of Eq. (4.44) is approximated by a finite propaga-

tion time. Convergence of results has to be checked with respect to this calculation

parameter.

As an illustrative example of the effect of truncating the calculation by a finite time,

we consider the contribution of a bound state of energy E0 to the density of states

with a final time T , which can be easily obtained from Eq. (4.44) by performing the

required integrals as

n0(ω) =
1

π

sin[(ω − E0)T ]

(ω − E0)
. (4.45)

Thus, n0(ω) appears as a peak oscillating with ω and centered at E0 (a sinc function).

Taking the limit T →∞ in Eq. (4.45) the PDOS converges to a Dirac delta function, as

expected from Eq. (4.43). We can smooth the oscillations in the PDOS by multiplying

the solution by exp(−t2/τ2) (with τ < T ) in Eq. (4.44). Then, the non physical

broadening caused by the applied Gaussian filter corresponds to the width ∆E of a

peak in PDOS

∆E ∼ 2/τ, (4.46)

consistent with the time-energy uncertainty principle. This relation (with τ = T ) is

also obtained by comparing the expansions of n0(ω) and that of a Gaussian peak in

the limit when ω → E0.

The contribution of a resonant state to the PDOS is straightforward to obtain by

performing the required integrals in Eq. (4.44). In this case, the solution is substituted

by the time-evolution of the quasi-stationary state of the form e−γt/2φR(z)e−iERt, from

which we obtain:

nR(ω) =
1

π
lim
T→∞

γ/2

(ω − ER)2 + (γ/2)2
×

[

1 + e−γT/2
(
ω − ER

γ/2
sin[(ω − ER)T ]− cos[(ω − ER)T ]

)]

. (4.47)

When the limit T →∞ is evaluated, the second factor of the RHS of Eq. (4.47) is one,

and a Breit-Wigner profile [97] is obtained. In the limit γ → +0 of this expression a

Dirac delta function is retrieved, being consistent with a bound state.
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The above discussion shows that, for the extraction of the lifetimes τres = 2/γ of the

quasi-stationary states from the width of the resonant structures in PDOS, physically

sound results are obtained only for the states with τres ≪ T .

All the resonant parameter extractions presented in this thesis are obtained by direct

fit to the resonant peaks in the converged PDOS (or in the energy resolved transmission

at narrow resonant structures in scattering problems), usually with Lorentzian func-

tions, i.e., a Breit-Wigner profile. The fits are done with the general purpose fitting

program fityk [100].

In case of narrow resonances, however, a too long propagation time is needed to get

a converged result. Several techniques have been developed to circumvent this problem

[14]. One can quote here the filter diagonalization approach [101,102] or the direct fit

of the autocorrelation function, with several exponentially decaying terms [15]. Both

methods allow one to retrieve the narrow resonances with relatively short propagation

times.

Once the energy ER of a resonance or stationary bound state is determined from the

PDOS, the corresponding wave functions can be obtained from

ψR(z) = lim
T→∞

∫ T

0

ei(ER+iη)tψ(z, t)dt. (4.48)

Summarizing the discussion presented in this subsection, the procedure for extracting

energies and lifetimes of the quasi-stationary states (resonances) used here consists of

several steps:

(i) Obtain a preliminary n(ω) by putting a trial initial state composed of several

GWPs in the region of interest, where the sought states are supposed to be

localized.

(ii) Extract the resonance energies and decay rates from the PDOS.

(iii) Check the PDOS results with respect to reasonable variations of the initial wave

packet, the absorbing potential parameters and final time step.

(iv) Extract the resonant wave functions.

(v) Finally, use these resonant states to optimize the initial state which allows accu-

rate extraction of resonant energy and width. This last step might be obviated.

With respect to the choice and variations of the calculation parameters above, it

must be noticed that this is something dictated by the experience and the very

problem at hand.
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Scattering region

Virtual detector for 

transmitted signal

Absorbing 

potential

Absorbing 

potential

Virtual detector for 

reflected signal

Figure 4.2.: Schematic representation of the calculation box configuration for scattering
matrix extraction in the WPP approach. The different regions of the potential and the
initial wave packet, together with the virtual detectors, are represented (see main text for
further details). Lwp stands for the space required in the asymptotic region to allocate the
incident initial wave packet.

4.4.2. Amplitude method

In this subsection we deal with the scattering matrix extraction from the WPP. Our

approach is essentially the virtual detector method as reported in Ref. [103]. We

consider the case of a 3D electron scattering by a potential barrier, and we show how

to obtain the transmission and reflection coefficients from the propagated wave packet.

We assume also that the asymptotic propagation is along the z-coordinate. Basically,

with virtual detectors placed in the asymptotic region one records the transmitted

and/or reflected wave function at z = zd. In what follows, we only consider plane wave

asymptotic solutions and only ingoing initial wave packets. Even though the solution

is formally known on the positive time semi-axis t ≥ 0, by causality, there cannot

be any signal in the transmission region prior to the scattering event, i.e. for t < 0.

That means, that time integrals to be used in the following analysis of the signals can

be extended from the numerical
∫ T

0
to that required in Fourier transforms:

∫ T

−∞. In

Fig. 4.2 the initial incident wave packet is represented in the calculation grid.

By assumption, the transmitted signal in the asymptotic region has decoupled the

z-motion with respect to the rest of the degrees of freedom. Then, the signal at the

virtual detector can be represented by

ψ(zd, r‖, t) =
∑

µ

χµ(r‖)

∫
eikzd√
2π
btrk,µe

−i(k2/2+Eµ)tdk, (4.49)
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where χµ refers to the quantized state in the perpendicular direction with ν, in prin-

ciple, representing a set of quantum numbers. This signal can be further decomposed

according to the different perpendicular states so that we obtain the ν-resolved signal

by projecting the signal on the perpendicular states:

ψν(zd, t) =

∫

χν(r‖)ψ(zd, r‖, t)dr‖ =

∫
eikzd√
2π
btrk,νe

−(k2/2+Eν)tdk. (4.50)

Consistent with the causality principle, this representation contains only outgoing

waves: btrk,ν = 0 if k < 0. The time-to-energy Fourier transform of the signal in

Eq. (4.50) is

Str
ν (ω) =

∫ ∞

−∞
eiωtψtr

ν (zd, t)dt =
1√
2π

∫ ∞

0

dk eikzdbtrk,ν

∫ ∞

−∞
ei(ω−k

2/2−Eν)tdt

︸ ︷︷ ︸

2πδ(ω−k2/2−Eν)

, (4.51)

and denoting ktrν =
√

2(ω − Eν), we arrive to

Str
ν (ω) =

√
2π

1

ktrν
eik

tr
ν zdbtrk,ν . (4.52)

Taking the square norm of the above expression, we obtain the useful relation

|btrk,ν |2 = (ktrν )
2|Str

ν (ω)|2/2π. (4.53)

Similarly for the incident asymptotic region, the solution in the parallel direction is

quantized, in general, with another set of states, φµ with the corresponding energies

Eµ so that kinµ =
√

2(ω − Eµ), then

|bink,µ|2 = (kinµ )
2|Sin(ω)|2/2π. (4.54)

The probability to find a transmitted electron in the scattering ν channel is obtained

by integrating the square norm of the probability amplitude in k-space (or also in their

energy representation) for the corresponding ν-resolved signal:

P tr
ν =

∫ ∞

0

|btrk,ν |2dk =

∫ ∞

0

|btrk,ν |2
1

ktrν
︸ ︷︷ ︸

|btrω,ν |2

dω (4.55)
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and for the incident one (with no scattering):

P in
µ =

∫ ∞

0

|bink,µ|2dk =

∫ ∞

0

|bink,µ|2
1

kinµ
︸ ︷︷ ︸

|binω,µ|2

dω, (4.56)

from which the k-resolved and energy-resolved asymptotic coefficients bk,µ for each

transmission/incident channel can be identified. Then, to calculate energy- and inci-

dent state (µ)-resolved transmission probabilities we proceed as follows. We start with

an initial wave packet of the form

ψ0 = ϕ(z)φµ(r‖), (4.57)

where ϕ(z) is (typically) a GWP. The |btrω,ν←ν |2 are calculated as ktrν |Str
ν←µ(ω)|2. Then

the energy and final state resolved transmission probability is given by the ratio of

outgoing and incident fluxes,

Tµ→ν(ω) =
|btrω,ν→µ|2
|binω,µ|2

, (4.58)

where µ← ν denotes the quantities associated with the ν-resolved transmitted signal

corresponding to the incident µ channel. The total transmission is given by the sum

of Tµ←ν(ω) over all possible open final channels, with Eν < ω,

Tµ(ω) =

open
∑

ν

|btrω,ν←µ|2
|binω,µ|2
︸ ︷︷ ︸

Tµν

=

open
∑

ν

ktrν←µ|Str
ν←µ(ω)|2

kinµ |Sin
µ (ω)|2 . (4.59)

Similarly, for the reflection probability

Rµ(ω) =

open
∑

ν

|brefω,ν←µ|2
|binω,µ|2
︸ ︷︷ ︸

Rµν

=

open
∑

ν

krefν←µ|Sref
ν←µ(ω)|2

kinµ |Sin
µ (ω)|2 . (4.60)

These results can be obtained in a more rigorous treatment based on the Laplace

transform of the signal on detectors, and not relying on the causality principle [103].

One essentially ends up with expressions common for the Green’s function analysis,

where the causality naturally stems from the formal equations.

In a unitary propagation the norm is preserved in the “physical” region delimited

by the onset of the complex absorbing potentials. Then, from the flux conservation,

Tµ +Rµ = 1. (4.61)
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The above relation can be used to check the accuracy of numerical results.

In practice, both the transmission and the reflection for different incident channels

µ are calculated with the second identity in Eqs. (4.59) and (4.60), by performing

the Fourier transform to the transmitted and reflected signal in the respective virtual

detector, as in Eq. (4.51). The signal of the incident wave packet can be calculated

numerically, by propagating the incident wave packet in the asymptotic region, or can

be obtained from the Gaussian analytic formula in Eq. (4.14), when GWPs are used

as initial solution.

The amplitude method is much more complicated when the scattering states are not

plane waves. This is the case in asymptotically periodic potentials describing a crystal

lattice. We can use, however, an alternative flux method described in next subsection.

It should be stressed that both amplitude and flux methods are equivalent and the

choice of one or another is a question of convenience.

4.4.3. Flux method

The general solution to the 1D TISE of a particle under the effect of a periodic potential

(which might represent an effective crystal lattice) of periodicity V (z + L) = V (z), is

a Bloch state given by the general form

ψk(z) =
1√
2π
eikzϕk(z), (4.62)

with ϕk(z + L) = ϕk(z), where k is the crystal momentum, which is the equivalent to

the plane wave momentum in free space. Although a periodic potential is not constant,

it can be shown that at any point in space these states carry a constant flux given by

J(z) = Im [ψ∗(z)∂zψ(z)] . (4.63)

This above statement is expressed mathematically as ∂zJ(z) = 0. To prove this, we

take the partial derivative of Eq. (4.63),

∂zJ =
1

2i
[
✭
✭
✭
✭

✭
✭✭

(∂zψ
∗)(∂zψ) + ψ∗(∂zzψ)− (∂zzψ

∗)ψ −
✭

✭
✭
✭
✭

✭✭

(∂zψ
∗)(∂zψ) ] . (4.64)

Noting that ∂zzψ = −2(V − E)ψ, which also holds for the complex conjugate ψ∗

(assuming real V ), the rest of the terms are also cancelled, thus ∂zJ = 0→ J =

constant. This invariance provides an alternative method, here called the flux method,

for extracting transmission and reflection probabilities of the system.
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The underlying idea is to consider the asymptotic solutions in the energy represen-

tation,
Ĥ|z→−∞ψ+

in(E) = Eψ+
in(E)

Ĥ|z→+∞ψ
+
out(E) = Eψ+

out(E),
(4.65)

where the + sign means that only ingoing/outgoing solutions in the z-positive direction

are considered. The parallel and perpendicular motion are assumed to be decoupled

as in Eq. (4.49) of previous subsection. We assume also that the incident wave packet

is of the form given by Eq. (4.57). By applying the Fourier transform to the signal at

the virtual detector (at z = zd), we have

Str
ν←µ(zd, ω) =

∫ ∞

−∞
dt eiωt

∫

dE ψ+
tr(E, zd)b

tr
ν←µ(E)e

−iEt = 2πψ+
tr(ω, zd)b

tr
ν←µ(ω),

(4.66)

where for convenience, it is explicitly denoted the dependence on zd. The transmission

(reflection) coefficients can be calculated from the ratio between the transmitted (re-

flected) and incident electron fluxes. These fluxes are calculated with the flux defined

by Eq. (4.63) in the energy representation, i.e., J = Im(ψ∗ω∂zψω), from which the flux

at zd is obtained:

J tr
ν←µ(ω) = Im

[(
1

2π
Str
ν←µ(zd, ω)

)∗
∂z

(
1

2π
Str
ν←µ(z, ω)

)∣
∣
∣
z=zd

]

. (4.67)

Having similar expressions for the incident flux J in and the reflected flux J ref , we arrive

to the following formula

Tµ(ω) =
J tr
ν←µ(ω)

J in
µ (ω)

=
Im
[(
Str
ν←µ(zd, ω)

)∗
∂z
(
Str
ν←µ(z, ω)

)∣
∣
z=zd

]

Im
[(
Sin
µ (zd, ω)

)∗
∂z
(
Sin
ν←µ(z, ω)

)∣
∣
z=zd

] , (4.68)

and similarly, in the respective virtual detectors,

Rµ(ω) =
J ref
ν←µ(ω)

J in
µ (ω)

=
Im
[(
Sref
ν←µ(zd, ω)

)∗
∂z
(
Str
ν←µ(z, ω)

)∣
∣
z=zd

]

Im
[(
Sin
µ (zd, ω)

)∗
∂z
(
Sin
µ (z, ω)

)∣
∣
z=zd

] . (4.69)

We have obtained the flux at z = zd numerically by an average and a finite difference

approach on the signals at two different detectors separated by a small distance 2δz

(in practice at two consecutive grid points):

Str(zd) ≈
1

2

[
Str(zd + δz) + Str(zd − δz)

]
, (4.70)

∂zS
tr(z)

∣
∣
z=zd

≈S
tr(zd + δz)− Str(zd − δz)

δz
. (4.71)
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Results derived from the expressions above appear to be accurate enough. Nevertheless,

the derivative above might be calculated “exactly” by performing a Fourier transform

of the wave function and by multiplying by ik. This procedure, however, requires at

each time step two additional computationally costing (direct and inverse) FFTs, with

respect to the approximated approach.

4.4.4. Choice of the initial state

Up to now, for scattering problems, we assumed that the general initial wave packet

should contain only incident waves, which is a convenient numerical demand. Here we

develop the meaning of this statement for GWPs.

Let us consider an initial GWP of width ∆z and average momentum k0 given by

Eq. (4.9). The choice of this kind of wave packets is dictated by practical reasons, in

particular their smoothness and compactness both in real and k-space [83]. Also an

initial convenient k-distribution can be easily set in such a way that it predominantly

contains the ingoing components (here positive k), and the weight of the negative

k-components can be made as small as desired due to the exponentially decaying am-

plitude far from the maximum. We have observed empirically that, by propagating

these wave packets, we can extract well-converged information within the momentum

window

|k − k0| . (2–2.5)∆k. (4.72)

Outside the above limits, because of the small amplitude of the corresponding spectral

components, the errors coming from the non-perfect absorption at the boundaries, finite

propagation time, and the numerical noise, render the results poorely converged. The

magnitude of the error can be easily estimated from the flux conservation condition

given by Eq. (4.61). Then, the loss of precision is manifested in the departure of the

numerical results from unity.

Usually we are only interested in results within a given energy window defined by

Emin and Emax (or in k−space (kmin, kmax) with k =
√
2E), where some special states

or resonances exist, or basically because the system is physically well described only

in that region. Thus, the spectral width of the incident GWP must be tuned to this

window. Once the width ∆k is set, the spatial extension of the wave packet ∆z is also

set via Eq. (4.12). The latter sets the space required for allocating the initial GWP

in the asymptotic region. This space is determined by the requirement of no overlap

between the initial wave function and the absorbing potential at the grid-boundary

on one hand, and no overlap between the initial wave function and the scattering
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potential on the other hand (see Fig. 4.2). We have chosen to use the criterion given

by the computer precision, by noting that numerically the precision of the zero value is

determined by the machine epsilon ǫ = 2−p, where p refers to the number of significant

binary digits in a finite floating-point represention of numbers. The machine precision

characterized by ǫ is defined as the upper bound on the relative error due to roundoff

in floating point arithmetic operation [104]. Since we work within a scheme where the

norm is conserved, a natural criterion to set the space Lwp needed to hold the initial

GWP centered at z0 is to demand that for |z − z0| > Lwp/2

|Ψ|2 ≤ ǫ, (4.73)

where, from the normalized GWP as given in Eq. (4.9), we obtain the following relation:

Lwp >
√
2∆z

√

p ln(2)− ln(∆z)− 1

2
ln
(
π

2

)

. (4.74)

In a double precision number representation with p = 53, the space to be allocated for

the initial wave packet in the asymptotic region for values of ∆z ∼ 0.1–100 a.u. is

Lwp & (8.8–8.0)∆z. (4.75)

Similarly, for the wave packet in the reciprocal space, we demand that numerically

the probability of finding an electron with negative momentum k is zero (assuming an

incident wave packet with positive k0): |Ψ̃|2 < ǫ at k = 0. Then, the following criterion

is obtained:
k0
∆k

& 4.1–4.5. (4.76)

The conditions in Eqs. (4.72) and (4.76) are not always compatible. Substituting

k = kmin (where kmin is the minimum k of the energy window one is interested in) in

Eq. (4.72), and using again Eq. (4.76), we have

(4.1–4.5) .
k0
∆k

. (2–2.5) +
kmin

∆k
, (4.77)

and taking into account the zero condition in Eq. (4.76) we obtain the strong and weak

conditions: (
kmin

∆k

)

& 1.5–2.5. (4.78)

There might be the cases when the above inequality cannot be fulfilled because the

information has to be extracted within a large spectral range. The solution then

consists in performing independent calculations by sampling smaller energy ranges and
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joining the corresponding results. Another alternative would be to construct an initial

wave packet as a superposition of incident GWPs with smaller ∆k (and thus larger but

still reasonable ∆z) and different k0. Here each GWP is tuned to cover a partial region

in k-space. In particular, an efficient configuration is obtained by setting a common

width for all the Gaussians with the same center z0 point and by only changing the

incidence momentum k0:

ψ0(z) = e−(z−z0)
2/∆z2

J∑

j=1

eik
(j)
0 (z−z0), (4.79)

where k
(j)
0 is the average momentum of the jth wave packet and J is the total number

of wave packets, which is determined by the energy window to be covered. To have a

uniform sampling for k ∈ (kmin, kmax) equally spaced k
(j)
0 values can be set. Note that,

in the limit of a large number of wave packets with ∆k → 0 (thus ∆z →∞),

lim
J→∞

J∑

j=1

eik
(j)
0 (z−z0)∆k ∼ eiK0(z−z0)sinc[α(z − z0)], (4.80)

we obtain sinc (defined as sin(z)/z) wave packets [105] where α=(kmax − kmin)/2 and

K0 = (kmax+kmin)/2. The emerged sinc wave packets have a long range ∼ 1/z asymp-

totic behavior, which leads to allocation of a too large initial space in the asymptotic

region. In our calculations we have used Eq. (4.79) with J = 1 and J = 2.

At this point it is worth mentioning that, when the scattering matrix has to be

extracted for very small energies, kmin ≪ 1, it follows from Eq. (4.78) that we would

need a ∆k ≪ 1, which implies ∆z ≫ 1. In this case there is need of a huge extra space

for supporting the initial GWP.

The systems studied in the present thesis are free from the above difficulty. Indeed,

(i) in general the scattering energies of interest require a kmin ∼ 0.2 − 1, and (ii) the

relative low dimensionality of the calculation grid provides certain flexibility on the

allocatable space for the initial wave packet.

As an example, in the study of the Na nanocontacts considered in Chapter 8, one of

the scattering channels is associated with a small energy with Emin = 0.6 eV. Then an

incident Gaussian is used with kmin = 0.2 a.u. and ∆k = 0.05 a.u., which, according

to the analysis above, implies that nearly 300 a.u. of an asymptotic space is needed

only for allocating the initial wave packet. Due to the reduced dimensionality, i.e.,

the 2D character of the system, it has been still possible to perform the calculations

reasonably fast.
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In the systems where large extension of the spatial grid is impossible because of the

memory and computing time constraints, the solution consists in using the Lippmann-

Schwinger formalism reformulated in the time-domain. In this case the initial wave

packet is not localized in the asymptotic region, but it has a finite support coinciding

with the range of the scattering potential [106].

4.5. 1D propagation

In the particular case of only z-dependent effective potential V (z), the motion along

the z-coordinate and the motion in the (x, y)-plane can be decoupled. The solution

ψ(r, t) of the TDSE takes the form:

ψ(r, t) =
∑

k‖

ak‖
φk‖

(z, t)ei(k‖·r‖− 1
2
k2
‖t), (4.81)

where r‖ and k‖ are, respectively, the position vector and the momentum in the (x, y)-

plane. We use the ‖ notation for these quantities to link with the studies of quantum

well states on metal surfaces as in Chapter 6 of this thesis, where the (x, y)-plane is

the plane parallel to the surface and z-coordinate is perpendicular to the surface. The

evolution of the wave function φk‖
(z, t) is governed by the 1D-TDSE

i∂tφk‖
(z, t) = Ĥzφk‖

(z, t), (4.82)

with Hamiltonian

Ĥz = −
1

2

∂2

∂z2
︸ ︷︷ ︸

T̂z

+Veff(z) + Vabs(z)
︸ ︷︷ ︸

V

, (4.83)

and initial condition φk‖(z, t = 0) = φ0k‖
. The T̂z operator is local in momentum (one-

dimensional) kz-space. Then, the propagation is performed by the dynamic Fourier

method associated to the split-operator technique. Each short-time propagation is

calculated as

φk‖
(z, t+∆t) = e−iV∆t/2F−1 e−ik2

z∆t/2F e−iV∆t/2φk‖
(z, t), (4.84)

where the numerical implementation of the FFT denoted by F is done by the efficient

FFTW subroutines [107] applied to the wave function discretized on the uniform mesh.

A priori, the step of the mesh ∆z depends on the energy range to be covered. It

is deduced from the Nyquist-Shannon sampling theorem [108] relating the maximum
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wave vector accounted for in this pseudo-spectral approach so that kmax = π/∆z. This

is true for a free wave packet propagation. However, proper description of the potential

in the real space grid reduces this upper bound. In present 1D applications we have

used typically ∆z = 0.2 a.u..

4.6. 2D propagation

4.6.1. Systems with cylindrical symmetry

To efficiently solve the TDSE of a given problem one has to adapt the coordinates to

the symmetry of the effective potential characterizing the system. In our model for

the breakage of Na nanowires considered in Chapter 8, the system has a cylindrical

symmetry with respect to the nanowire axis. Then, cylindrical coordinates r = (ρ, ϕ, z)

form the natural spatial coordinate system to use, where the z-direction is set along the

symmetry axis. The Hamiltonian in Eq. (4.2) is rewritten in cylindrical coordinates as

H = −1

2

∂2

∂z2
︸ ︷︷ ︸

T̂z

− 1

2ρ

∂

∂ρ
ρ
∂

∂ρ
− 1

2ρ2
∂2

∂ϕ2
︸ ︷︷ ︸

T̂ρϕ

+V (ρ, ϕ, z), (4.85)

and the corresponding wave functions can be expanded in the angular basis as

ψ(ρ, ϕ, z, t) =
∑

m

1√
2π
eimϕψm(ρ, z, t), (4.86)

where m is the azimuthal quantum number.

For the potential V independent of ϕ-coordinate, V = V (ρ, z), the different m-

symmetry subspaces can be treated independently. Using the wave function represen-

tation given by Eq. (4.86) in the TDSE with Hamiltonian given by Eq. (4.85), and

integrating both sides with
∫ 2π

0
dϕe−iMϕ/

√
2π, theM -symmetry Schrödinger equation

is

i∂tψM = HMψM , (4.87)

with Hamiltonian

HM = −1

2

∂2

∂z2
− 1

2ρ

∂

∂ρ
ρ
∂

∂ρ
+
M2

2ρ2
︸ ︷︷ ︸

T̂
(M)
ρ

+V (ρ, z). (4.88)
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Similarly to the 1D case we use the short-time propagation and the split-operator

technique. The resulting short-time evolution operator is:

e−iĤ∆t = e−i(∆t/2)V e−i∆tT̂
(M)
ρ e−i∆tT̂ze−i(∆t/2)V +O(∆t3), (4.89)

where the order of terms has been optimized to reduce the number of FFT transforma-

tions used in the calculation of e−i∆tT̂z . Note that the kinetic energy operators T̂
(M)
ρ

and T̂z commute: [T̂
(M)
ρ , T̂z] = 0. Thus the exponentials e−i∆tT̂

(M)
ρ and e−i∆tT̂z can be

applied in any order. The wave function ψM is discretized on a mesh of points in ρ

and z coordinates. A uniform mesh is used in z and in ρ we use the non-uniform mesh

detailed below. Fourier grid pseudo-spectral technique for calculating the action of the

operators e−i∆Tz and e−i∆V has been detailed in the previous section. The method

still holds with corresponding operations performed independently for each ρ-point of

the grid.

The calculation of the action of the e−i∆tT̂
(M)
ρ operator is more involved. One can use

the fast Hankel transform (FHT), which is the analog transformation of the FFT, but in

cylindrical coordinates instead of Cartesian coordinates [109]. An alternative approach

has been adopted in this thesis. We use a Crank-Nicholson scheme combined with

three point finite differences for the evaluation of spatial derivatives. The implemented

technique has the following desirable properties: (i) It is stable, (ii) the propagation

error scales as O(∆t3), and (iii) it is fast, because the numerical effort of the method

consists in the solution of a tridiagonal system of linear equations. Additionally, the

method allows large flexibility in wave function mapping with non-uniform mesh, which

in general improves the convergence of the solution with the number of points, as

compared to a uniform one.

It is convenient to propagate the modified wave function ψ̃M defined as

ψM =
ψ̃M√
ρ
. (4.90)

The time evolution of ψ̃M is governed by the TDSE with Hamiltonian given by Eq. (4.88),

where T̂
(M)
ρ is transformed to a symmetric form as

T̂
(M)
ρ → T̂M = − 1

2
√
ρ

∂

∂ρ
ρ
∂

∂ρ

1√
ρ
+
M2

2ρ2
. (4.91)

Note above that T̂
(M)
ρ and T̂M are two different operators. The preference for the

symmetric form of the operator is dictated by the easiness in obtaining Hermitian

grid-Hamiltonian. Let us consider the action of this operator onto a wave function F .
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The idea is to consider a three point finite differences for representing the first and

second derivatives in Eq. (4.91). Here, F is discretized on a uniform ρ mesh with step

∆ρ. For notation simplicity Fj ≡ F (ρj), and Fj±1/2 ≡ F (ρj ±∆ρ/2). Then

(
T̂MF

)

k
= −1

2

1√
ρk

ρ d
dρ

F√
ρ

∣
∣
∣
k+1/2

− ρ d
dρ

F√
ρ

∣
∣
∣
k−1/2

∆ρ
+
M2

2ρ2k
Fk, (4.92)

and, applying again the finite difference to the derivatives, we have

(
−1
2∆ρ2

)
1√
ρk

{

ρk+1/2

(
Fk+1√
ρk+1

− Fk√
ρk

)

− ρk−1/2
(
Fk√
ρk
− Fk−1√

ρk−1

)}

+
M2

2ρ2k
Fk.

(4.93)

By rearranging and collecting the different terms, the action of T̂M can be represented

in matrix form as

(TMF )k =
∑

k′

TM
kk′Fk′ , (4.94)

where the tridiagonal matrix TM is:













TM
11 TM

12 0 0 0 0

TM
21 TM

22 TM
23 0 0 0

0 TM
32 TM

33
. . . 0 0

0 0
. . . . . . . . . 0

0 0 0
. . . TM

N−1,N−1 TM
N−1,N

0 0 0 0 TM
N,N−1 TM

NN













, (4.95)

with

TM
k,k+1 =−

1

2

1

∆ρ2
ρk+1/2

1
√
ρkρk+1

, (4.96)

TM
k,k =

1

2

1

∆ρ2

(
ρk+1/2

ρk
+
ρk−1/2
ρk

)

+
M2

2ρ2k
, (4.97)

TM
k,k−1 =−

1

2

1

∆ρ2
ρk−1/2

1
√
ρkρk−1

. (4.98)

Concerning the boundary conditions, we impose FN+1 = 0, i.e., the Dirichlet boundary

condition at the external boundary. For the interior grid-boundary, the divergence at

ρ0 in Eq. (4.98) is solved by adding the ∆ρ/2 onset to the discretized grid:

ρj =
∆ρ

2
+ ∆ρ(j − 1). (4.99)
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Thus, when k = 1 in Eq. (4.98), TM
10 = 0. The matrix above is real and symmetric, as

can be directly checked by substituting k → k + 1 in TM
k,k−1.

With the present discretized form of the T̂M operator the action of the e−i∆tTM

on

the vector corresponding to the wave function values at the grid points is calculated

via the Cayley transform [see Eq. (4.28)]. The exact

F = e−i∆tTM

F (4.100)

(F and F are vectors) is replaced by the approximate expression

F = (1 + i
∆t

2
T
M )−1(1− i∆t

2
T
M )F, (4.101)

with an error O(∆t3). Since TM is Hermitian, the norm is preserved, ‖F‖ = ‖F‖,
i.e., the operation is unitary. In practice we do not perform the matrix inversion as in

Eq. (4.101), but a linear system of equations is solved:

(1 + i
∆t

2
T
M )F = (1− i∆t

2
T
M )F, (4.102)

with unknown vector F and known RHS. Because of the tridiagonal structure of the

TM matrix the solution of Eq. (4.102) can be efficiently performed with a numerical

effort linearly proportional to the number of the ρ-mesh points.

Note that the above Cayley transform is not by itself a short-time propagation, but

an intermediate step in the real short-time propagation of Eq. (4.89).

4.6.2. Coordinate mapping

From the experience acquired while running the WPP routines we could conclude

that, when finite difference techniques are used, an accurate representation of the

wave function at small ρ requires a tight mesh. For a uniform mesh this leads to the

oversampling of the wave functions at large ρ, with the consequent loss of efficiency in

the calculation. This drawback can be circumvented in the above method by performing

a variable change and mapping properly the regions where dense sampling is needed.

A particular choice, which has been used for the study of the sodium nanocontacts in

Chapter 8, is the following:

ρ→ ρ = f(ξ) = ξ − b√
a
tan−1

(
ξ√
a

)

, (4.103)
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where a and b parametrize the family of transformations. For convenience we introduce

the parameter c by b = (1− c)a. The derivative is then obtained:

dρ/dξ = f ′ = 1− (1− c)a
ξ2 + a

, (4.104)

and the desirable limits are easily evaluated (with c≪ 1):

lim
ξ→0

ρ′ ∼ c⇒ ∆ρ = c∆ξ, (4.105)

lim
ξ→∞

f ′ ∼ 1⇒ ∆ρ = ∆ξ, (4.106)

where ∆ξ is the constant step in ξ-mesh. From the equation above, it follows that
√
a

defines the extension in ξ-space where the physical grid is tight (observe the almost

linear dispersion above ξ ∼ √a ≈ 26 in Fig. 4.3). The c parameter defines the smallest

sampling step on the physical ρ-grid [see Eq. (4.105)]. The normalization condition of

the wave function is ∫

f(ξ)f ′(ξ)|ψM (ξ, z, t)|2dξ = 1. (4.107)

The non-weighted Euclidean norm of the grid-projected wave function can be obtained

by applying the propagation to the wave function ψ̃M (ξ, z, t) defined as:

ψM (ρ, z, t) =
ψ̃M (ξ, z, t)√

ff ′
. (4.108)

The ψ̃M fulfills the TDSE equation with Hamiltonian

HM
ξ = −1

2

∂2

∂z2
−1

2

1√
ff ′

d

dξ

f

f ′
d

dξ

1√
ff ′

+
M2

2f2
︸ ︷︷ ︸

T̂M
ξ

+V (ξ, z). (4.109)

We can calculate, as in the previous subsection, the matrix elements of the operator

T̂M
ξ . By defining the funtion g(ξ) =

√

f(ξ)f ′(ξ), the matrix elements read:

TM
k,k+1 = −

1

2

1

∆ξ2
1

gkgk+1

fk+1/2

f ′
k+1/2

(4.110)

TM
k,k =

1

2

1

∆ξ2
1

g2k

{

fk+1/2

f ′
k+1/2

+
fk−1/2
f ′
k−1/2

}

(4.111)

TM
k,k−1 = −

1

2

1

∆ξ2
1

gkgk−1

fk−1/2
f ′
k−1/2

, (4.112)
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with grids

ξj =
∆ξ

2
+ ∆ξ(j − 1). (4.113)

The resulting TM
ξ matrix is Hermitian (specifically tridiagonal, real and symmetric).

The action of the e−i∆tTM
ξ operator is then calculated via a Cayley transform, as in the

uniform mesh case. The rest of the propagation is identical for mapped and uniform

grids.
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Figure 4.3.: Calculation grid points, under the variable change given by Eq. (4.103), with
respect to the physical space. The parameters are ∆ξ = 0.4, a = 700 and c = 0.05.

4.7. Elastic electronic transport in mesoscopic systems

In the particular cases studied in this thesis the WPP is by itself a simulation of electron

propagation, and thus, it could be considered as a charge transfer process in certain

cases. It is worth stressing that in our work the WPP method has been used as a tool

for extracting the dynamical and scattering properties of some particular systems. A

related issue is the electronic transport properties of a mesoscopic or molecular/atomic

junction. In this case further assumptions have to be made, since we deal with a
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steady-state of the system, and its description should be based on a self-consistent

treatment and the electronic current itself. Thus, the description becomes much more

complicated.

Fortunately, there appear to be simple relations between the scattering properties

and transport properties of the systems, at least in the ballistic regime (here understood

as an elastic process in which the electron transport is only limited by scattering with

the boundaries of the sample). Early during the foundations of quantum mechanics,

the connection between the one-electron tunneling and the current was understood in

certain experiments, such as in studying insulating films between two metal electrodes

[110]. However, the corresponding tunneling/scattering probability was not related to

point contact currents until Landauer’s formula [111].

The state-of-the-art calculations of transport properties in nanosized devices are

based on the non-equilibrium Green’s function formalism (NEGF) [112], where the

inelastic current is also taken into account. In this thesis we have restricted ourselves to

the elastic transport (within the Landauer formalism), which might be considered as the

zero-order approximation (no interaction in the scatterer) to the NGFE equations [113].

The inelastic effects, however, can be taken in a limited phenomenological way within

the WPP by absorbing potentials (see Subsection 4.3).

In this section we provide the necessary equations for evaluating the electronic cur-

rents in the systems considered in this thesis with the scattering quantities calculated

with the WPP. First we present the expression providing the current between two

metallic plates separated by an insulating layer. The insulating layer is basically char-

acterized by a potential barrier. In our calculations it consists of a vacuum space.

Second, we derive the Landauer formula in a similar fashion, and finally, we provide

the multichannel generalization.

To derive the electronic transport equations we will follow closely the formulation

given in Ref. [114].
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4.7.1. Tunneling current between a flat tip and a metallic surface

For the theoretical study of the constant-current characteristics in scanning tunneling

spectroscopy experiments studied in Chapter 7 the flat-tip approximation has been

used, which is well justified for the high-bias case [115, 116]. Indeed, under high bias,

the electrons tunnel into the surface, not only from the group of the last atoms at the

tip apex, but from the mesoscopic surface of the tip as well. The flat-tip approximation

results in the 1D model potential description of the STM junction. With the present

model description the system is invariant with respect to translations parallel to the

surface.

In the following we assume a one-electron picture of electron tunneling, as that

depicted in Fig. 4.4, with only a z-varying potential. The motion in the plane parallel

to the surface is free-electron like. We also assume an energy conserving tunneling

process. Then, in the tunneling process the parallel momentum k‖ is conserved and,

in the perpendicular direction, the incident electron from the left side with momentum

kz,l is transmitted with kz,r momentum to the right side. By energy conservation we

have:

U0 + V + k2z,l/2 = k2z,r/2 = Ez, (4.114)

where U0 + V is the inner potential in the left side, raised by the bias V , and in the

RHS it is taken as zero. Ez is the energy in the perpendicular direction.

By considering infinitesimal electron current densities in both sides at a given per-

pendicular energy, and integrating over all k‖, an expression is obtained for the net

current density, commonly referred to as the Tsu-Esaki formula [117]:

J(V, Z) =
kBθ

2π2

∫ ∞

U0+V

dEzT (Ez, V ) ln

(
1 + e(EF+V−Ez)/kBθ

1 + e(EF−Ez)/kBθ

)

, (4.115)

where θ is the temperature, kB is the Boltzmann constant and T (E, V, Z) is the trans-

mission probability which depends on energy, on the applied bias and also in the

tip-surface distance Z. The logarithmic factor in the integrand is called the supply

function. At the low temperature regime Eq. (4.115) reduces to

J(V, Z) =
1

2π2

[

V

∫ EF

U0+V

dEzT (Ez, V, Z) +

∫ EF+V

EF

dEzT (Ez, V, Z)(EF + V − Ez)

]

.

(4.116)

There exist different expressions for current calculations: Eq. (4.115) might be general-

ized for the case when the tip and the sample are described by different effective masses

in parallel motion [118]. On the other hand, by treating self-consistently the tunneling
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Figure 4.4.: Schematic representation of electron tunneling from the STM tip into the
sample and (possible) eventual termalization by many-body scattering.

current, the bias voltage and electron densities in the sample and in the tip, an alter-

native equation can be derived. Then Eq. (4.116) would appear as an approximated

expression to the self-consistent one [119].

Provided free-electron motion parallel to the surface in the model Pb/Cu(111) sys-

tem, the constant-current scanning tunneling spectroscopy (STS) characteristics in the

Pb/Cu(111) system considered in Chapter 7 have been obtained with Eq. (4.116).

Several authors have worked with this equation in related studies [115, 120]. The

transmission entering the equation has been calculated with the WPP, as explained in

Subsection 4.4.3.

4.7.2. Landauer-Büttiker formalism for the conductance

In the following we consider a finite system connected adiabatically to two leads, cou-

pled to two electron reservoirs (see Fig. 4.5). We assume that electrons are emitted

from the left, and collected at the right. By considering only one conducting channel,

the original Landauer formula at 0K temperature [111] is obtained:

G = G0T (E = EF ) = G0T, (4.117)

where G0 =
2e2

h ≈ 7.75× 10−5Ω−1 is the so-called conductance quantum and T is the

electron transmission probability evaluated at the Fermi level. The generalization to

the two-terminal multichannel case usually called the Landauer-Büttiker formula [121],
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k

e

Figure 4.5.: Schematic illustation of a nanosized scatterer adiabatically connected to two
leads. Electrons are emitted and collected in the boundaries by electron reservoirs.

reads:

G = G0

open
∑

µν

Tµν(E = EF ), (4.118)

where the set of µ, ν indexes denote the scattering open channels, with asymptotic µ-

labeled initial incident state (from the emitter side) and ν-labeled final scattered state

(at the collector side), as considered in Section 4.4 devoted to the scattering.

The conductance formula above, which corresponds to the small bias limit, only

contains information around the Fermi level EF . Experimentally, scattering properties

(and resonances in particular) of the system above or below EF can be probed by

applying a voltage difference V between the leads. In a symmetric system, the Fermi

level of the scatterer (it might be considered as a molecular entity) is set at V/2. In

this case, under a voltage difference V , the induced current between the leads is given

by

I(V ) = G0

open
∑

µν

∫ EF+
V
2

EF−V
2

dE Tµν(E, V ) ≈ G0

open
∑

µν

∫ EF+
V
2

EF−V
2

dE Tµν(E), (4.119)

where the bias dependence of the transmission T has been neglected. Then, by applying

the Leibniz integral rule to the derivative of the current in Eq. (4.119), the differential

conductance is obtained:

dI

dV
=
G0

2

open
∑

µν

[

Tµν

(

EF −
V

2

)

+ Tµν

(

EF +
V

2

)]

. (4.120)

It should be noted that, due to the superposition between transmission contributions

from above and below the Fermi level, not all the resonances found in the transmission

might show up in a resolvable way in the differential conductance.
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For larger bias, inelastic transport effects are expected to have a considerable influ-

ence in the actual current. Concerning Eq. (4.120), the major failure in the description

comes from the assumption that the density of states and thus the transmission, does

not change upon applied bias. The results obtained with this simplified treatment

have to be taken with caution since, in principle, in this out-of-equilibrium situation

the current and the transmission should be found self-consistently.

Finally, it is worth noting the equivalence between the ballistic formalism presented

for a finite system in this subsection, and that presented for the tunneling current

between a flat tip and a metallic surface, in the previous one. For a system with

translational symmetry, the labels µ, ν in Eq. (4.119) correspond to the parallel mo-

mentum k‖, which is assumed to be conserved through the scattering. In this case,

a current through an effective area A is assumed. Then, by performing the inte-

gration over k‖ (by the usual prescription 1
A

∑

k‖
→ 1

(2π)2

∫
dk‖) and realizing that

Tk‖
(E) = T (E − k2

‖/2) = T (Ez), the current density J = I/A of Eq. (4.116) can be

obtained. Note also that in atomic units (a.u.) G0 = 1/π.





Chapter 5
Confined electronic states in metallic

overlayers: simple models

5.1. Introduction

In a very simple picture, conduction electrons in a free-standing metallic thin film

populate all the available energy levels following the Pauli exclusion principle and

forming a “Fermi sea”. The highest occupied level is the Fermi level. In practice,

these thin films can be materialized as metallic overlayers grown on a substrate. If the

(metallic) substrate contains a (projected) energy band gap, together with the vacuum

barrier, a quantum well potential is formed in the corresponding energy region leading

to the localization of the available states. Under an external perturbation (for example

by a laser pulse) an electron can be excited to a higher energy state. However, this

situation is unstable and the electron will only remain in this state a finite time τ before

it decays to the Fermi sea. This lifetime, combined with the velocity of the electron

v at the excited state, defines the mean free path of the electron: λfp = τv. If the

thickness of the overlayer is of the order or smaller than the electron mean free path

in the perpendicular direction of motion, quantization of the energies in this direction

appear (standing waves can be formed). Assuming an ideal free-electron motion in

the parallel direction, the quantization leads to a band structure formed by parabolic

bands as sketched in Fig. 5.1. Then, the band structure is said to be composed of

quantum well state bands and the states at Γ are simply referred to as the quantum

well states.

79
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Figure 5.1.: Diagram representing the electronic parabolic band structure of an ideal quan-
tum well potential. Electrons (holes) can be excited above (below) the Fermi level (EF ).

On metallic surfaces, in addition, image states can appear close to the vacuum level.

These states are almost entirely localized in the vacuum side, due to the long range

image potential barrier at these energies. Therefore, they are very sensitive to external

perturbations, as for example, an external electric field. Then, image states are Stark

shifted and evolve into field emission resonances, i.e., (quasi-) confined states between

the metallic surface and the electric field barrier.

The aim of this chapter is to provide a basic background and to discuss some funda-

mental physics concerning the quantum well states (QWSs), quantum well resonances

(QWRs), image states (ISs) and field emission resonances (FERs). For this purpose

analytic solutions of simple one-dimensional models are derived in this section. The

states mentioned above, together with crystal-induced surface states [122], form the

basic variety of the different electronic states in metallic overlayers and metal surfaces,

resulting from the confinement in one dimension.

First, and for the sake of completeness, some simple quantum mechanical results

concerning the electron confinement in square potential wells are surveyed. After that,

the phase accumulation model (PAM) is introduced, which is a very useful tool for

discussing the electronic energy quantization in metal overlayers and surfaces through

phase shifts associated to the confinement barriers at the interfaces. With this back-
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ground, in the subsequent sections the properties of QWSs, QWRs, ISs and FERs are

described together with their phase shift models. Furthermore, the use of the phase

accumulation model is discussed with very simple potentials. This serves as an illus-

tration of the concepts that underlie the discussions of the results in the study of the

Pb/Cu(111) system to be presented in Chapters 6 and 7.

The main original results provided in this chapter are: (i) the derivation of the

analytic expressions for the resonance energies and widths found in the asymmetric

square potential, which is an extension of the results reported by E. Ogando et al. in

Ref. [19] and (ii) the discussion of the suitability of the linear ramp barrier phase shift

formula for describing the FERs energy series.

5.2. Square well confining potentials

5.2.1. Infinite square well

The simplest model for describing the basic features of QWSs in a metallic overlayer is

the well known 1D infinite square well potential. The z-coordinate dependence of the

potential in this case is given by

V (z) =

{

0 |z| < d/2

∞ elsewhere,
(5.1)

where d is the thickness of the potential well and the potential insided the well is set to

zero without loss of generality. The motion in parallel direction r‖ = (x, y) is assumed

to be that of the free-electron particle. We also assume a parallel effective mass m∗,
which accounts for the effects of the underlying crystal structure on the electron motion

in this direction. The eigenfunctions of the Schrödinger equation are of the form:

Ψnk‖
(z, r‖) = ψn(z)

1

2π
eik‖·r‖ , (5.2)

with energy

Enk‖
= En +

k2
‖

2m∗n
, (5.3)

where ψn and En are the eigenfunctions and energy eigenvalues for the 1D-Schrödinger

equation fulfilled by ψ(z), with boundary conditions ψ(−d/2) = ψ(d/2) = 0 imposed

by the infinite barrier. Note that, in principle, the parallel effective mass also depends

on n.
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The plane waves e±ikz with wave vector k =
√

2m∗⊥E (where m∗⊥ is the effective

mass in the perpendicular direction of motion, entering the kinetic energy in the 1D-

Schrödinger equation) are solutions for a discrete set of k fulfilling the condition

kd = πn, (5.4)

where n = 1, 2, . . . for nontrivial solutions. Then, the eigenfunctions can be expressed

with a well defined parity as:

ψn(z) =

{√

2/d cos
(
πnz
d

)
, n odd

√

2/d sin
(
πnz
d

)
, n even,

(5.5)

and the energies of the one-electron motion in the direction perpendicular to the over-

layer are

En =
π2n2

2m∗⊥d
2
. (5.6)

Then the energy difference between two consecutive states is

∆En = En+1 − En =
π2

2m∗⊥d
2
(2n+ 1), (5.7)

thus, ∆En ∝ n for high n. It follows from Eq. (5.5) that ψn has n − 1 nodes for

|z| < d/2. On the other hand, it follows from Eq. (5.6) that the energy of a state with

fixed n decreases as ∝ 1/d2 when the width d of the well is increased.

Despite the crude approximation of setting the confinement barriers to infinite, this

model has been successfully used to reproduce the series of QWS state energies in STM

studies of Pb/Cu(111) [10,11]. However, it is not adequate for discussing the properties

related to the penetration of the wave functions into the substrate and vacuum, and

naturally, QWRs cannot exist within this picture. These features are included in the

following model.

5.2.2. Finite square well: resonances

The next step improving the simple model above for describing an overlayer-substrate

system is to consider the (asymmetric) finite potential well, as sketched in Fig. 5.2.

This might be considered as an approximation to the self-consistent DFT-LDA calcu-

lations with a jellium model description (see Ch. 2) of both the metal substrate and

metal overlayer. The U1 and U2 potential heights appearing in Fig. 5.2 correspond to
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Figure 5.2.: Schematic diagram of an asymmetric square potential well of thickness d and
barrier heights U1 and U2.

the averaged one-electron effective potential of the underlaying crystal lattice in the

perpendicular direction. In the following it is assumed that the average potential of the

substrate is above that corresponding to the overlayer, i.e., U2 > 0, as it happens in the

jellium description of the Pb/Cu(111) system. However, in systems like Na/Al(111)

the jellium description has a corresponding U2 < 0 [19]. The latter situation is not

considered here. U1 corresponds to the overlayer-vacuum barrier.

The potential represented in Fig. 5.2 has three well defined energy regions: (i)

E < U2, (ii) U2 < E < U1 and (iii) E > U1. In the first one, bound states are

found similar to those found in the infinite potential well, which is used to introduce

the concept of the effective thickness. In the second case, the quasi-stationary states

(resonances) are extracted following the procedure of Ref. [19] and the elastic decay

rate into the substrate is also obtained. In the third case, the electron energy is above

the vacuum level, thus, it can propagate from vacuum into the solid. This last case is

not considered here.

Case: E < U2

In this case the particle is confined by the two finite potential barriers. The boundary

conditions at the interfaces, in addition to limz→±∞ ψ(z) = 0, lead to the quantization



84 Confined electronic states in metallic overlayers: simple models

condition, given by the transcendental equation [123]:

kd = πn− arcsin[k/
√

2m∗⊥U1]− arcsin[k/
√

2m∗⊥U2], (5.8)

where n = 1, 2, 3, . . . In order to obtain analytic solutions, it is convenient to continue

by assuming a symmetric potential. The main conclusions, however, are applicable to

the asymmetric case. Then U1 = U2 = U0 and, introducing ξ = kd/2, eigenenergies

can be expressed as

En =
2ξ2n
m∗⊥d

2
, (5.9)

where ξ = ξn are the roots of the following equations

cos ξ = ±γξ, n odd (5.10a)

sin ξ = ±γξ, n even, (5.10b)

with γ = 1
d

√
2/(m∗⊥U0). After some algebra, energies in Eq. (5.9) can be represented

in the form of Eq. (5.6) as

En =
π2n2

2m∗⊥d
2
eff

, (5.11)

with an effective thickness :

deff = d+

∣
∣
∣
∣

2

k(En)
arcsin

(
k(En)/

√
2m∗⊥U0

)
∣
∣
∣
∣
. (5.12)

Thus, the energies of a finite symmetric quantum well can be always represented as

those of the infinite well, but with an effective width given by the original width plus an

energy-dependent positive correction, deff = d+δ0(E). For the values U0 = 13.0 eV and

kF = 0.85 a−10 , corresponding approximately to our effective potentials describing the

Pb/Cu(111) system, a thickness correction of δ0 ≈ 2.5a0 is obtained. This correction

is physically interpreted as follows: Due to the finite height of the potential walls, the

electron wave functions can penetrate through the barriers. This penetration increases

with the kinetic energy because the barrier height seen by the electron is smaller. Then,

the energy dependent effective width accounts for the spilling of wave functions out of

the potential well.

Case: U1 > E > U2

This case is more complicated to analyze, since the states lying at this energy range

are not confined anymore. However, resonant states can exist, i.e., the quasi-stationary
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states. The general solutions of the Schrödinger equation in the different spatial regions

are given by:

ψκ(z) =Aκe
κz z < 0, vacuum, (5.13a)

ψk(z) =Bk sin(kz + ϕ) 0 < z < d, overlayer, (5.13b)

ψχ(z) =Cχ sin(χz + φ) z > d, substrate, (5.13c)

where the corresponding wave vectors (assuming here, for simplicity, m∗⊥ = 1) as a

function of energy are given by:

κ =
√

2(U1 − E), (5.14a)

k =
√
2E, (5.14b)

χ =
√

2(E − U2). (5.14c)

The phases ϕ and φ are energy dependent. Using matching conditions of the wave

function at the interfaces, one can derive the following equations:

k/κ =tan(ϕ), (5.15a)

Aκ =Bk sin(ϕ), (5.15b)

χ tan(kd+ ϕ) = k tan(χd+ φ), (5.15c)

Bk sin(kd+ ϕ) =Cχ sin(χd+ φ). (5.15d)

Since these are continuum states, one could look at the density of states in the overlayer

in order to extract the energies of the quasi-stationary states (alternatively, one could

follow the conventional scattering theory approach and to look at the scattering phase

shift [123]). As already discussed in Subsection 4.4.1 of Chapter 4, devoted to the

wave packet propagation method, the resonances appear as Lorentzian peaks in the

(projected) density of states. In the present context, the density of states in the

overlayer is accessed by integrating the space-resolved (or local) density of states from

the vacuum into the overlayer by several monolayer thicknesses of distance l. This

distance l (∼ 5–15 Å) can be associated to the metal region, from which photoemitted

electrons in photoemission experiments emerge without serious degradation at metals

surfaces [124,125]. Then, the local density of states (LDOS) at Γ is given by:

LDOS(z, E) ∼ |ψE(z)|2. (5.16)

By integrating |ψE(z)|2 from the vacuum to a distance l inside the overlayer, and using

Eqs. (5.15d) and (5.13c), the following analytical expression of the integrated local

density of states (ILDOS) is obtained:

ILDOS(E) =

∫ l

−∞
|ψ|2dz = |Cχ|2

k2

κ2 cos2(kd+ ϕ) + sin2(kd+ ϕ)
f(k, κ), (5.17)
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where f(k, κ) is a factor which varies smoothly (with realistic parameters)

f(k, κ) =
k2

κ3 + k2κ
+ l +

sin(2ϕ)

2k
− sin[2(kl + ϕ)]

2k
, (5.18)

and since |Cχ| does not depend on energy for large enough (infinite) substrate, the

factor
1

k2

κ2 cos2(kd+ ϕ) + sin2(kd+ ϕ)
(5.19)

in Eq. (5.17) determines the structure of the ILDOS. For U2 > 0 the resonance ener-

gies are determined approximately when cos(kd + ϕ) = 0, which yields the resonance

condition:

kd+ ϕ =
π

2
(2n+ 1), (5.20)

from which resonance energies ER in the ILDOS are calculated. The corresponding

widths of the resonances can be obtained by expanding in Taylor series around ER

the denominator in Eq. (5.17), and by comparing the result to a Lorentzian profile.

Finally, using Eqs. (5.14), the Lorentzian width is determined:

Γ/2 =

√

2(ER − U2)ER

U2(d+ ϕ′
√
2ER)2

≈
√

2(ER − U2)ER

U2

(
1

d

)

, (5.21)

where ϕ′ is the derivative of the phase ϕ with respect to the energy evaluated at the

resonant energy. Note that the approximation in Eq. (5.20) corresponds to the limit

when U1 →∞ (thus, ϕ and ϕ′ → 0). In this limit, the resonant energies were obtained

in Ref. [19] by the same procedure as followed in this subsection.

From the similarity between Eqs. (5.8) and (5.20) it follows that in the jellium-like

description QWRs are expected to appear as a series of states, similar to conventional

QWSs present for a perfectly reflecting substrate barrier. The elastic decay rate of these

resonant states depends almost linearly on energy (for small U2) and it is decreasing

as ∼ 1/d with overlayer thickness. In the following subsection we retrieve the same

behavior in terms of more general arguments.

This model has been tested against the WPP code for the ensuing study of the quasi-

stationary states in metallic overlayers of Chapters 6 and 7. The numerical WPP results

and the analytic solutions given above have been found to be well consistent.

5.2.3. Resonant decay rate of quantum well resonances

In the quasi-classical picture, an electron confined in a quantum well is moving back and

forth in the quantum well, hitting the barriers so that the QWSs are formed. If a finite
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tunneling probability through one of the barriers exists, the resonant QWS is called

a quantum well resonance (QWR). The population of QWRs decay via one-electron

energy conserving tunneling into the bulk metal. One of the differences between the

QWS and the QWR is that in the latter, in principle, all the terms of Eq. (3.1)

contribute to the lifetime, and in particular the elastic one, which is not present in

the QWSs. In a metallic overlayer the “weak” barrier might be the overlayer-substrate

interface. Then, the elastic decay rate due to the electron tunneling through the

film/substrate interface can be estimated from the simple expression

Γres = (1−R)∆E = (1−R)π
√
E/d, (5.22)

where ω = ∆E is the attempt (revival) frequency at which an electron is hitting the

interface. ∆E is the energy difference between the levels in the electron energy range

of interest and R is the reflection probability of the interface. Thus, when R → 1

the decay rate Γres tends to zero (a QWS is formed). An important conclusion can

be derived from this simple model: for fixed energy interval the resonant decay rate

decreases as 1/d with increasing thickness d. Essentially the same conclusions follow

from the more refined analytical treatment of the properties of QWRs, as developed

in previous Subsection 5.2.2.

5.3. Phase accumulation model (PAM)

The phase accumulation model is based on a multiple reflection approach. Originally,

it was used to analyze the surface states in metallic crystals [126], but it has been often

used for discussing general (quasi-)bound states in one dimension. In the following we

consider the scattering approach to derive the phase accumulation equation.

Let us consider, for example, a metallic overlayer, where the electron is trapped by

the substrate-overlayer interface barrier at z = 0 and the vacuum barrier at z = d.

Then let us consider the asymptotic solutions a+ and a− at these barriers, as shown in

Fig. 5.3. An incident plane wave propagating from the substrate toward the interface,

ain exp(ikz), leads to a transmitted wave with amplitude aint at z = 0. Additionaly,

the solution a+ contains a contribution from the reflected wave RLa
−eikd, where RL is

the (complex) reflection amplitude of the barrier at the left side. On the other hand, the

amplitude at the right side is related to the amplitude of the left side as a− = RRa
+eikd,

where RR is the corresponding reflection amplitude of the right barrier. The total

amplitude due to the transmitted and reflected waves is then written as:
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z

Figure 5.3.: Asymptotic solutions for an electron in a quantum well of width d, delimited
by the left (L) and right (R) barriers with reflection amplitudes RL and RR, respectively.
See main text for details.

a+ = tain + a+eikdRRe
ikdRL, (5.23)

thus,

a+ =
tain

1−RRRLe2ikd
. (5.24)

It is convenient to use the polar representation of the complex numbers RL = rCe
iφC

and RR = rBe
iφB , where the original labels of Ref. [126] have been used (B for surface

barrier and C for bulk crystal). In the above expression a bound state is represented

by a pole, thus, the condition rB = rC = 1 is required together with the well known

phase condition:

φB + φC + 2kd = 2πn, (5.25)

with n = 0, 1, 2, ... The phases [127] are given by

φB = 2 tan−1
(
ψ+′(zB)
kψ+(zB)

)

, (5.26)

and similarly for the left barrier with the ingoing waves ψ−,

φC = 2 tan−1
(
−ψ−′(zC)
kψ−(zC)

)

, (5.27)
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where the prime denotes the spatial derivative of the wave function. From these expres-

sions above, for the finite step barrier (U1 = 0 and k2 =
√
E − U2) we have (i =

√
−1):

φstep = 2arctan

(
ik2
k

)

. (5.28)

The limit U2 → ∞ corresponds to the infinite potential barrier which implies ik2 →
−∞, thus, there is no penetration of the wave function, but from Eq. (5.28) it follows

that the phase does change:

φinf = −π. (5.29)

In general, the usefulness of Eq. (5.25) lies on the phase shift models for different

interfaces. Such an example is that of a substrate induced projected gap, for which the

phase shift [128] is given by:

φsubs = 2arcsin

√

E − EL

EU − EL
− π, (5.30)

where EU and EL are the upper and lower edges of the band gap, respectively.

As a final remark, in principle, we could also obtain the bound state energies of

the potential considered in previous subsection with the phase accumulation model,

by calculating the corresponding reflection coefficients RL and RR. In the case of

resonances, rC < 1, and the quasi-classical description of the system, in this case, is

equivalent to a Fabry-Perot approach [9, 129,130].

5.4. Image potential barrier in quantum wells

It is well known that an electron in front of a metallic surface induces a screening charge

inside the metal [126] [see Fig. 5.4(a)]. In the classical electrostatic approximation, the

interaction between an electron and its screening charge is given by the image potential

V (z) =
−1

4(z − zim)
, (5.31)

where z represents the distance from the surface and zim is the image plane position.

In front of a metal possessing a projected band gap, the electron penetration inside

the metal is impossible, therefore, the image state electron is confined in front of the

surface. The energy levels of the corresponding quantized states form a Rydberg series

(after the analogous series found in hydrogenic atoms):

EIS
n =

−0.85 eV
(n+ a)2

, (5.32)
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Figure 5.4.: (a) Schematic representation of the induced image charge (note that it is not
the actual positive charge distribution [133] inside the metal) in front of a metallic surface
(b) Image potential (black) and charge density of the first image states (blue) in front of a
Cu(100) surface [131]. The vertical dashed line denotes the image plane position z = 0 .

for n = 1, 2, 3, . . . and a is a quantum defect. Then, the level spacing for the image

states is ∆En ∼ 1/n3.

As an illustrative example, the first image states of the Cu(100) surface as obtained

in a 1D model [131] are plotted in Fig. 5.4(b).

In the absence of a projected band gap around the vacuum level, quasi-stationary

states can exist in front of a metallic surface. These states decay resonantly into the

bulk and are called image state resonances (ISRs) [66].

For the image potential barrier, a phase shift (suitable for a phase accumulation

analysis of image state energies) can be derived within the Wentzel-Kramers-Brillouin

(WKB) approximation [128,132] as:

φvac(E) = π/
√

8(EV − E)− π, (5.33)

where EV is the vacuum level.

In this subsection the application of the phase accumulation model is illustrated in

a simple 1D potential with an image potential barrier (see continuous line in Fig. 5.5).

The potential considered is basically a quantum well with a constant inner potential

U0 = −13.55 eV measured with respect to the vacuum level (EV = 0), and thickness

d = 32.46a0. In the left side of the well an infinite barrier is set at z = −d and in the
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Figure 5.5.: Simple potential wells representing a metallic overlayer with different barriers
in the vacuum-metal interface at z = 0. The continuous line corresponds to the potential
having only the image potential barrier; the dashed line includes an additional electric field
of 0.05 eV/a0, whereas for the dash-dotted line the electric field is 0.2 eV/a0. The vertical
dotted line denotes the position at which the image potential and the well are matched
(z = 1.73a0).

right, above the image plane position at zim = 1.23a0, the image potential barrier is

included.

In order to avoid the divergence when z → zim in Eq. (5.31), the image potential

is cut at U0 energy, which corresponds to z = 1.73a0. Then, the image potential

and the constant potential in the well are matched by a simple extension (+0.5a0)

of the well up to the cut position. The above parameters are taken from the more

elaborated effective potentials to be used in the following chapters for describing the

Pb/Cu(111) system. In fact, the thickness d corresponds to a Pb coverage of 6 MLs. In

the following discussion, however, it is convenient to use the width of the total constant

well D = d+ 1.73a0.

Within the phase accumulation model, the bound state energies are obtained from

En = 1
2k

2
n − U0, where

2π(n− 1)− 2knD = φinf + φvac, (5.34)

with n = 1, 2, ... and φvac and φinf are given by Eq. (5.33) and Eq. (5.29), respectively.

Then the equation to be solved reads:

2πn− 2knD =
π

√

8(EV − En)
. (5.35)
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The above equation, however, does not reproduce exactly the energies. This is due to

the approximations used to derive the image potential barrier phase shift. A procedure

to solve this problem is to fit different parameters entering the PAM equation in order

to reproduce some of the exact (or experimental) energies. Then, all the rest of the

state energies are expected to be reproduced by the model. When experimental data

of electronic confined states in metal overlayers are intended to be reproduced, several

parameters are unknown, thus, the fitting is a necessary practice.

In principle, this can be done by variation of the quantum number n, the band

dispersion E(k) (including implicitly the perpendicular effective mass inside the metal),

the model phase shift parameters, or adding an offset to the thickness. However, one

should be cautious when interpreting the results derived from such a fitting, as follows

from the discussion of the spectroscopy of QWSs by STM in Chapter 7.

In the present case, we include a correction to the overlayer thickness (an effective

thickness), which can be interpreted in terms of wave function spilling through the

barriers. This has been discussed in Subsection 5.2 presenting the analytical results for

the finite quantum well potential. To assess the suitability of this approach, the exact

energies are calculated numerically and then the effective thickness is evaluated via

δ0 =
π

k

(

1− 1

2
√

8(EV − En)

)

−D, (5.36)

where the above equation is derived from Eq. (5.35) with D → D + δ0. The energies

have been recalculated by Eq. (5.35) with the averaged thickness correction D →
D + 〈δ0〉. Observing the values quoted in Table 5.I the suitability of the PAM in this

particular case is confirmed.

The discussion of the QWS-IS mixed character of the wave functions is left for

Chapters 6 and 7.

5.5. Field emission resonances

5.5.1. Linear ramp barrier phase shift

When a metallic surface is exposed to an external electric field the electronic surface

states are perturbed. An example of such a situation is the case of the scanning

tunneling microscopy (STM) experiment with a biased tip in front of the surface [see

Fig.5.6(a)]. As has been widely discussed in the literature, the image potential states
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Table 5.I.: Comparison between exact energies and energy values derived from the phase
accumulation model (PAM) for the potential described in Fig. 5.5 by the continuous line.
See the main text for further details.

n Eexact PAM (〈δ0〉 = −0.23a0) δ0

(eV) (eV) (a.u.)

11 -1.447 -1.392 -0.17

12 -0.466 -0.441 -0.13

13 -0.164 -0.164 -0.28

14 -0.080 -0.081 -0.32

of the pristine metal surface evolve then into field emission resonances (FERs) of the

STM junction [115,116,120,134–137].

The simplest description of the situation sketched above is based on a one-dimensional

model with an infinite potential barrier at the left, which might represent the projected

band gap of a metallic sample, and a linear ramp barrier in the right, due to a uniform

electric field E :

V (z) =

{

Ez, z > 0

∞, z < 0.
(5.37)

The 1D-Schrödinger equation is solved by the change of variable z = ρζ, with ρ =

(2E)−1/3. The solutions are given by the Airy functions:

ψn(z) = CnAi(z/ρ− ζn), (5.38)

with normalization constant [138–140]:

Cn =
1

√
ρ|Ai′(−ζn)|

, (5.39)

where the ζn are the zeros of the Airy function. For large n [82] the asymptotic

expansion for ξn can be used:

ζn = f
[
3π

2
(n− 1

4
)
]

, (5.40)

where the function f is given by

f(x) ∼ x2/3
(

1 +
5

48
x−2 + . . .

)

. (5.41)
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Then, keeping the first order term, the FER energies are obtained:

En ≈
1

2

[

3πE(n− 1

4
)
]2/3

. (5.42)

On the other hand, the asymptotic standard solution can be estimated in the semi-

classical approach [141] with momentum k =
√

2E(x) as:

2πn = 2

∫ l

0

k(x)dx = 2

∫ l

0

√

2E(l − x)dx =
2

3E (2E l)
3/2, (5.43)

and noting that E = E l, the eigenenergies are finally given by:

En =
1

2
(3Eπn)2/3 . (5.44)

This solution provides the recipe to obtain the phase shift due to a linear potential by

recalling Eq. (5.42), and by subtracting −π in the phase due to the infinite barrier

reflection [Eq.(5.29)], which finally leads to:

φvac(E) = −
π

2
+

2

3E [2(E − E0)]
3/2, (5.45)

where we explicitly introduce the energy reference E0 from which states are measured.

It should be noted that the phase shift above might be derived directly from the

analysis of the classical turning points in the semi-classical method, together with the

asymptotic properties of the Airy functions [141].

In Fig. 5.6(b) the charge densities of the first wave function solutions are plotted for

a potential given by Eq. (5.37).

5.5.2. Overriding the image potential by an electric field

In principle, it is not obvious that the phase shift given in Eq. (5.45) must be valid

for the states formed when an uniform electric field is applied to a metallic crystal

surface. In the linear response regime, the crystal responds independently to applied

perturbations, i.e., the total potential in the vacuum region is given by the image

potential plus the potential due to the applied electric field. Then, the electronic

states having a large weight in the vacuum region, such as the ISs, are affected by the

field and evolve into the FERs. As previously mentioned, the phenomenon that an

applied electric field destroys the Rydberg series of ISs at a metallic surface is a well
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Figure 5.6.: (a) Schematic representation of a STM tip in front of a metallic surface with
applied bias V (the arrow denotes the field line direction in atomic units). (b) Charge
density (in arbitrary units) of the first bound states (shifted according to their energy)
formed between an infinite barrier at z = 0 and a linear barrier (triangular potential)
representing an electric field of strength E = 0.05 eV/a0.

documented fact. The question then is to what extent does the phase shift for the

linear ramp barrier reproduce the FERs.

To answer this question the same system as in the previous section is considered,

but including two different constant electric fields, as shown in Fig. 5.5. In this

particular case, in principle the FERs are hybridized with QWSs, however, for the sake

of simplicity we will refer to these states in this section simply as FERs. Detailed

discussion is left for Chapter 7.

We first calculate the effective thickness (D → D + δ0) of the states by using

Eq. (5.34) with the vacuum phase shift φvac of the linear ramp barrier of Eq. (5.45):

δ0 =
1

2k

(

2πn− π

2
− 2

3E [2(E − EV )]
3/2
)

−D, (5.46)

where we have taken the energy reference as E0 = EV in Eq. (5.45). Note, however,

that the energy reference is not well defined close to the image plane. Whereas this

energy reference might be only valid for very extended states in the vacuum (at high

energies), in the following discussion it is shown that the present choice is reasonable in

that it reproduces the FERs series close to EV . With this choice, only states above the

vacuum level can be addressed. The use of energy references of several eV below EV

do not provide correct results. Nevertheless, we have checked, that if one is interested

in Stark shifted ISs below the vacuum level, an energy reference slightly below the

vacuum level can be used.
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Table 5.II.: Comparison between exact and approximate results for a linear ramp barrier
phase shift model for the vacuum-metal interface in a quantum well potential. Energies are
given in eV with respect to the vacuum level of the non perturbed potential. The field E
is given in units of eV/a0 and δ0 in atomic units. The phase accumulation model (PAM)
results are obtained with the averaged 〈δ0〉 value. Note that for E = 0.05 eV/a0 case, the
n = 12 state lies below the vacuum level.

E =0.05 (eV/a0) E = 0.2 (eV/a0)

n Eexact PAM (〈δ0〉 = 3.27a0) δ0 Eexact PAM (〈δ0〉 = 1.97a0) δ0

(eV) (eV) (a.u.) (eV) (eV) (a.u.)

12 0.421 0.432 1.99

13 0.625 0.631 3.30 1.509 1.623 2.29

14 1.113 1.122 3.33 2.638 2.603 1.86

15 1.537 1.537 3.27 3.562 3.484 1.71

16 1.935 1.911 3.07 4.359 4.301 1.77

The calculated δ0 of the first FERs are quoted in Table 5.II for two different values

of E , representing the minimum and maximum values found in our constant current

scanning tunneling spectroscopy (STS) simulations, to be presented in Chapter 7 (see

also Fig. 7.2).

For the low electric field, the variation of δ0 with the state quantum number is small.

Using the mean value 〈δ0〉 = 3.27a0 within the PAM equation allows to reproduce very

well the energy series, with a relative error of ≈ 1%. The higher value of 〈δ0〉 with
respect to that found for the image potential case can be understood by the influence

of the underlaying image potential, which affects the actual barrier.

For the case with higher field strength, E = 0.2 eV/a0, in general a larger error of

≈ 2% between the PAM and the exact value is found with the corresponding 〈δ0〉 =
1.97a0. For the n = 13 state the error reaches 7%. On the other hand, the effective

thickness average is notably smaller in comparison to the E = 0.05 eV/a0 case. Thus,

the effective thickness depends upon the electric field. Taking into account that in a

typical constant-current experiment the electric field changes upon bias, FERs cannot

be reproduced solely by the phase accumulation model together with the phase shift

of the linear ramp barrier: there is need for the bias dependence of 〈δ0〉 parameter.

We conclude that the phase shift of Eq. (5.45) is useful for the qualitative description
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of the FER energy series, however, the quantitative description requires a constant

electric field, which is not fulfilled in the STS experiments.

An alternative to avoid the problem above would be to consider the spectroscopy

in which the tip-surface distance is changed linearly with the bias. For a flat tip, the

electric field is maintained constant. Such an example is given in the theoretical part

of a recent work [142] studying by STM the FERs induced in alkali metal clusters

deposited on a Cu(100) surface. In that study, for numerical efficiency, the linear ramp

approximation was used for the Z − V characteristics. It should be noted, however,

that since the real tip is not flat, at different regions of the surface there is a different

local electric field. Furthermore, the effective area from which electrons are injected

through the tip depends on the tip distance and bias [115]. Thus, even in a Z − V

characteristic given by a linear ramp, the average electric field might not be constant.

Summarizing, the following conclusions are obtained: (i) the image potential is over-

ridden by the applied electric field even for a field strength as low as 0.05 eV/a0. (ii)

For a given electric field, the phase shift of the linear ramp barrier correctly describes

the dispersion of the FERs within the PAM. (iii) However, the effective thickness pa-

rameter δ0 used to match the phase accumulation model depends on the electric field

strength. This dependence can hinder the quantitative description of experimental

FERs data by means of the linear ramp barrier phase shift.

As it is shown in Chapter 7, the overriding of the image potential is a fundamental

issue to be addressed in the correct interpretation of STS experiments in Pb/Cu(111).

5.6. Summary

In this chapter we have presented the basic quantum solutions for simple potentials

used to describe the 1D electron confinement at metallic surfaces and in metallic over-

layers. In Fig. 5.7 we summarize the presented results and we advance some additional

concepts. We briefly comment on these new features.

In the top panel the three basic (approximate) solutions for the simplest potentials

are provided, where the crystal (surface or substrate) barrier is described by an infinite

potential barrier. The finite step can also correspond to an exponentially decaying

potential barrier, as that found in the DFT-LDA effective potentials, which is indicated

by a dashed curve. For the sake of generalization, in the uppest potential of the panel,

we have included the bottom constant potential region as a part of the step barrier. So,

the 2kd term is added in the phase shift describing the barrier. Then, the classification
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of a given confined state as a QWS, IS or FER basically follows from the character of

the phase shift of the potential barrier.

In the panel of the center some mixtures of the different barriers are considered.

The energy regions indicated by the braces correspond to the different character of the

confined states or the way they are referred to in the literature. The overlap between

the braces represents the transition regions between the different confined states.

Finally, in the bottom panel we collect some different potential configurations that

can lead to resonant states. The third situation, starting from the left, corresponds to

that of the Pb/Cu(111) system to be studied in the next chapter.
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Figure 5.7.: Summary of the one-dimensional confining barriers at the surface. See main
text for the details.





Chapter 6
Lifetime of QWSs and QWRs in

Pb/Cu(111)

6.1. Introduction

Confinement of valence electrons in metallic films, as thin as a few electron Fermi

wavelengths, results in discrete quantum well states (QWSs), which are at the origin

of quantum size effects in the properties of the system [8, 9]. In metallic overlayers

adsorbed on metals or semiconductors the confinement is due to the vacuum barrier

and the reflecting barrier at the interface, caused by the energy gap in the substrate

band structure projected onto the plane parallel to the interface. In the absence of

a confining energy gap, another type of states of resonant character extending over

the whole system, called quantum well resonances (QWRs), can exist. Furthermore,

when the energies of the states are close to the vacuum level, QWSs are affected by

the image potential and hybridize with image states (IS) forming the QWS-ISs [30].

The existence of these states can be understood by simple one-dimensional (1D) model

potentials, as has been shown in previous Chapter 5.

Among various systems, the growth of Pb on Si(111) and Cu(111) has attracted much

interest. Since the pioneer studies by Toennies and co-workers with He atom scattering

[143, 144] different experimental techniques, such as scanning tunneling microscopy

[11, 145] or surface X-ray diffraction, have been used to probe the most stable heights

of Pb islands on Cu(111) and Si(111) substrates (Ref. [146]). In favorable conditions,

the islands cover wide areas forming overlayers of “magic” heights.

101
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The overlayer thickness can be crucial for the properties of the system, as for example

the superconducting transition temperature [147–153]. The existence of magic heights

with bilayer periodicity and the corresponding oscillations in the energetics of the

overlayers as a function of the coverage have been studied theoretically using different

approaches. Calculations for freestanding Pb films have been reported within density

functional theory (DFT), first-principles [27] and jellium model [154]. In this context,

a one-dimensional (1D) pseudopotential for the entire overlayer-substrate systems has

been used to calculate the electronic structure of Pb/Cu(111) with different thicknesses

of the Pb overlayer. This model has described well the electron confinement in the

overlayers [17,18] and has given fairly good account of the experimental measurements

of magic height distributions [11].

Angle-resolved photoemission has been used to probe Pb thin films grown on different

substrates [16,21,155]. The photoemission spectrum directly maps the QWS electronic

structure of overlayers, however, there are also peaks which are considered as QWSs but

appearing out of the projected gap of Cu(111), i.e., strictly speaking they are QWRs.

This confinement in the absence of a band gap has also been pointed out in other

quantum well systems such as Al/Si(111), Pb/Si(111), and Na/Al(111) [22, 156,157].

Most theoretical studies in the past have focused on the electronic structure of these

systems [26, 28, 158] and less attention has been paid to the study of the electronic

excitations. Electronic excitations in metal surfaces play an important role in many

chemical and physical phenomena [31, 32]. They are characterized by their lifetime,

which sets the duration of the excitation and, when combined with the group velocity,

determines the mean free path, i.e., spatial range of the excitation. It was shown that

on clean metal surfaces the decay of excited electrons and holes is closely related to the

dimensionality of the system, i.e., intraband transitions within the surface state band

itself are mostly responsible for the final lifetime of the excited quasiparticle [159,160].

Similarly, for a QWS in a 1 monolayer (ML) Na/Cu(111) the intraband transitions are

crucial for the description of the hole decay in this state [33].

In recent years, however, a new interest has emerged in Pb overlayers, and partic-

ularly, in their QWS lifetimes. Kirchmann and Bovensiepen [23] used time-resolved

two-photon photoemission technique, which allows the direct monitoring of the decay

of excited electrons in the time domain [161,162], to investigate the dynamics of QWSs

in the Pb/Si(111) system as a function of the Pb thickness. They concluded that the

intersubband decay in low-dimensional metallic systems is very important in order to

interpret correctly experimental results. They also suggested the Pb/Cu(111) system

as a possible candidate to compare the decay of QWSs in Pb overlayers on different

substrates. Hence, theoretical studies of the dynamics of the Pb/Cu(111) system would
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be very helpful for the understanding of future experiments on Pb overlayers. In the

following years several works, both experimental and theoretical, have been published

studying the lifetime of QWSs in Pb overlayers, including the major part of the results

presented in this thesis [24, 25, 29,47, 61,163–166].

In the following sections we present the calculations of decay rates of excited elec-

trons and holes in Pb overlayers on Cu(111) for different coverages [163]. The electronic

structure of the entire Pb/Cu(111) system is computed by using the 1D pseudopoten-

tial for the substrate-overlayer system, described in Chapter 2. The contributions to

the lifetime broadening are calculated using two approaches. The inelastic electron-

electron (e − e) or many-body contribution to the lifetime broadening of both occu-

pied and unoccupied QWSs is evaluated using the GW approximation, as explained

in Chapter 3, whereas the elastic (one-electron energy-conserving transfer through the

Pb/Cu interface) contribution is calculated within the wave packet propagation (WPP)

method (see Chapter 4). The latter method, with the inclusion of effective absorbing

potentials, can also be used to estimate the total many-body decay rate of QWSs.

The rest of the chapter is structured as follows: In Section 6.2 the electronic structure

of the Pb/Cu(111) system is discussed and some analytical expressions are derived

for reproducing the set of QWSs close to the Fermi level. Section 6.3 presents the

GW results and their comparison with available experimental photoemission lifetimes.

Section 6.4 presents the WPP results for the elastic decay rates, and the competition

with the additional electron-electron inelastic decay rate of QWRs is discussed. In

Section 6.5, the results of previous sections are used to study the lifetime of QWSs

with partial image state (IS) character, close to the vacuum level. Finally a summary

of the chapter is provided in Section 6.6.

6.2. QWSs and QWRs: electronic structure

Before starting the discussion of the lifetimes, we dedicate this section to a detailed

survey of the main characteristics of the electronic structure in Pb/Cu(111), as con-

sidered in this chapter. In particular, we discuss the QWSs and QWRs formed in the

Pb overlayer. Part of the following results have been previously discussed in detail in

several papers by E. Ogando et al. [17–19]. In this chapter, however, resonant energies

are obtained from the WPP study, which is an exact quantum mechanical calculation

for the given potential. This is in contrast to earlier works where approximate treat-

ments have been used. In addition, a direct comparison with available experimental

data of Ref. [16] for the states below the Fermi level is provided. We also derive some



104 Lifetime of QWSs and QWRs in Pb/Cu(111)

analytical equations to be used in the analysis of decay rate results as a function of the

overlayer thickness, developed in Section 6.4.

We start assuming a Pb overlayer of effective width d on Cu(111). The effective

width d is not simply given by the number of Pb MLs, but effectively accounts for the

scattering properties of the Pb/vacuum and Pb/Cu(111) interfaces. This concept has

been already introduced in Chapter 5, where an illustrative derivation of the effective

width [Eq. (5.12)] in a finite symmetric potential well has been derived. An example

of the one-electron potential for such a system is shown in Fig. 6.1(a) for the case of

the 6-ML-thick Pb overlayer.

For a freestanding Pb overlayer of thickness d one expects a series of quantized states

at Γ with energies En ≃ 0.5(nπ/d)2, given with respect to the bottom of the potential

well. For the supported overlayer, one of the Pb/vacuum interfaces of the freestanding

film is replaced by the Pb/Cu(111) interface so that different types of states are formed

in Pb depending on their energy En with respect to the projected band structure of

Cu(111) (see also Fig. 2.2):

(i) En is in energy resonance with propagating electronic states inside the Cu(111)

[white energy region inside Pb in Fig. 6.1(a)]. In this case, the electron initially localized

in the overlayer quantum well can be transferred into the Cu(111) substrate. The

corresponding overlayer state becomes quasi-stationary with the width given by the

rate of the energy-conserving (resonant) electron transfer into the substrate Γres. We

refer to these states as QWRs.

(ii) En is in the projected band gap of Cu(111) [top colored (blue) energy region

in Fig. 6.1(a)]. The resonant electron transfer from the jellium Pb overlayer into

the Cu substrate is then impossible. The overlayer localized states are stationary in

a one-electron sense, and the only possible decay channel is due to the many-body

interactions. These are the gap QWSs or g-QWSs.

(iii) En is below the bottom of the Cu(111) sp band. Then the resonant electron

transfer into the Cu substrate is impossible, similar to the situation described in (ii).

The corresponding energy range is the bottom colored region (green) in Fig. 6.1(a),

with the difference of (≈ 2 eV) between the average Cu(111) and Pb potentials. In

this chapter we use the notation deep QWSs (d-QWSs) for the states existing in this

energy region to distinguish them from the g-QWSs.

In Fig. 6.1(b), the energies of the QWSs and QWRs are plotted for k‖ = 0 as a func-

tion of their quantum number n for the 6 ML Pb/Cu(111). The energies of the QWSs

correspond to the eigenvalues of the effective 1D Hamiltonian, as calculated within
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Figure 6.1.: (a) Effective potential Veff (solid line) for 6 ML of Pb on a Cu(111) surface.
The origin z = 0 is set at one half of the Cu(111) interlayer spacing from the Cu
surface layer (it coincides with the Pb jellium edge). The energies are given with
respect to the Fermi level, EF . The horizontal dashed line represents the vacuum
level. The energy regions where QWSs localized in Pb overlayer can exist are shaded
with colors. The top colored region (blue) corresponds to the projected Cu(111) band
gap and the bottom colored region (green) corresponds to the differences in average
potentials in Pb and Cu(111). In between these two energy regions the overlayer
localized states are in resonance with bulk propagating states of the substrate so that
QWRs are formed. (b) Energy eigenvalues as a function of their quantum number
n. Dots (blue) in colored regions are localized QWSs and (red) dots in white region
represent QWRs. The parabola (continuous blue line) is plotted as a reference.
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Figure 6.2.: Charge density of some QWSs (blue lines in colored regions) and QWRs (red
line in white region) for the 6ML-Pb/Cu(111) system. Results are shown as a function of
the z coordinate perpendicular to the surface. For the definition of the z axis and shaded
regions see caption of Fig. 6.1. The states are labeled according to their n quantum number,
reflecting the nodal structure inside the Pb potential well. Vertical dashed lines delimit the
Pb overlayer region.

DFT approach. The energies of the QWRs have been obtained from the positions of

the peaks in PDOS as calculated with WPP. The quantum number of the state n has

been assigned from the nodal structure of the corresponding wave function inside the

Pb overlayer.

In Fig. 6.2 the electronic densities of the QWSs and QWRs are shown for the 6 ML

Pb/Cu(111) system. Despite different behaviors inside the metal, i.e., exponentially

decaying bound state for QWSs and propagating state for QWRs, the number of nodes

inside the Pb overlayer forms a continuous sequence with increasing energy of the states.

This reflects the common origin of the QWSs and QWRs as the states confined in the

Pb overlayer due to the reflectivity of the Pb/Cu(111) interface. Thus, the energies

of the states irrespective of their stationary or quasi-stationary character can be well

described with a single parabolic fit,

En = 0.5(nπ/d)2 ∼ (n/J)2, (6.1)

where d stands for the effective thickness of the overlayer and J is the number of

MLs. However, it should be noted that, despite common energy dispersion, there is an
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Figure 6.3.: Calculated energies of the gap QWSs (black dots) and QWRs (red dots, in
the bottom region below ∼ −1 eV) for Pb overlayers on Cu(111). Results are shown as a
function of the overlayer thickness. Triangles: Angle-resolved photoemission experimental
data (Ref. [16]) are plotted for comparison. Dashed lines connecting the states are the
closest-energy lines calculated with Eq. (6.2). Some states are marked with the correspond-
ing n quantum numbers. n0 are the initial quantum numbers which label the lines. The
energies are given with respect to the Fermi level (horizontal line).

essential difference between QWSs and QWRs: for the former the reflectivity of the

Pb/Cu barrier is R = 1 and for the latter R 6= 1, allowing one-electron decay into the

bulk via tunneling.

In Fig. 6.3 the calculated energies of the gap QWSs (black dots) and QWRs (red

dots, in bottom region below ∼ −1 eV) are shown as a function of the overlayer thick-

ness for Pb/Cu(111). Present results are compared with angle-resolved photoemission

experimental data [16] shown with triangles. The agreement between the calculated

and measured energies of the QWSs and QWRs is noteworthy. This gives a confidence

in the modeling of the overlayer-substrate system. Indeed, the calculations match the

experimental data even for Pb coverages as low as 3 ML, where the jellium description

of the Pb overlayer could be questioned. For the state with a given quantum number,

the calculated energies show the 1/J2 dependence with Pb overlayer thickness, in full



108 Lifetime of QWSs and QWRs in Pb/Cu(111)

agreement with Eq. (6.1). Experimentally, assignation of a given quantum number to

an observed feature and following the change in the energy of this state are not trivial

tasks [18]. Therefore, for the connection between theoretical results and an experiment,

the way the experimental data are analyzed is of central importance. In a number of

experimental studies, appearance of the states within certain energy intervals has been

addressed, as has been done in scanning tunneling spectroscopy studies of Pb overlayers

on Cu(111) [11, 20]. One characteristic feature of those experimental results was the

observation of QWSs at 0.65 eV above EF for an even number of MLs. In our DFT

calculations, shown in Fig. 6.3, we also find that for an even number of MLs, above

the 6 MLs coverage, there is systematically a state with an energy close to 0.65 eV.

However, it is important to realize that the quantum number n of this state changes

with changing coverage.

In Fig. 6.3 we show “closest-energy lines” which connect the closest in energy QWSs

near the Fermi level for variable Pb overlayer thickness. In this sense, the electronic

structure of Fig. 6.3 can be viewed as a branch structure. In what follows, we present

a simple analytical description of these branches. It appears useful in the discussion of

experimental results, because it allows an assignment of the quantum numbers for the

states appearing close in energy for increasing coverage. We start from the observation

that for the calculated states close to the Fermi level, which are at about 9.5 eV

above the bottom of the overlayer confining potential, the quantum number n increases

by approximately three units every 2 ML of Pb (the thickness of a Pb ML is taken

a = 5.41a0). Then, the closest-energy lines can be derived from this observation and

Eq. (6.1) as follows:

En0,d0,∆J =
π2

2

[
n0 +

3
2(J − J0)

d0 + a(J − J0)

]2

, (6.2)

where n0 and d0 are some initial quantum number and corresponding effective thickness

that label the given line, and J0 corresponds to the initial number of MLs from which

the closest-energy line is traced. ∆J = J−J0 is the change in the coverage as measured

in number of MLs, nn0,∆J = n0 + 3
2(J − J0) is an “effective” continuous quantum

number of the states along the line, and d = d0 + a(J − J0) is an effective thickness.

This effective thickness is also expressed as d = Ja+ δ, where δ is the width associated

to the electron charge spilling, which can be either considered as a free parameter or it

can be obtained from DFT calculations and using the phase accumulation model [126]

to evaluate the phase shifts for the confinement barriers, as it was done by Ogando et

al. [18]. Notice that δ varies with the energy of the state. However, a constant value

of δ = 4.2a0 fits the energy of calculated states around the Fermi level.
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Using the relation J − J0 = (d− d0)/a, the energy can also be defined as a function

of the total width d,

En0,d0 =
π2

2d2

[

n0 +
3

2a
(d− d0)

]2

. (6.3)

With n0 = 3, 4, 5 and the corresponding d0, this equation provides a fairly good de-

scription of the branches shown in Fig. 6.3. For the thick overlayers, such that d≫ d0,

Eq. (6.3) leads to the following asymptotic expansion:

E − EF = α/d+ β, (6.4a)

α =
3π2

2a

(

n0 −
3

2

d0
a

)

, (6.4b)

β =
9π2

8a2
− EF . (6.4c)

Thus, e.g., observing the photoemission peaks for thick layers one would have an im-

pression that QWSs basically do not change their energy with increasing thickness and

periodicity of 2 ML. However, this has to be taken with caution, since the underlying

quantum number of the QWSs does change.

6.3. Decay of quantum well states: GW results

6.3.1. Energy dependence

We have performed GW calculations (the corresponding description of the method is

given in Chapter 3) of the lifetime broadening at the Γ point for the occupied and

unoccupied QWSs in Pb overlayers of thicknesses ranging from 1 to 18 ML. Some

results are shown in Tables 6.I and 6.II. The calculated electron-electron inelastic

decay rates of d-QWSs are in the range of 1–2 eV, which places their lifetime values

in the order of 100 attoseconds. This is an evident consequence of the deep energy

position of these states so that the large phase space is available for the many-body

energy relaxation process. On the other hand, depending on the overlayer thickness,

the g-QWSs can a priori appear at energies close to the Fermi level.

In Fig. 6.4 we present the calculated many-body decay rates Γe−e of the g-QWSs as

a function of their energy measured with respect to the Fermi level. Results are shown

up to the QWS energy of 3 eV. For states with higher energies, the image potential tail

of the electron-surface interaction becomes important [126,128,167], and it is not well
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Figure 6.4.: Calculated inelastic e− e decay rates (denoted by different symbols and colors)
of QWSs laying in the gap energy region of the Pb/Cu(111) system. Results for the Pb
overlayers from 1 to 18 ML thick are shown as a function of the energy, measured with
respect to the Fermi level of the corresponding system. The Quinn-Ferrell curve, given by
Eq. (3.3) (continuous line) for the density of bulk Pb (rs = 2.3a0) and a linear fit (dashed
line), are plotted for reference.

described within the DFT treatment. The necessary correction to the present DFT

potential and the effect on the confined states in Pb is addressed in Section 6.5.

The computed decay rates are compared with those for excited electrons and holes

in a homogeneous electron gas, obtained from the Quinn-Ferrell (QF) formula [67] (see

Eq. (3.3) in Chapter 5). The absence of data points in the energy region between

0.7 and 1 eV is consistent with the overlayer thickness dependence of the energies

plotted in Fig. 6.3. Note that this energy region corresponds to the change from the

“nearest-energy line” with the positive slope (n0 = 4) to that with the negative one

(n0 = 3).
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As seen in Fig. 6.4, the calculated many-body decay rate of states near the Fermi

level closely follows quadratic dependence given by Eq. (3.3). For the states with

higher energies, from 1 up to 3 eV, a quasilinear dependence of the calculated Γe−e
on energy is observed, signaling the deviation of the Random Phase Approximation

(RPA) linewidth from simple quadratic dependence [168]. This is further illustrated

by the straight line with a slope of 52 meV eV−1, which intercepts the vertical axis at

−41 meV and fits the evaluated decay rate for the states between 1.3 and 3 eV and

thicknesses above 6 ML. This quasilinear dependence is attributed to the inclusion of

the Cu substrate and the overlayer-vacuum interface in our description. This conclusion

follows from the comparison of our results to ab initio and free-electron gas calculations

(see Appendix D, Fig. D.3) where a parabolic dispersion of the decay rates with energy

has been found [24,29,61].

Recently, the same linear trend has been reported in an experimental STS study

in Pb/Ag(111) with a slope of 53 meV·eV−1 [25]. The experimental results, however,

appear much more scattered around the linear fit than our theoretical results and the

intercept also is different. This differences might be explained in part by the non ideal

conditions that are found in any real experimental system. In Table D.I of Appendix D

we compare linear-fit parameters of experimental and ab initio decay rate data with our

results. With respect to the results of Ref. [25], when attempting to make a meaningful

comparison with STS experiments, in principle, one should take into account the effect

induced by the STM tip on the lifetimes of the (Stark shifted) QWSs. This issue is

addressed in Chapter 7 (see also Fig. 7.5).

For the Pb overlayers with small thickness (1–3 ML), the QWSs with energies above

1 eV have many-body decay rates well below the general trend obtained for thick

overlayers. This can be understood from the relative weight of the wave function of the

corresponding states in the vacuum and inside the film. For small binding energies the

wave function of the state spills more into the vacuum so that, for the thin overlayers,

the probability to find an electron inside the overlayer reduces, thus leading to the

reduction in Γe−e. This effect plays a central role in the discussion of the states affected

by the image potential in Section 6.5.

6.3.2. Decay rate channels and thickness dependence

Detailed analysis of the contribution of the different decay channels to the many-body

decay rate of the g-QWSs is presented in Fig. 6.5 as a function of the Pb overlayer

thickness. The states are along the n0 = 5 branch, as appears in Fig. 6.3. As was

discussed in the previous section, this way of the data analysis is consistent with that
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Figure 6.5.: Linewidths and contributions of different decay channels to the many-body
decay of the QWSs located throughout the n0=5 branch in Fig. 6.3. Different decay pro-
cesses are related to first and second highest subbands (h-subbands), deep QWS subbands,
and, for occupied states, the intraband process. The solid line corresponds to the analytic
formula in Eq. (6.5) with rs = 2.3a0 and width correction δ = 4.2a0

often used experimentally, i.e., one traces the overlayer thickness dependence of the

given property of the QWSs that appear closest in energy. Moreover, the choice of this

sequence of QWSs allows us to follow the energy evolution from below to above the

Fermi level.

From Fig. 6.5 one can conclude that, even though the g-QWSs and the d-QWSs are

well localized in the overlayer so that their overlap is large, the inelastic electron or

hole transfer into the d-QWSs is small. This is because the d-QWSs have large binding

energy at the Γ point so that the decay of an excited electron or hole from the g-QWS

to the d-QWSs is accompanied by a large momentum transfer. This renders the process

inefficient. The hole relaxation is associated with mostly intraband transitions and the

bulk contribution is nearly one half smaller than the intraband one. This is similar

to the results reported for the surface states [159]. As far as the excited electron is

concerned, the intraband transitions are impossible from the Γ point. Transitions into
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the bulk bands (substrate + overlayer) contribute then one half of the total decay rate.

Another half of the decay rate comes from the interband scattering between QWSs.

Now we discuss briefly the total e − e decay rate of the QWSs as a function of the

Pb coverage. Substituting the energies of the QWSs in Pb/Cu(111) system, as given

by Eq. (6.4), into the QF formula given by Eq. (3.3), leads to:

Γe−e ≈ 68.08r
5/2
s

(α + βd)2

d2
. (6.5)

This result for the inelastic e − e decay rate of the QWSs close to the Fermi level is

shown by the solid line (labeled as “analytical curve”) in Fig. 6.5. The good agreement

between the numerical data and the analytical prediction is not surprising in view of

the parabolic dependence of the calculated decay rate with energy close to EF (see

Fig. 6.4).

6.3.3. Comparison with photoemission experiments

Before giving a direct comparison of the calculated results with available experimental

data on lifetimes, we discuss the sensitivity of the calculated lifetimes to the choice of

the effective mass. As stated in the section devoted to the theoretical methods, m∗n = 1

has been used in the previously presented results. In the angle-resolved photoemission

study of Ref. [16], effective masses ranging from 1.1 to 1.6 were reported for occupied

QWSs. In order to estimate a possible effect of m∗ > 1, we have repeated calculations

ascribing an effective mass of 1.6 to the occupied QWSs of 18 ML system and observed

a slight increase in linewidths of the order of 10%. It means that the presented results

are rather robust to effective mass variations. In any case, corrections coming from a

more elaborated modeling of the overlayer are expected to be more important. Indeed,

it has been argued that the band folding and the underlaying symmetry-character of

the bands in the realistic Pb-overlayer band structure (in contrast to the ideal parabolic

bands of our model) can influence the decay rates [24]. These effects should be less

dramatic for electron states at Γ than for states with nonzero k‖ (see also Fig. D.2 of

Appendix D).

In the following our theoretical results are compared with the lifetimes reported in a

recent time-resolved two-photon photoemission study of Pb/Cu(111) by Mathias et al.

[165]. In this experimental study the lifetimes of two limiting coverages were discussed,

i.e., the 1ML-Pb/Cu(111) (the wetting layer) and the large overlayer thickness case

(bulk Pb). Here we restrict ourselves to the QWS energy of the lowest unoccupied

state of the 1ML-Pb/Cu(111) system at Γ. In our theoretical study this state lies at

E − EF = 2.14 eV, whereas in experiments it is found at E − EF = 2.76 eV.
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Without the electron-phonon contribution to the electron lifetime, the latter can be

estimated as the inverse of the electron-electron inelastic scattering rate Γe−e:

τe−e = Γ−1e−e, (6.6)

For nonzero temperatures, the electron-phonon scattering might be an important decay

channel. Calculated electron-phonon broadenings for unoccupied QWSs in Pb free-

standing slabs have been presented in Ref. [61]. Values of Γe−ph of approximately

20 meV and 50 meV are reported for temperatures of 5 K and 50 K, respectively. For

the experimental sample temperature of 150 K used in Ref. [165] we estimate for Γe−ph,
by linear extrapolation, an electron-phonon broadening of ≈ 100 meV.

The inclusion of an additional electron-phonon decay channel leads to a many-body

lifetime:

τmb =
(
Γe−e + Γe−ph

)−1
. (6.7)

Since scattering events leading to the decay of the QWSs take place inside the metal,

for states with a non negligible weight of the wave function in the vacuum side, the

electron-electron many-body decay rate is expected to be reduced, as compared to that

inside the metal. With the weight of a QWS (or penetration probability) inside the

metal:

β =

∫

metal

|ψ(z)|2dz, (6.8)

we can heuristically estimate the electron-electron decay rate of the QWS as

Γe−e ≈ β Γbulk
e−e , (6.9)

where Γbulk
e−e is the corresponding electron-electron decay rate in bulk at the correspond-

ing energy. Here Γbulk
e−e is assumed to be given by the quasilinear trend found in the

calculations shown in Fig. 6.4 for the energies to be considered here. The renormal-

ization procedure of the bulk decay rates described above is shown to be a reasonable

estimation of the GW electron-electron decay rates in the context of the QWSs with

IS character to be discussed in Section 6.5. Indeed, the ratio between the theoreti-

cal electron-electron decay rate in bulk and that of the QWS in 1ML-Pb/Cu(111) at

E − EF = 2.14 eV is

τbulke−e
τ1ML
e−e

=
9.36 fs

29.8 fs
≈ 0.31, (6.10)

which is not far from the actual weight β ≈ 0.5 of the calculated QWS in 1ML-

Pb/Cu(111). One expects that the same procedure applies to the electron-phonon
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decay rate [169]. Thus, for the theoretical lifetime estimation of the 1ML-thickness

QWS we have used

τmb =
(
Γ1ML
e−e + βΓe−ph

)−1
, (6.11)

with β = 0.5 and the calculated GW result Γ1ML
e−e = 22.08 meV. For the theoretical

estimation of the lifetime at E−EF = 2.76 eV the same Eq. (6.11) is used but, since we

do not have at this energy the corresponding theoretical QWS electron-electron decay

rate, the weighted theoretical bulk decay rate value is estimated as Γ1ML
e−e = 102.52 β

meV. For this energy β is taken from the ratio between the corresponding bulk and

QWS experimental lifetimes [165]:

β =
τbulkexp

τ1ML
exp

=
3.4 fs

8.4 fs
≈ 0.405. (6.12)

For the τe−e and τmb lifetime estimations in bulk Eqs. (6.6) and (6.7) are used, respec-

tively.

Table 6.I.: Theoretical estimations and experimental lifetimes [165] for bulk Pb and the first
unoccupied QWS in 1ML-Pb/Cu(111) system. The experimental error is indicated inside
parentheses next to the τexp values.

E − EF = 2.14 eV E − EF = 2.76 eV

τe−e τmb τmb τexp

(fs) (fs) (fs) (fs)

Bulk 6.4 3.86 3.25 3.4 (1.5)

1 ML 29.8 9.13 8.02 8.4 (1.5)

In Table 6.I our theoretical estimations (τe−e and τmb) are compared with experi-

mental data (τexp). The theoretical τe−e qualitatively reproduces the larger lifetime of

the QWS in 1ML-Pb/Cu(111), as compared to that for the bulk Pb at the same energy.

The origin of this difference in the present theoretical study is attributed mainly to the

high weight of the QWS wave function in the vacuum side. However, accounting only

for Γe−e leads to an overestimation of the lifetime values. When the Γe−ph broadening

is included in the lifetime estimation (τmb), theoretical results are in agreement with

experimental data at Γ within the reported experimental error.
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To conclude this section, we briefly review the lifetimes of the QWSs in Pb/Si(111)

probed with TR-2PPE by Kirchmann et al. [23,24]. In contrast to the analysis above,

devoted to the Pb/Cu(111) system, the reported lifetime values for Pb/Si(111) are

fairly well reproduced by only taking into account the electron-electron contribution

calculated in bulk, the latter being approximately reproduced by the Quinn-Ferrell for-

mula (see Appendix D). Note that the measurements in Refs. [23, 24] were made at a

sample temperature of 100 K, in order to avoid island formation and surface difussion,

for which an electron-phonon broadening of 67 meV can be estimated following the

same arguments as above. The inclusion of this broadening leads to a strong underes-

timation of the lifetime, thus our lifetime results in Pb/Cu(111) do not appear directly

comparable to those of Pb/Si(111).

On the other hand, the QWS for the 1 ML coverage, in Pb/Si(111), appears at

E − EF ≈ 1.65 eV, which is ∼ 1 eV below that probed in Pb/Cu(111). Since at

lower energies the confinement of the states in Pb is stronger, the lifetime of the 1-

ML-thick QWS (5 fs) is expected to be also close to the general trend. However, the

value is significantly smaller than the Quinn-Ferrell estimate (10.4 fs). This difference

is attributed by the authors of Ref. [24] to the additional resonant decay contribution

opened above the Si gap at E − EF ≈ 0.7 eV.

Finally, in Ref. [23] Kirchmann et al. have found for the 15 ML coverage that the

lifetime of the QWS with energy E − EF = 1.2 eV is 30 fs (a linewidth of 21 meV)

whereas the decay rate of (part of) the band associated to this QWS to the low-lying

QWS band (E − EF = 0.5 eV) is found to be 12.2 meV (54 fs). The latter value is

approximately one half (∼ 50%) of the total decay rate which is significantly higher

than the 20–25% found in our calculations (see Fig. 6.5).

6.4. Decay of quantum well resonances: WPP results

6.4.1. Elastic decay rate

The calculated one-electron resonant decay rates Γres of QWRs are shown in Fig. 6.6.

Results are presented as a function of the energy of the quasi-stationary states measured

with respect to the Fermi level. For the given overlayer thickness, Γres is smallest for the

lowest energy states energetically close to the bottom of the substrate valence band and

for the highest energy states close to the onset of the Cu(111) L gap. As we have already

stated in Chapter 5, in connection with Eq. (5.22), this result can be explained by the

high reflectivity of the substrate in the corresponding energy regions [34]. As found
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Figure 6.6.: Calculated one-electron decay rates of QWRs for jellium Pb overlayers on
Cu(111). Results are shown as a function of the energy, measured with respect to the
Fermi level. Different symbols stand for the different overlayer thicknesses measured in
number of Pb MLs, as indicated in the inset of the figure.

in the simple models analyzed in Chapter 5, the decay rate is expected to decrease as

1/d with increasing thickness d of the Pb overlayer. This is fully supported by present

numerical results shown in Fig. 6.6. Intuitively, the resonances become narrower, but

their density increases so that in the limit of large d the continuum of Pb states is

retrieved. Note that the energy separation between the QWSs is ∝ 1/d2, as follows

from Eq. (5.7).

It is noteworthy that, in some cases, the resonant peaks in the PDOS appear very

close to the Cu(111) band gap so that the usual Lorentzian resonant shape (see

Eq. (4.47) in Chapter 4) is distorted. In those cases, the decay rate was estimated

from the low energy part of the peak. However, this result has to be taken with cau-

tion, since non-Lorentzian shape of the PDOS reveals nonexponential decay. In Table

6.II these QWRs are marked explicitly.
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Table 6.II.: Calculated energy, E, linewidth, Γ, inverse decay rate, Γ−1, and corre-
sponding quantum number, n, of some QWSs (many-body decay) and QWRs (res-
onant decay), for selected Pb overlayer thicknesses. The “Small” (“High”) widths
(lifetimes) denote the low reliability of the calculated small linewidth values due to
the high relative error. In this table the electron-phonon broadening is not taken into
account for the lifetime estimation.

E − EF Γ Γ−1

No. of MLs (eV) (meV) (fs) n

6a −1.17 161 4 9

6 0.45 2 289 10

6 2.16 68 10 11

8 −2.12 380 2 11

8 −0.79 18 36 12

8 0.53 4 177 13

8 1.92 55 12 14

9 −2.44 411 2 12

9a −1.22 117 6 13

9 −0.06 Small High 14

9 1.18 26 26 15

9 2.43 85 8 16

10 −2.69 377 2 13

10 −1.60 210 3 14

10 −0.53 8 83 15

10 0.59 5 121 16

10 1.74 48 14 17

10 2.86 103 6 18

18 −2.53 194 3 23

18 −1.91 162 4 24

18 −1.26 74 9 25

18 −0.64 10 70 26

18 0.01 Small High 27

18 0.69 10 69 28

18 1.38 34 19 29

18 2.08 69 10 30

18 2.78 108 6 31

aResult has to be taken with caution because
the calculated peak overlaps with the energy
gap region.
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6.4.2. Competition between elastic and inelastic decay processes

Along with resonant one-electron transfer through the Pb/Cu interface, the QWRs

can decay by many-body processes, so that their total lifetime broadening depends

on both decay channels. The exact calculation of the many-body decay of the QWRs

is a nontrivial task. However, by simulating the inelastic electron-electron decay rate

inside the metal by an absorbing potential (see Chapter 3 for technical details), we

have checked within the WPP method that for the QWRs the total decay rate is ≈
Γres+Γe−e. Thus, the QF curve with rs = 2.3a0 (see Fig. 6.4) should give a reasonable

upper bound for the possible many-body contribution to the lifetime broadening of the

QWRs.

Figure 6.7 is aimed at the qualitative discussion of the general trends determining

the lifetimes of the QWRs. It shows the calculated many-body and one-electron decay

rates of the QWSs and QWRs. The QF curve with rs = 2.3a0 allows extrapolation

of the parabolic energy dependence of the inelastic decay rate of the QWSs into the

energy region of the QWRs. As follows from the comparison between the calculated

resonant decay rates and the QF estimation of the many-body decay, the latter will be

the dominating decay channel for the low energy QWRs below -6 eV. For the QWRs at

higher energies and near the projected band gap, the dominating decay mechanism will

strongly depend on the overlayer thickness d. For thin layers, the resonant one-electron

decay should dominate. However, since the resonant decay rate decreases as 1/d, we

estimate that for the overlayers of thickness above 30 ML the inelastic many-body

scattering will be the dominating decay channel of the QWRs. This appears physically

sound since, for the thick Pb films, the QWRs merge and form the Pb bulk continuum

of electronic states, where only many-body decay is operative.

In the angle-resolved photoemission study of thin Pb films on Cu(111) carried out by

Dil et al. [16] the states below the projected band gap of Cu(111) were observed along

with conventional QWSs with energies inside the projected band gap of copper. In

Ref. [16] these states were not associated with QWRs because their linewidths appeared

comparable to those of the QWSs, i.e., without noticeable effect of the resonant charge

transfer broadening. Based on the results of the present study we argue that, for the

thick Pb overlayers on Cu(111), the QWRs appearing close to the projected band gap

indeed show the linewidth comparable to that of the QWSs. It is noteworthy that the

energies of the QWRs calculated with the present model, and experimental observations

in Ref. [16] compared in Fig. 6.3, are in good agreement for thick layers. The general

absence of experimental states for energies below E − EF ∼ −2 eV (except for the 22

ML coverage case, where incidentally the agreement with experimental data appears
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Figure 6.7: Calculated many-
body (inelastic) decay rates of
the QWSs and resonant (elastic)
decay rates of the QWRs as a
function of the energy, measured
with respect to the Fermi level.
The shaded energy region cor-
responds to the projected band
gap of the Cu(111) surface where
the QWSs exist. The states
appearing below the projected
band gap are the QWRs. For the
QWRs different symbols corre-
spond to the overlayer thickness
(see the inset). For the QWSs
the symbols are the same as in
Fig. 6.4. Parabolic QF curve
with Pb charge density param-
eter rs = 2.3a0 is shown by the
dashed line.

not so good), might be linked with the non (nearly-) free-electron band structure of

Cu along Γ-L, just below this energy (see Fig. 2.2), because of the d electron bands.

6.5. Inclusion of the image potential: quantum size

effects

In the previous section we have presented a theoretical study of the electron-electron

inelastic decay rates of QWSs in Pb/Cu(111) for energies up to 3 eV, described by

the self-consistent effective potential calculated within DFT. It has been found that

the calculated electron-electron decay rate follows a parabolic dispersion, as a function

of energy close to the Fermi level, and a quasilinear dispersion above 1 eV. Only

some deviations from the general trends have been found at small (1–3 ML) overlayer

thicknesses (see black-filled symbols in Fig. 6.4). In this section we take a step further

and include the classical image potential correction to the DFT potential (as explained

in Chapter 2), which allows the discussion of the QWSs at energies close to the vacuum

level.
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6.5.1. Electronic structure

The discussion is started by revisiting the electronic structure of the Pb/Cu(111) sys-

tem (see Fig. 6.3), but focusing on the previously uncovered energy region close to the

vacuum level, where the image potential tail becomes important. Figure 6.8, where

QWS energies up to −0.05 eV are shown for thicknesses in the range of 1 to 30 MLs,

will allow us to perform a transparent analysis of the following numerical results. The

states with energies E − EV ≤ −1.5 eV are almost unaffected by the image potential,

i.e., they correspond to those obtained by the DFT-LDA effective potential. Due to the

inclusion of the image potential, for each thickness, an infinite set of bound states con-

verging toward the vacuum level is retrieved. This is in sheer contrast with the original

DFT-LDA potentials vanishing exponentially in the vacuum side, and only allowing for

a finite number of states to be accommodated (as shown in Fig. 6.1). Another feature

resulting from the corrected potential is that there is a state with an energy close to

−0.79 eV systematically appearing every 3 MLs (at coverages of 3, 6, ... MLs). These

states are characterized by a wavelength λ ≈ 6a/5, where a is the interlayer distance

(a = 5.41a0). This regularity is similar to the series of unoccupied QWSs observed in

Pb overlayers close to the Fermi level, at E − EF ≈ 0.65 eV, for an even number of

MLs (see, e.g., the series of states labeled as n0 = 4 in Fig. 6.3). In the latter case,

however, the states are characterized by λ ≈ 4a/3.

The inclusion of the image potential has an important consequence on the QWS

wave functions. As the energies of the QWSs approach the vacuum level, they start to

develop an IS character, i.e., the weight of the wave function outside the metal rapidly

increases and the characteristic nodal structure is developed in the vacuum side [30].

This is illustrated in Fig. 6.9(a), where the calculated charge densities of the first hybrid

QWS-ISs for the Pb coverage of 9 ML are displayed. Despite the strong IS character

of the states, the penetration into the overlayer still determines their precise binding

energy.

The set of states lying at −0.79 eV allows us to discuss unambiguously the depen-

dence of the properties of QWS-ISs on the overlayer thickness for a fixed energy. In

Fig. 6.9(b) the wave functions of these states are compared. In the displayed overlayer

region the wave functions show a similar shape. Indeed, the maximum of the wave

functions in the vacuum side and the nodes inside the overlayer are found essentially

at the same z position for different overlayer thicknesses. However, when computing

the weight in the vacuum side (
∫

vacuum
|ψ|2dz) a quantum size effect is found: the wave

function weight in the vacuum decreases from 0.65 to 0.41 in the 6–18 ML coverage

range. This effect cannot be explained by the small energy differences between the
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Figure 6.8.: Calculated energies of the QWS-ISs close to the vacuum level as a function of
the overlayer thickness for the Pb/Cu(111) system. Energies are given with respect to the
vacuum level. The shaded area denotes the set of states lying at energy ≈ −0.79 eV.

states, instead, it should be connected with the wave function penetration into the

metal at different overlayer thicknesses.

In order to get insight into the thickness dependence of the wave function weight

outside the overlayer, we analyze the simple model of a metallic overlayer, similar

to that discussed in the introductory Chapter 5. In this case the metallic overlayer of

thickness d is modeled as a quantum well with an infinite potential barrier, representing

the substrate barrier at z = −d, and a constant potential U0 from −d to 0. Then, the

solution is of the form A sin(kz + ϕ) inside the metal, with normalization constant A,

wave vector k =
√

2(E − U0) and phase ϕ = kd. In the vacuum region (z > 0) a

general solution of the form
√
wf(z) is considered, with

∫∞
0
|f(z)|2dz = 1, so that w is

the weight in the vacuum side. The wave function normalization condition for a given

state ψn reads:

1 =

∫ ∞

−d
|ψn(z)|2dz = A2d

2

(

1− sin(2kd)

2kd

)

+ w. (6.13)

By matching the wave function and its spatial derivative at z = 0, the necessary

conditions are obtained for solving A as a function of w. Finally, the weight can be
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Figure 6.9.: (a) Electronic charge density of the QWS-ISs close to the vacuum level EV = 0
(horizontal dashed-dotted line) shown up to −50 meV for the 9ML-Pb/Cu(111) system
(dashed line corresponds to the image potential barrier). States are shifted according to
their energy. (b) Charge density of the states with energy close to −0.79 eV (see shaded
area of Fig. 6.8) for several Pb overlayer thicknesses. For each state the energy E and
weight w in the vacuum region are indicated. The origin z = 0 is placed at the image plane
position and the vertical dotted line corresponds to the jellium edge at z = −1.23a0 in both
panels.

expressed as:

w = (1 + µd)−1, (6.14)

with

µ =
f20

(

1− sin(2kd)
2kd

)

2 sin2(kd)
≈ f20

1 + cos(φvac)
, (6.15)

where f0 = f(z = 0), and the phase accumulation model [Eq. (5.25)] has been used

with φvac as the vacuum barrier phase shift. The approximation in Eq. (6.15) is valid

for kd ≫ 1, which is the case for the present range of magnitudes even for 1 ML

thickness. As far as f0 does not change, as is the case for the states lying at −0.79 eV

[as follows from Fig. 6.9(b)], µ can be considered as a constant. The dependence of w

on d is consistent with the trends observed in Fig. 6.9(b) and is physically sound: (i)



124 Lifetime of QWSs and QWRs in Pb/Cu(111)

For infinitely large overlayer thicknesses, the weight of the wave function approaches

zero in the vacuum. In the limit d → ∞, however, the density of states evolves from

a discrete to a continuous density of states, corresponding to that of the bulk metal

surface. (ii) For d = 0, the situation would correspond to an image state in front of an

infinite crystal band gap. Then, the wave function would be localized entirely on the

vacuum side.

6.5.2. Decay rates of QWS-ISs

According to the previous subsection, the overlap of the QWS-ISs with the metal

overlayer is expected to be strongly reduced for energies close to the vacuum level.

Furthermore, this overlap is also dependent on the overlayer thickness. Since the

inelastic relaxation takes place mainly inside the metal, similar effects are expected on

the electron-electron decay rates of the QWS-ISs.

For ISs at noble metal surfaces localized in vacuum (see, e.g., Fig. 5.4(b) of Chap-

ter 5), it is well known that their penetration into the bulk plays an important role

in determining their lifetimes. The bulk contribution to the decay rate of a given IS

with energy E0 can be approximated by the value of the decay rate in bulk at the

same energy E0, weighted by the overlap between the bulk and the IS wave function.

Although in Ref. [170] it is illustrated that the heuristic approach does underestimate

the actual lifetime of the ISs, this approach, together with the previous model results

concerning the weight of the QWS-ISs, appears very useful for analyzing the following

many-body decay rate results.

The heuristic approach above neglects the non-local effects in the self-energy, i.e.,

Σ(z, z′)→ Σ(z)δ(z−z′) and the decay is only considered inside the metal (see Chapter 3

for further details on the self-energy calculation). In this respect, the WPP method

appears as an equivalent approach for estimating the decay rates of the QWS-ISs

by effective many-body absorbing potentials, as it is explained in Chapter 4. In this

approach different absorbing potentials can be ascribed for different metallic regions. In

the following analysis, the quasilinear dependence found in the previous section is used

for describing the decay rate inside the Pb overlayer and a Quinn-Ferrell dependence of

the decay rate is used inside Cu. Note that the quasilinear dependence derived from the

GW calculations already does take into account the decay rate inside Cu. The reason

why we use a different absorbing potential inside Cu is basically to adjust accurately

the many-body decay rate of the Pb localized states to the GW data. Nevertheless, the

effect of using a different decay rate inside Cu is small, because of the small penetration

of the wave function into the band gap.
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Fig. 6.10(a) shows the many-body GW calculations (open squares) of the decay rates

for the states lying at −0.79 eV from 3 to 18 MLs. In the same figure, the WPP results

and the heuristic estimations based on weight arguments are also plotted. All of them

give similar results. Note the following two observations: (i) The calculated decay

rates are strongly reduced with respect to the value expected for a state inside the Pb

overlayer (130.1 meV) at the same energy. In the 3 ML coverage case, for the state

with energy −0.811 eV and w = 0.75, a decay rate value as low as 32 meV is obtained,

which is of the order of the decay rates of image states [170] at noble metal surfaces.

(ii) A remarkable quantum size effect is found for the Γe−e decay rate of QWS-ISs

in Pb/Cu(111): For fixed energy the decay rate strongly depends on the overlayer

thickness. Between the 6 ML and 18 ML coverages there is a difference in the decay

rate of 34 meV at energy ≈ −0.79, which doubles the decay rate value found in the

QWS-IS for the 3 ML coverage.

It follows from the above comparison between GW and simple model results that

the decay rate of a QWS-IS can be approximated as γ ≈ (1 − w)γ0, where γ0 is the

decay rate of a state completely confined inside the metal and w is the wave function

weight inside the metal. Then, from Eq. (6.14) it is straightforward to obtain

γ = γ0
d

d+ α
, (6.16)

where α = 1/µ [Eq.(6.15)]. Taking α and γ0 as parameters, we fit Eq. (6.16) to the

GW data. A remarkable agreement with γ0 = 129.6 meV and α = 8.67 is obtained

using this expression, as can be observed in Fig. 6.10(a). In Eq. (6.16) d is simply

given by d = Ja, where J is the number of monolayers and a the interlayer distance.

The fitted value of γ0 is in good agreement with that expected (130.1 meV) from the

quasilinear dispersion found in our previous calculations (Fig. 6.4).

Figure 6.10(b) shows the QWS-IS decay rates, for thicknesses up to 30 ML and

energies up to −50 meV, obtained from the heuristic approach. First, in contrast to

what is expected for the quasilinear trend, a saturation of the decay rate increase with

energy is found around E − EV ∼ −1 eV. For energies closer to the vacuum level

EV , the states are pushed away from the metal into the vacuum and the decay rate

drops. The accumulation of decay rate values close to the vacuum level reflects the

high number of states in this energy region (see Fig. 6.8). Second, for smaller coverages

the overall decay rates are smaller (see the trend of the green line in Fig. 6.10). This is

directly linked to the previously discussed quantum size effect. Indeed, this quantum

size effect, together with the particular electronic structure shown in Fig. 6.8, leads to

the branch structure appearing in Fig. 6.10(b), and particularly, the states at −0.79
appear in a vertical branch, which is denoted by a shaded area.
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Figure 6.10.: (a) Calculated electron-electron decay rates of the states lying at −0.79 eV as
a function of overlayer thickness. Open squares: many-body GW results. Triangles: WPP
results. Dots: Bulk decay rates weighted by the penetration. Solid line: fit to the GW data
with Eq. (6.16) (see main text for details). The horizontal dashed line at 130.1 meV denotes
the theoretical bulk decay rate for the energy −0.79 eV. (b) Estimated decay rates of the
QWS-ISs for overlayer thicknesses ranging from 1–28 ML, as a function of energy (with
respect to the vacuum level). Thick dashed lines connect the decay rates for a few selected
overlayer thicknesses (see the legend). The thin dashed line represents the bulk-like many-
body quasilinear dispersion of the decay rates derived from GW calculations (see Fig. 6.4).
The vertical shadowed strip represents the narrow energy window of the shadowed area of
Figure 6.8 at ≈ −0.79 eV.
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6.5.3. Thick overlayer limit

As previously mentioned, as the overlayer thickness increases, eventually the QWS-ISs

would retrieve the bulk decay rate Γbulk
e−e . However, the number of states increases

as well, which might render the states unresolvable. Here, we estimate that for the

thickness d ∼ 60 MLs, Γ/2 > ∆E at E = −0.79 eV, with ∆E being the energy

difference between adjacent states.

To illustrate the above point, the calculated projected density of states with WPP

for different overlayer thicknesses is shown in Fig. 6.11. The absorbing potential en-

tering the WPP calculation to simulate the inelastic decay rate has been set in order

to reproduce the theoretical electron-electron decay rate value (130 meV) at energy

E = −0.79 eV. The figure clearly shows a smooth transition from a QWS-IS peak

structure to the bulk Pb surface limit. From the point of view of electron dynamics,

the thick overlayer case corresponds to this bulk limit: Due to the many-body scatter-

ing processes, the electron localized at the surface of a thick overlayer does not return

once it escapes into the metal.
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Figure 6.11.: Projected density of states onto the surface calculated for different Pb overlayer
thicknesses in Pb/Cu(111) system, including the limit for the infinite thickness (bulk Pb
surface). The vertical dashed line denotes the energy level at −0.79 eV.
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6.5.4. Experimental evidence of quantum size effects in lifetimes

With respect to the possibility of probing experimentally the present findings, we notice

that in a recent 2PPE study of the Pb/Si(111) system, for all overlayer thicknesses,

an IS has been reported lying at −0.79 eV with respect to the vacuum level [24]. This

energy coincides with the approximate energy of the set of states indicated by a shaded

area in Fig. 6.8, which in our calculations appear at coverages of 3, 6, 9, ... MLs.

As already discussed in Subsection 6.3.3, the interpretation of the lifetimes of QWSs

for the Pb/Si(111) system is not straighforward. Thus the experimental search for the

quantum size effects on lifetimes described in this chapter should be focused on less

complex systems, such as Pb/Cu(111) and Pb/Ag(111), where a projected band gap

exists close to the vacuum level. Indeed, in Subsection 6.3.3, we have discussed the time-

resolved 2PPE experiments by Mathias et al. [165]. The lifetime reported for the QWS

in Pb/Cu(111) for the 1 ML coverage is significantly larger than the corresponding bulk

value. This result has been explained by the wave function penetration arguments.

With respect to larger thicknesses, the TR-2PPE measurements in Ref. [165] were

reported up to the energies where a systematic quantum size effect in the lifetime might

be distinguished, according to our results. Another possibility would be to perform an

inverse photoemission experiment.

The possibility of observing these quantum size effects in QWS-ISs by STS experi-

ments is discarded, as far as the the image potential is overridden by the STM-induced

electric field (see Chapter 5 and also next chapter). It should be noted, however, that

similar lifetime variations, under the effect of different electric fields on Stark shifted

ISs in Cu(100), were discussed in terms of the wave function overlap with the Cu metal

in Ref. [171]. Thus, the possibility to see a similar overlayer thickness effect is open, as

for the QWS-ISs, in the linewidths of QWS hybridized with field emission resonances

(FERs), as follows from the strong spilling of the QWS-FERs into the vacuum (see,

e.g., Fig. 7.3 which is introduced in next Chapter 7). Nevertheless, care should be taken

with respect to a possible electric field effect. The overlayer thickness effect in QWS-

FER linewidths is likely to be probed with substrates possessing a projected band gap

up to the vacuum level, or above, in order to avoid the resonant decay contribution

to the linewidth. The QWS-FERs in the Pb/Cu(111) system do not appear suitable

for showing clear QSEs in their lifetimes, due to the nontrivial band structure of the

actual Pb overlayer, as it is discussed in detail in next chapter.
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6.6. Summary

We have calculated decay rates of QWSs and QWRs in Pb overlayers (up to ∼ 30 MLs)

supported on a Cu(111) substrate. In addition, we have discussed the hybridization

between the QWSs and ISs, and their lifetime, using simple model arguments based on

the penetration of the wave function into the metal. The system has been modeled with

self-consistent 1D pseudopotential obtained from the DFT calculations, with proper

account for the projected band gap structure of the Cu(111) substrate and free-electron

(jellium) representation of the Pb overlayer. The classical image potential has also been

included.

For QWSs, the inelastic electron-electron contribution to the broadening has been

calculated within many-body theory, using the GW approximation. Our results show

that d-QWSs located below −8 eV with respect to the Fermi level, i.e., below the bot-

tom of the Cu(111) sp band, have many-body decay rates larger than 1 eV. Taking into

account the small energy separation, the corresponding peaks in, e.g., photoemission

spectra should completely overlap, rendering impossible resolution of individual states.

The QWSs laying in the projected energy gap of Cu(111) have much longer lifetimes.

At small energies with respect to the Fermi level we find that the many-body decay

rate approximately follows the QF parabolic dependence with energy. For the QWSs

located at higher excitation energies a quasilinear dependence of the many-body decay

rate with energy is found. These results are in agreement with recent STS results

in Pb/Ag(111) [25]. As a general trend, we have found that the contribution of the

Cu(111) bulk into the many-body decay of the overlayer localized states is comparable

to that of the interband and intraband transitions involving directly QWSs. QWRs

appear energetically below the projected band gap of the substrate inside the Cu(111)

sp band. Thus, an electron initially localized in the quantum well can escape into the

substrate via energy-conserving tunneling through the Pb/Cu(111) interface. The one-

electron elastic decay rates of the QWRs have been calculated with the WPP method

for variable thickness of the overlayer, revealing several general trends:

(i) The one-electron decay rate of the QWRs is small whenever the reflectivity of the

Pb/Cu(111) interface is high, in particular close to the onset of the Cu(111) projected

band gap. In this energy region the QWRs have widths comparable to those of the

QWSs.

(ii) When the width d of the Pb overlayer increases, the decay rate of the QWRs

decreases in overall as 1/d. This can be understood on the basis of the simple quasi-

classical arguments developed in previous chapter (Sec. 3.1).
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(iii) Comparing the elastic decay rate of the QWRs with their many-body decay rate

estimated from the QF formula, we conclude that for the overlayers thicker than 30

ML the inelastic decay dominates. Basically this sets the transition to the limit of the

thick Pb film, where only inelastic decay will be possible.

For the connection between theoretical results and experiment the issue of the way

the experimental data are analyzed appears of central importance. Since experimen-

tally the assignment of the given quantum number is not a trivial task, one can fol-

low the energy evolution of the states with increasing overlayer thickness, focusing at

the given energy intervals. For the QWSs near the Fermi level, which are explored

in (two-photon) photoemission and scanning tunneling spectroscopy experiments, we

have derived an analytical expression for the lifetime and energy evolution with the

overlayer thickness.

We have compared our theoretical results with available excitation lifetimes derived

from TR-2PPE experiments in Pb/Cu(111) [165] and Pb/Si(111) [23,24]. Our theoret-

ical lifetime estimates in Pb/Cu(111) are in agreement with experiments on the same

system when the electron-phonon broadening is taken into account. Direct comparison

with experimental data in Pb/Si(111) appears difficult, because of the large differences

in electronic structure of the Cu(111) and Si(111) substrates.

The hybridization between the QWSs and ISs in Pb/Cu(111) has also been addressed

by amending the DFT potential in such a way that the image potential tail is accounted

for. We have found that, as the energies of the QWSs approach the vacuum level, the

states develop partial IS character. Then, the electron is pushed into the vacuum,

which reduces the coupling with many-body excitations in the metal. For a given

energy, the weight of a QWS-IS in the vacuum side depends on the overlayer thickness.

This in turn, induces a QSE in the corresponding electron-electron inelastic lifetime.

We have also derived an analytic expression reproducing this QSE based on the wave

function penetration into the metal.

The transition of the PDOS from small Pb overlayer thicknesses to a thick one has

been discussed. For thick overlayers the QWS-IS peaks are merged and the PDOS of

the bulk Pb surface is retrieved.

Finally, we have discussed the possibility of probing systematically the QSEs in the

lifetimes of QWS-ISs by photoemission experiments or QWS-FERs in STS experiments.



Chapter 7
Constant current scanning tunneling

spectroscopy in Pb overlayers

7.1. Introduction

Previous Chapter 6 has been focused on the energies and lifetimes of the quantum well

states (QWSs), quantum well resonances (QWRs) and QWSs with partial image state

(IS) character in Pb/Cu(111) overlayers. The theoretical results have been mainly

compared with photoemission experiments. The photoemission spectrum is assumed

to map directly the density of states of the probed surface. This is not the case with

the spectra obtained by the scanning tunneling microscopy (STM), when large biases

are used, as will be explained in this chapter. Thus, for a faithful comparison between

calculated results and experiments, recent STM and scanning tunneling spectroscopy

(STS) experiments on confined states in large Pb(111) islands deposited on Cu(111)

and Ag(111) surfaces [20, 25] are addressed. Our calculations explicitly include the

STM tip and the potential due to the applied bias [47, 172]. These experimental STS

studies were performed at constant current regime so that high-energy QWSs could be

sampled, as compared to previous works [10, 11].

When the lateral extension of the Pb island is large enough, the quantization in the

plane parallel to the surface resulting from the reflection by the island boundaries can

be neglected because of the lifetime broadening. It is the quantization of the electron

motion perpendicular to the surface that determines the discrete energy spectrum so

that the electronic structure of the system is represented by the QWSs of the complete

131
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overlayer. The STM/STS studies have the advantage of dealing with well-characterized

systems, where the information is not averaged over possible structural variations. This

is why it has become a valuable complementary tool to photoemission and inverse

photoemission techniques allowing to gain information on the band structure [173],

quasiparticle lifetimes [33, 159, 174, 175], phase-shifts for impurity or defect scattering

[176], etc. On the other hand, and in particular for high bias, the electric field in the

STM junction can a priori modify the energies of the electronic states at surfaces, so

that the technique is not noninvasive. A classical example of this effect is the evolution

of the image potential states (ISs) of the pristine metal surface [126, 177, 178] into

the field emission resonances (FERs) of the STM junction [115,116,120,134–137,179].

The point raised above is one of the central issues of the present chapter: to what

extent the QWSs are modified by the applied bias in the STM junction? Once this

question is answered, we could address the role of the realistic Pb band structure in

the experimentally observed trends.

We use the flat-tip approximation with given 1D model potential description of the

STM junction (adlayer+substrate+tip) designed on the basis of the density-functional

theory (DFT) calculations performed for Pb/Cu(111). The corresponding description

is provided in the following Section 7.2. The constant current dZ/dV spectra are calcu-

lated with the wave packet propagation (WPP) treatment of the electron transmission

from the tip into the sample. The WPP method and its implementation in the 1D

case, as required in this chapter, is explained in detail in Chapter 4. The numerical

procedure for obtaining the dZ/dV spectra is detailed in Appendix E.

We have found that, for a broad range of overlayer thicknesses, the present model

calculations reproduce the experimental data for the QWSs within the energy range

where the free-electron description of Pb holds. Based on the comparison between

experimental data and theoretical calculations performed with and without biased

STM tip, it is shown that at high bias, the energies of the QWSs are strongly affected

by the tip-induced electric field. With the above findings, the measured departure of

the QWSs energies from the particle-in-a-box [Eq. (5.6)] prediction in the bias range of

4 < V < 4.5 eV is explained as due to the realistic Pb band structure in Γ-L direction.

7.2. Model potential for a STM tip in front of a

surface

In this section we describe the different potentials used in the wave packet propagation

(WPP) calculations of the present chapter. The scanning tunneling microscope (STM)
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tip is included in the study of the constant current spectroscopy of Pb/Cu(111), which

is characterized by the 1D DFT-LDA effective potential with the image potential cor-

rection described earlier, which in the following is referred as Vs. For convenience, we

give the Schrödinger equation to be solved in the wave packet propagation. The time

evolution of ψ(z, t) is given by the time-dependent Schrödinger equation Ĥψ = i∂tψ

with Hamiltonian:

Ĥ = −1

2

∂2

∂z2
+

k2‖
2m∗

+U(z) + Vabs(z) + Vmb(z), (7.1)

where Vabs and Vmb are the absorbing potentials. The STM tip is represented with a

1D (flat-tip approximation) jellium model. The electron-tip interaction Vtip(z) is given

by the Jones-Jennings-Jepsen potential [180]:

Vtip(z) =







1−exp[λ(z−ztip)]
4(z−ztip) , z < ztip

U0

A exp[−B(z−ztip)]+1
, z ≥ ztip,

(7.2)

where parameters A and B are fixed from continuity conditions at ztip, the image plane

position of the tip [180]. The potential inside the tip has been set to U0 = −15.9 eV

(Al), and λ = 0.9 a−10 has been used. We have checked that results of the following

sections do not change with U0 = −13.55 eV (as calculated with present DFT for Pb).

Indeed, in the tunneling regime the transmission resonances are determined by the

energies and lifetimes of the QWSs of the Pb overlayer on Cu(111). As far as the tip

does not present resonant features in the electronic density of states (DOS), the tip

properties have little impact on the resonance tunneling profile.

For an electron between two infinite conductor plates (zim < z < ztip), the potential

due to the multiple electrostatic images, and due to the applied bias reads [115]:

Vmi(z) =
1

4

∞∑

n=1

−1
(z − zim) + nZ

+
−1

(z − ztip) + nZ
+

2

nZ

}

+ (z − zim)V/Z, (7.3)

where the tip-Pb/Cu(111) surface distance is defined as Z = ztip − zim.

Finally, the total effective potential acting on the tunneling electron is given by:

VΣ(z) =







Vs(z), z ≤ zim
Vs(z) + Vtip(z) + Vmi(z), zim < z < ztip
Vtip(z) + V, z ≥ ztip.

(7.4)

Depending on the problem at hand, the WPP calculations of present chapter have

been performed with potential U(z) [see Eq. (7.1)] given by all or some terms entering
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Figure 7.1.: Black curves: Model potential of the tip+5ML-Pb/Cu(111) system at two
different bias V and the same current density. Energies are given with respect to the
Fermi level. Red dotted curve: the potential of the bare 5ML-Pb/Cu(111) system. z = 0
corresponds to the image plane position of the Pb overlayer surface. The probability density
of the Gaussian wave packet with average momentum k0, used in the WPP calculations
(Chapter 4), is sketched with dashed curve.

Eq. (7.4). Thus, for the search of the reference QWSs of the unperturbed Pb/Cu(111)

system, U(z) = Vs(z) has been used. The evolution of the QWSs under the applied

electric field in the junction, E = V/Z, has been studied with:

U(z) = Vs(z) + (z − zim) E θ(z − zim), (7.5)

where θ(z) is the Heaviside step function. Finally, the transmission of the junction has

been calculated with the full potential: U(z) = VΣ(z).

Fig. 7.1 shows the total potential VΣ for a system comprising 5 ML of Pb on Cu(111)

and the STM tip placed at distance Z = 11.5 (17.6)a0 from the image plane position

at bias V = 1.0 (3.0) eV.

The many-body contribution is accounted for as explained in Chapter 4 (Section 4.3).

It is designed from the many-body results on electron-electron decay rates of Chapter

6:

γe−e =

{

2.5019r
5/2
s (E − EF )

2 E − EF ≤ 1 eV

α(E − EF ) + β E − EF > 1 eV,
(7.6)

where the screening radius rs = 2.3a0 (Pb), α = 52 meV·eV−1, and β = −41 meV.

We have checked that changing absorption in Cu substrate does not affect final results.
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The main broadening of the QWSs thus comes from the inelastic scattering in Pb

overlayer.

The energy dependence of the γe−e implies that, in principle, for each energy, the

transmission T (E, V, Z) at Γ should be calculated with the corresponding γe−e. This

approach is extremely time consuming and would be out of reach. However, we have

checked that using γe−e at the energy given by the applied bias E = V + EF does

change the energy dependence of the transmission, but does not affect the calculated

distance-voltage dZ/dV characteristic. This is because the dZ/dV spectroscopy is

mainly sensitive to the narrow energy interval close to the tip Fermi level, where the

electrons injected into Pb/Cu(111) have energy E ≃ V + EF .

Observe that, for an electron injected from the STM tip into the surface along

Γ− L, the one-electron reflectivity of the Pb/Cu(111) interface is one within Cu(111)

projected band gap. With the flat tip approximation the tunneling flux through the

junction, in this case, is only possible due to the inelastic energy relaxation processes

described by Vmb.

Further details on the calculation of dZ/dV characteristics are given in Appendix E.

7.3. Effect of the tip: Stark shift

We start our discussion with the effect of the electric field in the STM junction on the

QWSs. In Fig. 7.2, we show the calculated energies En(E) of the QWSs as a function

of the applied field in the STM junction E = V/Z. Here, the WPP method with a

potential given by Eq. (7.5) has been used, where the tip is not considered, but just

the linear bias potential. Results are shown within the energy range of 1 < E < 5 eV

with respect to the Fermi level, i.e., the one encompassed in the constant current STS

experiments [20, 25]. The principal quantum number n of the states, as indicated in

the figure, corresponds to the nodal structure of the wave function, as discussed in

Chapter 6.

At zero field, the QWSs hybridize with image potential states (ISs) forming Rydberg-

like series converging toward the vacuum level. The mixed character of these QWS-ISs

has been discussed in the previous chapter (Section 6.5). Briefly, the mixed QWS-

IS character of the states close to the vacuum level is reflected in their electronic

densities. Appreciable part of the electron density is moved from inside the Pb film

into the vacuum, as seen in Fig. 7.3, where we show the calculated wave functions ψn

of the states. From the nodal structure in vacuum, one can infer the principal quantum
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Figure 7.2.: Applied field dependence of the energies of the QWSs. Solid lines with dots:
calculated energies of the QWSs as a function of the applied uniform electric field E for
the system comprising the STM tip + 15ML-Pb/Cu(111) system. Energies are given with
respect to the Fermi (vacuum) level, as indicated in the left (right) axis. Horizontal dashed
lines: energies of the QWS peaks in STS experiments [20]. Horizontal solid lines: energies
of the QWS peaks in the calculated dZ/dV spectra. The blue curve represents the electric
field, as calculated at each bias (energy with respect to the Fermi level) for the constant
current spectroscopy.

number of the IS (denoted by n′ ) providing the leading contribution to ψn (indicated

in parenthesis in the figure).

When the bias (electric field) is applied to the junction, the low-energy QWSs local-

ized mainly inside the Pb layer experience only minor energy shift, in agreement with

experimental results [181, 182]. At variance, the states with partial IS character, close

to the vacuum level, are very sensitive to the applied electric field because of the high

probability of the electron presence above the surface of the film. These states expe-

rience appreciable energy shift (Stark shift) so that the Rydberg-like series converging

toward the vacuum level is destroyed already for fields as low as 0.05 eV/a0. Note

that the field E =0.05 eV/a0 corresponds to a tip-surface distance as large as 4 nm

for a bias of 4 eV. The actual electric fields obtained with the WPP for the conditions

of constant current STS experiments (see below) of Yang et al. in Ref. [20] are also

shown in Fig. 7.2. The field dependence of the Stark shift of the states with mixed
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Figure 7.3.: Change of the wave functions of the QWSs in the 15ML-Pb/Cu(111) system
under applied electric field. Solid lines represent electronic densities of the QWSs. The
principal quantum number n is indicated above each state. The image plane position is
denoted by a vertical dotted line. Energies are given with respect to the Fermi (vacuum)
level labeled at the left (right) axis. (a) Zero field case. The number in parenthesis indicates
the n′ - quantum number of the IS with leading contribution to the hybrid QWS-IS state.
The image potential at the vacuum side of the Pb film is shown by dashed line. (b) The case
of the uniform electric field of strength E= 0.05 eV/a0. The densities of the quasi-stationary
states with energies above Cu(111) projected band gap, and so decaying via one-electron
transfer into the substrate, are represented with red color. Dashed line: image potential at
the vacuum side of the Pb film. Dashed dotted line: total (image + linear ramp) potential.

QWS-IS character calculated here is very close to the ab initio results [116], as well as

the experimental data supported by model calculations for the ISs [134].

Thus, the electric field in the junction overrides the image potential. For the pristine

metal surfaces, the ISs evolve into the field emission resonances (FERs) with energy

quantization given by Eq. (5.44). Similarly, for the Pb overlayer, the states with mixed

QWS-IS character evolve into the states with mixed QWS-FER character, as reflected

in their wave functions. The WPP results for the wave functions of the QWS in biased

STM junction are shown in Fig. 7.3 for the electric field E =0.05 eV/a0. Compared to

the bare Pb/Cu(111) case, the electronic densities of the high-energy states are pushed

by the constant electric field toward the surface. However, partial electron spread from

the Pb film into vacuum is preserved. The same features have been reported for the

Stark-shifted ISs [171].
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The Stark shift of the ISs (which is as strong as 0.3 eV for n′ = 1 IS at clean Cu(111)

surface [137]) shows that for the STM junction under the bias, the phase accumulation

model with the vacuum scattering phase described with Eq. (5.33) cannot provide

an adequate description of the system. The scattering phase shift ϕvac at the Pb

vacuum interface is rather that of the linear potential barrier given in Eq. (5.45). The

discussion of the validity of the latter phase shift for reproducing the FERs has been

given in Chapter 5 (Subsection 5.5.2). We would like to emphasize here that the present

WPP calculations are performed with the complete potential given by Eq. (7.4) and,

therefore, are free from any approximative description of ϕvac.

To summarize, the STS experiment does not appear to be noninvasive, as far as

the QWSs close to the vacuum level are concerned. Because of the electric field in

the STM junction, the energy of these states is raised by the Stark shift. As a result,

the QWSs with mixed IS character transform into QWSs with mixed FER character.

Both, the energy upshift and change in the wave function would increase the rate of

the inelastic decay of the states [171] and, therefore, the linewidth of the structures in

dZ/dV and dI/dV spectra. Note that above 4.1 eV with respect to the Fermi level

(above the L gap of Cu), the QWSs are in resonance with propagating electronic states

of the Cu(111) substrate, in contrast to the idealized model with an infinite barrier

considered in Chapter 5. The resonant electron transfer into the substrate constitutes

then an additional channel of the QWSs population decay. The effect of this resonant

channel on the underlaying quasi-stationary QWSs is discussed in Section 7.5.

7.4. STS spectra I: QWS energies

The constant current dZ/dV curves were calculated for overlayer thicknesses ranging

from 4 to 18 ML. The current density was kept constant for all calculations, and it

was set to I = 5 × 10−2 nA/Å2, such that the experimentally measured energy (3.52

eV) of the n =27 peak is well reproduced for the 15-ML Pb film case. This implies a

tip-surface distance of Z = 22a0 at the bias V = 3.52 eV. It is desirable to fit the results

to such a high-bias peak, since the flat tip approximation is expected to perform better

at the high-bias than at the low-bias regime. If the effective radius of the tip Reff = 20

Å is assumed, the corresponding current through the STM junction is I = πR2
eff ≈ 63

nA. The above choice of parameters appears quite reasonable when comparing with

existing approaches [115,120].

The dZ/dV curves obtained for the Pb coverages of 10 ML and 17 ML are displayed

in Fig. 7.4 together with experimental STS spectra of Ref. [20]. The QWS energies
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Figure 7.4.: Comparison between calculated dZ/dV curves (black) and experimental spectra
(red) by Yang et al. [20]. Experimental spectra are re-scaled for the sake of comparison.
For further details see the main text. The calculated QWS energies of the bare Pb/Cu(111)
system are denoted by vertical dotted lines.

calculated for the bare Pb/Cu(111) without tip are also shown in the figure with

vertical dashed lines. We use the labeling n of the spectral peaks according to the

principal quantum number of the underlying QWSs obtained from the calculated nodal

structure of their wave functions. Note that in Ref. [20] the labels nexp differ from the

present definition of n as nexp = n − 1. However, nexp were not directly obtained

but were deduced from the modeling of the data with the phase accumulation model.

Furthermore, we refer to the thickness of the Pb film with respect to the Cu(111)

surface, while in Ref. [20] the thickness is referred with respect to the Pb wetting layer.

Thus, e.g., the present 17-ML case has to be compared to the 16-ML result as reported

in the experimental work.

With the above remarks, the calculated STS spectra are in good agreement with

experimental data for the energies below 4 eV, with respect to the Fermi level of the

surface. The flat-tip approximation used here allows us to reproduce experimental

energy positions of the resonant features as well as to their widths, including the

overall peak broadening with increasing energy. At high energy (bias) above 4.12

eV, i.e., above the L gap of Cu(111), the calculated peaks broaden and loose their

intensity. This is linked with opening of the QWSs decay channel via resonant one-
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electron tunneling into the Cu(111) substrate. At the same time, the regular energy

progression of the calculated peaks is maintained, in contrast to experimental data. The

difference between the theoretical and experimental data in the 4–5 eV energy range

is directly linked to the Pb band structure, as is discussed in detail in Section 7.7.

The good agreement between theory and experiment for V < 4 eV allows us to

discuss some issues linked with the tunneling spectroscopy studies of the QWSs.

First, the difference between the energies of the resonant structures in the calculated

dZ/dV spectra, ESTS
n , and the energies of the QWSs of the bare Pb/Cu(111) system,

En, sets the energy shift ∆STS
n inherent to the experimental procedure as:

∆STS
n = ESTS

n − En. (7.7)

We show ∆STS
n in Fig. 7.5(a) for the case of the 17-ML Pb film. In full agreement

with the discussion presented in the previous section (see Fig. 7.2), the measured peak

positions reflect the energies of the QWSs of bare Pb/Cu(111) only for the bias below

≈ 2 eV, where ∆STS
n is small. At higher bias the Stark shift modifies the energies

of the QWSs. This effect becomes particularly important for the QWSs with mixed

IS character close to the vacuum level of the Pb overlayer. Thus, the spectroscopic

feature at the vacuum level (4 eV) is associated with the Stark shift of the underlying

QWS by 0.4 eV, which is of the same order of magnitude as reported for the first IS

at Cu(111) [137].

Second, the peaks in the STS spectra show an additional broadening of 0.2 eV, as

compared to the decay rates of the underlying QWSs resonances. A similar result

has been reported in the studies of the FERs [120]. The broadening of the spectro-

scopic features is illustrated in Fig. 7.6. The calculated energy-dependent transmission

T [E, V, Z(V )], dynamic transmission T [V, V, Z(V )], and dZ/dV spectrum are presented

for the 17-ML Pb coverage case. We recall that Z(V ) is defined by the constant current

condition. The figure spans the energy range of the n = 29 QWS peak (as appears in

Fig. 7.4). The T [E, V, Z(V )] has a well-defined Lorentzian profile centered at the reso-

nance energy and a width γn corresponding to the inverse lifetime of the n = 29 QWS

resonance. There is only a minor energy shift and nearly no width change for the bias

variations within the resonance. The bias is varied by steps of 0.05 eV, and the precise

V value corresponding to each curve is set by the open dot located at E = V . Similar

to the transmission, the dynamic transmission given by the thick line connecting the

E = V points also shows quite a symmetric profile with no additional broadening. At

variance, the calculated peak in dZ/dV is asymmetric with a width γ′n ≈ γn + 0.2 eV,

and a maximum position shifted by ∼30 meV. This small energy shift appears nearly
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Figure 7.5: (a) Energy shift ∆STS
n

of the QWS peaks in the calculated
dZ/dV spectra. ∆STS

n is defined
with respect to the energies of the
QWSs in the bare 17ML-Pb/Cu(111)
system. (b) Calculated decay rates
γn of the QWSs for the same system,
as a function of their energy En

with respect to the Fermi level. γn
is obtained for the fixed bias V
and position of the tip Z(V ), where
En = V . We also plot the many-
body decay rate γe−ph + γe−e for the
excited states inside the overlayer.
The dashed-dotted line represents
the linear fit to the QWS linewidths,
as deduced from experimental data
in Ref. [25].
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independent on the QWS under study. It is at the origin of the nonzero onset of ∆STS
n

for low bias, as seen in Fig. 7.5.

7.5. STS spectra II: Decay rate of the QWSs

Because of the asymmetric structure of the measured and calculated STS peaks, as

well as because of the peak broadening inherent to the STS at high bias, the extraction

of the corresponding decay rates is not a trivial task. We have not attempted any

transformation of the experimental data of Yang et al. in Ref. [20]. The WPP allows

a direct extraction of the decay rates γn from the calculations performed for the fixed

bias V = En and fixed position of the tip Z(V ). Thus, the Hamiltonian is fixed so

that the quasi-stationary states of the system can be rigorously defined. Here En is the

energy of the quasi-stationary QWS under study. We note that, a priori, γn comprises

several contributions: γn = γmb + γ1e + γtip. The term γmb stands for the inelastic

many-body decay, γ1e is the rate of the elastic one-electron tunneling into the Cu(111)

substrate for the energies above the L gap of Cu(111) at Γ (i.e., above 4.12 eV), and

finally, γtip is the rate of the elastic one-electron tunneling into the STM tip. Since in
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Figure 7.6.: The transmission T [E, V, Z(V )] (normalized to 5 · 10−3), dynamic transmission
T [V, V, Z(V )], and dZ/dV spectrum for the n = 29 QWS peak of the 17ML-Pb/Cu(111)
system. The calculated transmission (thin lines) is shown as a function of the electron
energy for different bias values. The V -value corresponding the each curve is set by the
open dot located at E = V . The dynamic transmission is given by the thick line connecting
the E = V points. The gray vertical dashed line denotes the approximate peak energies in
the transmission at E = 2.52 eV. The dZ/dV curve (dashed line) has been renormalized
for the sake of comparison.

the present conditions the tip-surface distances are such that the transmission is in the

10−4–10−3 range, the contribution of the latter decay channel can be safely neglected.

In Fig. 7.5 we show the WPP results for the case of the 17-ML Pb film, together with

the decay rates extracted in Ref. [25] from the experimental study of Pb/Ag(111). The

difference in the substrate affects the γ1e. However, for the QWSs inside the projected

band gap γ1e = 0, and γmb is determined mainly by the inelastic hot-electron decay in

the Pb overlayer, as we have checked with WPP calculations by varying the absorbing

potential inside the Cu(111) substrate. Thus, the comparison with experimental data

of Ref. [25] is meaningful. The present theoretical results can be well understood on

the basis of the wave function penetration arguments often involved in the discussion

of the lifetimes of the ISs at surfaces, in the same way as it is done for the QWS-ISs

in Chapter 6. At low energies, the wave functions of the QWSs are confined within

the Pb overlayer (see Fig. 7.3). The γmb decay rate is then given by the sum of the

electron-electron and electron-phonon contributions γmb = γe−ph+ γe−e to the excited

state population decay inside the Pb film. It is directly included in the many-body



7.6 STS results for different Pb coverages 143

absorbing potential (see Chapter 4), and represented by the dashed line in Fig. 7.6.

For the energy range between 3 and 4 eV, the QWSs hybridize with FERs. Part of

the electron density is moved into the vacuum, reducing the probability of interaction

with possible excitations. As a result, the many-body decay rate of the corresponding

states becomes smaller than that inside the Pb film. For the energies above 4.12 eV,

the one-electron decay channel into the Cu(111) bulk opens. The γ1e decay rate rapidly

increases when the energy rises above the band-gap threshold. The QWSs acquire an

additional broadening, and the total width of the resonances is brought into the 0.3–0.4

eV range.

7.6. STS results for different Pb coverages

Figure 7.7 summarizes our results on the STS of the Pb/Cu(111) system. The ener-

gies of the calculated QWS peaks in the dZ/dV spectra are presented as a function

of overlayer thickness for Pb coverages ranging from 4 to 18 ML. Theoretical data

are compared with STS experiments [20]. As a reference, we also show the calculated

energies of the QWSs in the bare Pb/Cu(111) system (no tip-induced perturbation),

as well as the QWSs energies obtained from the two-photon photoemission (2PPE)

experiments [165]. Our calculations are in agreement with available experimental data

for the energies below ∼ 4 eV. The correspondence between the calculated and mea-

sured STS peak positions is particularly remarkable for coverages above 11 ML. When

comparing the STS data with the QWS energies of the bare Pb/Cu(111) system, the

importance of the Stark shift due to the applied bias, as discussed in the previous

section, is evident for the high energy states. We stress here that this effect has not

received enough attention in the previous analysis of the experimental STS data on Pb

overlayers [20, 25].

At low coverages the calculated spectroscopic peak positions are systematically be-

low the experimental data. This cannot be the deficiency of the present modeling of

the STM junction since all the QWSs, including those close to the Fermi level, are con-

cerned. Indeed, the low-energy QWSs are well-localized inside the overlayer and thus

are not sensitive to the potential above the Pb surface. We tentatively attribute the

difference between calculated and measured data to the present DFT-LDA modeling

of the bare Pb/Cu(111) system. It results in the underestimation of the energies of the

QWSs at low coverages, as has been discussed by Ogando et al. [18]. The effects such

as the specificity of the wetting layer as compared to the next layers and oscillations,

both in work function and Pb interlayer spacings with overlayer thickness, determines

the precise value of the QWS energies. In fact, the good agreement between theoretical



144 Constant current scanning tunneling spectroscopy in Pb overlayers

4 6 8 10 12 14 16 18
Pb thickness (ML)

0

1

2

3

4

5
En

er
gy

 (e
V)

Figure 7.7.: QWS energies at Γ. Results are shown as a function of overlayer thickness. Full
dots: calculated energies of the QWS peaks in the dZ/dV spectra. Open dots: experimental
QWS peak positions obtained from the dZ/dV spectra of Ref. [20]. Open squares: the
two-photon photoemission data [165]. Theoretical results for the bare Pb/Cu(111) system
(without tip) are shown with open triangles. The horizontal dashed line denotes the vacuum
level (work function Φ = 4.08 eV).

and experimental data above 11 ML coincides with coverages having converged work

function, i.e., that of Pb(111) within 0.05 eV (see also Refs. [183] and [22]).

7.7. Effect of the realistic band dispersion of Pb(111)

along Γ-L

As follows from the results reported in Fig. 7.7 (see also Fig. 7.4), above 4 eV the

theoretically calculated peaks in the STS spectra, and thus, the underlying QWSs

continue a regular progression towards higher energies En with increasing principal

quantum number. In contrast, the experimental data show the energy separation

En+1 − En decreasing with n in this energy range. Finally, measured QWSs peaks

level off at 4.6 eV energy. In some way, the energy dispersion of the experimental STS
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peaks resembles that of the ISs that level off at vacuum level. This interpretation was

used by the authors of Ref. [20]. Similarly, authors of Ref. [25] analyzed their data

within the phase accumulation model with the scattering phase at the Pb/vacuum

interface given by Eq. (5.33) in Chapter 5. Thus, it has been assumed that an electron

moving in the vacuum region of the STM junction is subject to the image potential

only. However, according to our results this explanation does not hold.

First, it places the vacuum level at 4.6 eV, which is inconsistent with experimental

data and ab initio calculations that report a Pb work function of 4.25 eV at most

[22,63,183–186]. The work function oscillations with film thickness cannot explain this

difference. These are of the order of ±0.1 eV for thin films, and become much smaller

with increasing coverage [22, 183].

Second, and most important, it follows from the present results that the electric

field in the STM junction destroys the ISs-like series causing the Stark energy shift of

the QWSs. This effect is well documented in the literature on the example of the ISs

transformation into FERs [115, 116, 120, 134–137, 179]. The vacuum potential barrier

(for energies close to the vacuum level and above) becomes essentially a linear ramp

potential as known for FERs, with the corresponding scattering phase shift given by

Eq. (5.45) (see also Subsection 5.5.2 for the derivation of this phase shift and the

discussion of its suitability for describing the FERs).

The question naturally arises: why the theoretical model does a good job in describ-

ing the experimental data up to ≈ 4 eV with respect to the Fermi level and fails for the

higher energies? This cannot be the deficiency of the modeling of the STM junction.

Indeed, reproducing the peaks in the STS spectra up to ≈ 4 eV implies reproducing

the Stark shift, and so the potential in the junction.

At this point it is useful to recall Eq. (5.25) that defines the energies of the quantized

states in the framework of the phase accumulation model. It is reproduced here for

convenience (with slightly different notation):

2πn = 2k(En)D + ϕCu(En) + ϕvac(En). (7.8)

Provided the nearly free-electron Cu(111) band structure in this energy range, the

4.6 eV “anomaly” is not linked with ϕCu(En). It can be then reproduced by the energy

dependence of the vacuum phase shift ϕvac, as done in Ref. [20]. Alternatively, it can be

associated with the Pb(111) band structure k(En) along the direction perpendicular to

the film surface. Since the former explanation was ruled out, it is reasonable to expect

that the disagreement between calculated and experimental data is directly related to

the present free-electron description of the overlayer. In the limit of the bulk Pb, the
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DFT-derived potential for the Pb film results in the

E = k2/2− U0 (7.9)

energy dispersion of the states with k along Γ-L direction and Pb band bottom U0 ≈
13.55 eV. When compared to the ab initio band structure of Pb(111) [29, 61, 63] (see

Fig. 2.2), this free-electron model breaks exactly within the 4.5 eV energy range where

different Pb bands experience avoided crossing. The ab initio result shows dE/dk → 0

for k → Γ, which would explain the observed experimental trend and the difference

with the calculated data.

The direct evidence of the Pb(111) band structure effect is obtained with the fol-

lowing data analysis based on the phase accumulation model [25]. Assume that for

the two overlayers with thickness D1 and D2 one can find the respective spectroscopic

peaks En1 and En2 such that En1 = En2 = E. Then, subtracting Eq. (7.8) for the

(D1, n1)-case from that for the (D2, n2)-case allows, within the first approximation, to

remove the contribution of the scattering phase shifts due to the interfaces. The parent

bulk band dispersion along Γ-L can be then obtained as:

k(E) = π(n2 − n1)/(D2 −D1). (7.10)

However, when performing constant current spectroscopy for the overlayers with dif-

ferent thickness D2 > D1, the tip-surface distance Z is not the same when probing the

states at the same energy. This is because the number of the electronic states to tunnel

to is higher for the thicker overlayer, which has to be compensated with increasing Z.

For the same bias, the electric field in a junction is then smaller for D2, and the can-

celation of the vacuum phase shifts is an approximation. To assess the validity of this

approximation, we have first transformed the calculated data according to Eq. (7.10).

The STS peaks were assumed to have the same energy if they fall within a 40-meV

energy window: |En1 − En2| < 40 meV. The extracted band dispersion is shown in

Fig. 7.8(a). It appears very close to the free-electron parabola given by Eq. (7.9), so

that the k(E) extraction procedure holds.

Having checked the validity of the method outlined above, we have applied it to

the experimental data of Ref. [20]. The subsequent obtained Pb(111) band dispersion

along Γ-L is presented in Fig. 7.8(b), together with the ab initio DFT-LDA relativistic

calculations of the Pb band structure which has been shifted +0.4 eV in order to fit the

photoemission data of Ref. [63] below the Fermi level. We also plot the k(E) derived

by the same method for Pb/Ag(111) as published in Ref. [25]. In sheer contrast with

the free-electron parabola, the ab initio band dispersion saturates at Γ point for E −
EF = 5.4 eV and for k = 1.161a−10 (reciprocal lattice vector). The dispersion relation
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Figure 7.8.: Electronic bulk Pb band structure along symmetry direction Γ − L in the
extended representation. The thin solid curve in both panels corresponds to the free-
electron parabolic dispersion given by Eq. (7.9). (a) Open dots: dispersion derived with
Eq. (7.10) from calculated energies of the STS peaks (see Fig. 7.7). (b) Open dots: disper-
sion extracted from experimental data reported for Pb/Cu(111) in Ref. [20]. Rectangles:
dispersion extracted from experimental data reported for Pb/Ag(111) in Ref. [25]. The
relativistic ab-initio DFT-LDA dispersion of the pz band of bulk Pb [29, 61] is represented
with thick blue curve.

extracted from STS experiments agrees with ab initio results and photoemission data.

This fully validates our interpretation of the experimentally observed trends in the

QWS series at high bias, as a direct consequence of the realistic band structure of

Pb(111). Obviously, it cannot be reproduced with the present approach based on the

free-electron modeling of Pb overlayer, which explains disagreement between calculated

and measured STS peak positions at bias above 4 eV.

Recently, a larger set of the STS spectra for Pb/Cu(111) has been shown with bias

range extending up to 9.0 eV [187,188]. The FERs with energies independent of the Pb

film thickness were reported for the bias above 5 eV. According to the model results
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of the present thesis, the free-electron-like description of Pb would not explain the

experimental data, since we obtain thickness-dependent peak energies at high bias.

The detailed discussion of the experimental results for the bias above 5 eV is beyond

the scope of this thesis, thus it is left as an open question: The nontrivial Pb band

structure above 4.5 eV, as shown in Fig. 2.2, should be at the origin of the observed

effects. Several possible explanations, all based on the Pb band structure effect, can

be advanced: (i) increased surface reflectivity in the corresponding energy range, (ii)

flat dispersion of the underlying Pb bands, (iii) high electron transmission through the

Pb/Cu(111) interface above the projected band gap of Cu(111) so that the electron

does not return to the Pb/vacuum interface and all confinement is at the vacuum side

(a resonant state).

7.8. Summary

We have performed a theoretical study of the constant current scanning-tunneling

spectroscopy of thin Pb films on a Cu(111) substrate. The dZ/dV spectra have been

calculated for the 4–18 ML film thickness range. The tip-sample system is represented

within the flat-tip approximation, so that well-developed approaches for modeling the

STM junction [115] could be applied.

Within the studied range of overlayer thicknesses, the energies of the calculated peaks

in the STS spectra reproduce the experimental data for bias below 4 eV. Particularly

remarkable agreement with respect to the energies, widths, and relative intensities of

the STS peaks, is obtained for thicknesses above 11 ML, i.e., in the range where the

quantum size effects on the Pb film work function and the effect of the wetting layer

can be considered as negligible.

Simultaneous calculations of the (i) dZ/dV spectra, (ii) quasi-stationary QWSs in

the tip-sample system at fixed tip-sample distance and bias, and (iii) QWSs of bare

Pb/Cu(111) without the tip have been performed. This allows detailed discussion

of the physics underlying experimental observations. It appears that only low-energy

QWSs are unperturbed by the tip. At high bias, the tip-induced Stark shift determines

the energies of the QWSs and so the peaks in the STS spectra. Here, the effect of

the electric field in the junction is similar to that often evoked in discussion of the

transformation of ISs into FERs [116, 136]. Indeed, the electronic density of the high-

energy QWSs in the bare Pb/Cu(111) system is shifted from the inside Pb film into

the vacuum, indicating partial IS character (see also Chapter 6).
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Good agreement between the calculated and measured data in the energy range cor-

responding to the free-electron-like dispersion of the Pb band along Γ-L direction vali-

dates the present theoretical approach. The departure of the experimentally measured

energies of the STS peaks from the theoretical results above 4 eV bias is then sound.

It reflects the departure of the bulk Pb band structure along Γ-L from free-electron

parabola. Comparison between the ab initio band structure of Pb, the two-photon

photoemission data, and k(E) dispersion curves extracted from experimental data of

Refs. [20] and [25] fully confirms the above interpretation. Thus, the STS performed

at different coverages can be used as a complementary tool to inverse photoemission to

probe the dispersion of the bulk bands of the overlayer material at energies well above

the Fermi level.





Chapter 8
Conductance and clustering of Na

nanocontacts

8.1. Introduction

Owing to fundamental and practical interest, metallic nanowires are a subject of con-

siderable experimental and theoretical effort [4]. Not only is the nanowire a natural

component of molecular electronics devices, but it can also serve as an efficient chem-

ical and biological sensor [5]. From the fundamental point of view, when drawn to

the atomic dimension, nanowires exhibit quantum conductance behavior [13,189,190],

thus offering an excellent playground for theoretical developments. Nowadays, sys-

tematic studies of electronic and mechanical properties of nanocontacts are possible

thanks to the mechanically controllable break junction (MCBJ) and scanning tunnel-

ing microscopy experiments [4, 191]. In particular, MCBJ experiments (see Fig. 8.1)

are very well suited for conductance measurements, providing histograms for large sets

of individual contact-breaking events as the basic input for further analysis. For simple

metals, the conductance curves upon stretching show clear plateaus at values close to

nG0 = n2e2/h (n is an integer) followed by more or less abrupt jumps to lower conduc-

tance plateaus [12,192]. The appearance of plateaus is considered as a fingerprint of a

stable nanowire structure in the contact neck, whereas abrupt conductance jumps are

associated with instabilities and consequent sudden rearrangements of the neck. Thus,

the electronic (atomic) shell structures of nanowires could be demonstrated with this

technique [13, 183, 189], where the stable nanowire configurations are characterized by

151
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(a) (b)

(c)

Figure 8.1.: (a) Micrograph and sketch of a MCBJ experimental setup [194] (b) Typical
conductance curves of sodium contacts as a function of the voltage pulling the contact
leads apart [192]. (c) Histogram of conductance values obtained for a large set of sodium
conductance curves [192].

“magic radii” in analogy to the well-known “magic numbers” of abundance in metal

clusters of different sizes [193].

Although great progress has been made in observing new structures in high-resolution

transmission electron microscopy [190,195], the structural details of nanowires and their

dynamical properties are far from being well understood. From the theoretical side,

different approaches have been used to elucidate the atomistic rearrangements taking

place during the breakage of a nanowire. Classical and semiclassical methodologies

have been used along with ab initio calculations based on density functional theory

(DFT) [35, 38–40, 42–45, 196–205]. The latter, in particular when combined with elec-

tronic transport calculations [35, 42, 204, 205], provides the most advanced description

of the system, allowing direct connection with experimental data. However, DFT-

based calculations are computationally extremely demanding, which severely limits

the number of atoms (the size of the break junction) that can be addressed. Molecular

dynamics (MD) remains then as a useful alternative if one wants to explore large sets

of possible configurations [38].

Another way of tackling the complex problem of the evolution of the geometry and

conductance of stretched nanowires is to reduce the level of complexity in the de-
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scription of the atomic structure of the system and to use DFT methodology, but

based on jellium models for the nanowire material. Despite its apparent simplicity,

such an approach can often capture the main physics of the process at hand, as has

been proven with many studies of metal nanostructures and metal surfaces [206], in-

cluding the representation of electrodes in conductance studies [207]. Among metallic

nanowires sodium is the prototype system for the jellium description, allowing one to

efficiently explore various structures [4, 208, 208]. The nearly free character of sodium

valence electrons fully validates the applicability of the jellium approach, as shown

in a number of works [41, 208, 208–210] based on comparisons with ab initio studies

and experimental data (see also Fig. 8.3). Thus, in full agreement with first-principles

molecular dynamics simulations [38–40], Ogando et al. reported the formation of clus-

terlike arrangements of atoms, preceding the breakage of a stretched nanowire [41]. In

that work the ultimate jellium (UJ) was applied. It is worth mentioning that, as far as

closed-shell sodium clusters are concerned, the jellium model gives adequate descrip-

tion of many physical properties [211]. As for the nanowire breakage, the UJ approach

can be interpreted as giving directly some kind of average configuration, so that large

MD statistics is not needed.

In this chapter we investigate how the conductance of an elongated Na nanowire

is affected by the formation of a stable clusterlike arrangement of atoms in the break

junction nanocontact [172]. We use a combined approach where the nanowire breakage

is simulated with self-consistent electronic structure calculations within the density

functional theory. The self-consistent calculations provide an input for the follow-up

wave packet propagation (WPP) study of the ballistic electron transport through the

break junction.

We find that clustering leads to delayed and rounded conduction jumps upon the

stretching of the nanowire. The results are analyzed in terms of the evolution of the

transmission resonances originating from the cluster-localized electronic states. The

situation at hand then closely corresponds to the electron transport through molecular

junctions studied in great detail in the context of molecular electronics [4, 212–217],

where the cluster is playing the role of the molecular object. According to our results

to be discussed, the resonant character of the transmission reveals itself particularly

clearly in the bias voltage dependence of the differential conductance, suggesting ex-

perimental ways to evidence the presence of clusters in the break junction. It should

be pointed out that the main conclusions and results reported in this chapter are not

determined by the specific choice of the nanowire material (Na), but rather by the very

fact of the clustering at the break junction. The latter phenomenon is of quite general
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nature, as it not only happens for the stretched Na nanowires [38–41] but has also been

reported for gold nanowires [42–45].

8.2. Breakage of Na nanowires

The DFT calculations are based on the UJ description of nanowires (see Chapter 2

for details on the DFT method and its implementation, together with the UJ model).

Within the UJ model the background positive charge is fully relaxed in shape and

density, so that it equals at every point the electron density, and the shape of the system

is obtained self-consistently. In this way, it is possible to mimic the rearrangements

of atoms during the elongation and breakage of a nanowire with MCBJ techniques,

for example. The system considered in the simulations is sketched in Fig. 8.2. It

consists of two cylindrical UJ leads (we restrict the shapes of the nanowires to those

having axial symmetry), whose potential is frozen after self-consistent calculations for

an infinite wire of stable magic radius R. Rearrangements are only allowed in the

central part (break junction) between the leads, which is deformable upon stretching

of the nanowire. The shape in this region is updated in a self-consistent process.

Setting the size L of the deformable part allows one to define the number of electrons

Ne in the deformable constriction. This is a key quantity as it determines whether

clusterlike structures are or are not formed in break junctions [41]. We note that the

procedure of constraining the number of electrons in the deformable part is equivalent

to the usual methodology followed in ab initio approaches, where only some atoms are

allowed to relax between the frozen leads.

The results reported in this chapter are obtained for the breakage of a nanowire of

radius R = 10.7a0. This is a typical example of a stable Na nanowire structure, allowing

one to study the change of the conductance both in the presence and in the absence of

cluster-derived structures in the deformable constriction during the stretching process.

We find that for the nanowire of radius R = 10.7a0, a minimum of seven initial

electrons in the deformable constriction is needed to enable the appearance of the

eight-electron cluster structures in the break junction. The “extra” electron density is

supplied in this case by the leads. In Fig. 8.2, we represent the two different evolutions

of the charge density of the systems with Ne = 5 and Ne = 10 electrons in the

corresponding initial deformable constrictions, which will be used as representative

examples throughout this chapter (we refer from now to these systems as 5e and 10e,

respectively). Two fundamentally different breakage patterns are observed with the
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Figure 8.2.: Snapshots of the electron charge density for elongations ∆L = 0, 8a0, 14a0,
18a0, 21a0, 22a0, and 30a0 during the stretching of a nanowire of magic radius 10.7a0. The
charge density values in the color bar are multiplied by a factor of 1000. The figures at
the top (bottom) correspond to the simulations with ten (five) electrons initially in the
deformable constriction. The deformable constriction is delimited by the horizontal marks.
The 10e system is broken at ∆L = 31a0

appearance of cluster-derived structures in the 10e system at elongations from 14a0 to

21a0, just before the “monatomic chain” configuration stage. In what follows we shall

focus on the consequences of these two breakage patterns on the conductance curves.

8.3. Conductance calculations: WPP method

As already shown by Ogando et al. in Ref. [41], the finite size of the nanowires of Fig. 8.2

determines their conductance. This is directly linked with the number of electronic

subbands allowed by the effective radius of the wire in the center of the constriction.

While clustering in the break junction was reported in Ref. [41], no effect of the cluster

derived structures on the conductance was observed. For the R = 10.7 a0 system,

three sharp conductance jumps were reported as a function of the nanowire stretching

∆L. These results were obtained within the quasiclassical Wentzel-Kramers-Brillouin

(WKB) approach used in Ref. [41] for the calculation of the electron transmission

through the junction. In the following sections, these results are revisited within the
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WPP approach, which in principle provides the exact one-electron elastic transmission

probabilities entering the Landauer-Büttiker formula (4.118). Thus, the effective one-

electron potential obtained in the DFT study is used in the WPP calculation of the

evolution of the conductance curves upon elongation. The details of the WPP technique

are found in Ch. 4, however, some specific equations are quoted here for convenience.

In the asymptotic regions far from the deformable constriction the nanowire potential

is a function of only the ρ coordinate: V = V (ρ). The electron confinement in the ρ

direction perpendicular to the nanowire axis leads then to a series of quantized states

φmn (ρ) with energies Em
n :

[

− 1

2ρ

∂

∂ρ
ρ
∂

∂ρ
+
m2

2ρ2

]

φmn (ρ) = Em
n φ

m
n (ρ). (8.1)

Tables 8.I and 8.II contain the energies Em
n of the transverse states obtained in the

present calculations for the two nanowire radii of 10.7a0 and 7.7a0. The second case

appears useful for the discussion on the evolution of the conductance under the stretch-

ing process (see the next section). The energy is given with respect to the Fermi level

of the undistorted Na nanowire. Notice that the ±m states are degenerate.

In order to obtain the conductance of the system, one is interested in the energy-

dependent transmission Tm
nn′(E) and reflection Rm

nn′(E) coefficients describing the bal-

listic electron transport through the deformable constriction. The labels n and n′ refer
here to the asymptotic initial (incident) and final (reflected or transmitted) channels,

respectively. Note that this label pair corresponds to the µ for the incident channel

and ν for the transmitted (or reflected) one, used in the Subsections 4.4.2 and 4.4.3,

devoted to the electron wave packet scattering of Chapter 4. In the discussion below,

for the simplicity of the presentation, we also use the (m,n) labeling of the channels.

An asymptotic channel is described by the wave function

Φm
n (ρ, z) =

1√
2π
eikzφmn (ρ). (8.2)

It corresponds to an electron of a given energy E = Em
n + k2/2 propagating along the

nanowire in the z direction and confined in the ρ direction. The (m,n) channel is open

when E > Em
n .

The Tm
nn′(E) and Rm

nn′(E) coefficients are calculated within eachm subspace from the

time-dependent solution ψm(ρ, z, t) to Eq. (4.87) (with the DFT-derived one-electron

effective potential V = Veff), propagated as described in Section 4.6 and using the

amplitude method with virtual detectors, as explained in Subsection 4.4.2. Finally, the
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Table 8.I.: Transverse eigenenergies Em
n for the R = 10.7a0 Na nanowire (up to 1.5 eV).

The results are given in eV with respect to the Fermi level.

n = 1 n = 2 n = 3

m = 0 −2.58 −0.62 1.28

|m| = 1 −1.75 0.42

|m| = 2 −0.79 1.30

|m| = 3 0.25

|m| = 4 1.30

Table 8.II.: Transverse eigenenergies Em
n for the R = 7.7a0 Na nanowire (up to 1.5 eV).

The results are given in eV with respect to the Fermi level.

n = 1 n = 2

m = 0 −2.30 0.39

|m| = 1 −1.01 1.36

|m| = 2 0.34

zero-bias conductance (see Section 4.7) is obtained with the Landauer-Büttiker formula

G = G0

∑

m,n,n′

Tm
nn′(E = EF ), (8.3)

where EF stands for the Fermi level energy, and the summation runs over the open

channels. From Table 8.I it follows that, for the nonstretched perfect 10e nanowire,

G = 6G0, and it is determined by the (m = 0, n = 1), (m = 0, n = 2), and doubly

degenerate (m = ±1, n = 1) and (m = ±2, n = 1) channels. Indeed, for the uniform

(undeformed) wire Tm
nn′ = δnn′ , with δnn′ being the Kronecker delta symbol.

8.4. Conductance during nanowire breaking

The calculated change in conductance during the nanowire stretching is shown in

Fig. 8.3 for the 5e and 10e prototype breakages (see Fig. 8.2). It follows from the

present results that, at the initial stages of the elongation, the conductance change

from 6G0 to 3G0 happens in a similar way in both systems. As well, inspection of
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Figure 8.3.: Calculated conductances as a function of the nanowire elongation ∆L. The
results for 10e and 5e systems are shown, together with ab initio data by Nakamura et al.

(Ref. [35]).

Figs. 8.3 and 8.2 shows that the final G = G0 plateau is related in both systems to the

existence of the monatomic chain supported between the metal leads. However, two

different behaviors are distinguished in the change from the G = 3G0 to the G = G0

plateau. Specifically, in the breakage of the 10e system the conductance G ≃ 3G0 is

maintained over a much broader range of nanowire elongations, as compared to the

5e case. As follows from Fig. 8.2, this is exactly the region of the elongations where

clustering happens for the 10e system. We thus tentatively attribute the difference in

the conductance change from 3G0 to G0 for the 5e and 10e systems to the formation

of a cluster structure in the break junction in the 10e case.

The (red) dots in Fig. 8.3 show the results of ab initio calculations performed by

Nakamura et al. [35] within the supercell geometry. The fact that no clustering was

reported in Ref. [35] might be explained by the limited size of the supercell. The ab

initio and present 5e results are in agreement with respect to the nanowire elongations,

corresponding to the conductance steps and the conductance values at the plateaus

which reflect the quasidegeneracy of the transverse eigenstates. This shows that the

jellium model allows adequate description of the system. We return to the comparison

between the present and ab initio calculations in Section 8.7.
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8.5. Conductance channels

To get further insight into the calculated change in conductance with elongation, we

have presented in Fig. 8.4 the decomposition of the conductance curve into different

(m,n) incident channels, defined as:

G
|m|
n = α|m|G0

∑

n′

T
|m|
nn′ (E = EF ). (8.4)

The transmission probabilities are summed over all possible final states so that G
|m|
n

represents the contribution of the nth incident channel within ±m symmetry to the

total conductance. The α|m| coefficient (1 for m = 0, and 2 otherwise) accounts for the

degeneracy of the ±m states.

As follows from Fig. 8.4, the initial decrease of the conductance from 6G0 to 3G0

for the nanowire elongation ∆L = 8a0 is linked with the drop of the transmission for

the (m = 0, n = 2) and doubly degenerate (m = ±2, n = 1) incident channels in both

10e and 5e cases. For this elongation range the break junction forms a neck, which can

be approximately described as a portion of the nanowire of magic radius R = 7.7a0
smoothly attached to the R = 10.7a0 leads. Assuming the adiabatic approximation [4]

to be valid in the present case (i.e., that the transverse quantum number n is preserved

upon propagation through the junction), from Tables 8.I and 8.II one concludes that

transmission at the Fermi energy is only possible for the (m = 0, n = 1) and (m =

±1, n = 1) incident channels. The E0
2 and E±21 energies rise well above the Fermi level

for the R = 7.7a0 nanowire, forming an efficient tunneling barrier for electrons arriving

from the R = 10.7a0 leads. The corresponding channels are then closed.

The validity of the adiabatic approximation in the present case stems from the nearly

diagonal structure of the calculated transmission matrix T
|m|
nn′ (E). In this respect the

(m,n) channels closely correspond to the conductance eigenchannels [4,218,219]. How-

ever, the adiabatic approximation breaks down for values of the electron energy or the

nanowire elongation for which the overall transmission for the given incident channel

becomes small. Thus, e.g., the (m = 0, n = 2) channel is never extinguished completely.

G0
2 reaches the ∼0.03G0 minimum at ∆L ≈ 15a0 and, during the following stretching,

it slightly increases to ∼ 0.05G0 until complete breakage occurs. It follows from our

results that for ∆L > 14a0, G
0
2 is entirely given by the nondiagonal T 0

21(E = EF )

matrix element. Thus, the transmission is due to the interchannel coupling between

the (m = 0, n = 2) and (m = 0, n = 1) channels. In accordance with the principle of

detailed balance [141] and, because of the mirror symmetry of the system, we also find

that T 0
21 = T 0

12, i.e., an electron incident at the break junction within the (m = 0, n = 1)
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Figure 8.4.: Contributions of different incident channels to the total conductance G
|m|
n [see

Eq. (8.4)] as a function of the nanowire elongation ∆L. The upper (lower) panel corresponds
to the simulations with five (ten) electrons initially in the deformable constriction.

channel has a nonzero probability to be transmitted into the (m = 0, n = 2) subband.

This has been also used to check the accuracy of the calculations.

The final G = G0 conductance plateau is mainly due to the transmission within the

incident (m = 0, n = 1) channel [there is also a small contribution of the (m = 0, n = 2)

channel, as discussed above]. During this final stretching stage, a monatomic UJ wire

of average radius R = 4.5a0 is formed, as shown in Fig. 8.2. This monatomic wire

is broken at the elongation ∆L = 27a0 for the 5e system and at ∆L = 31a0 for

the 10e system. During the monatomic configuration of the neck, the conductance

is in the range of 0.98G0–1.0G0, which is in good agreement with published ab initio

conductance data of suspended monatomic chains [35–37].
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8.6. The eight-electron cluster

Let us now turn to the detailed discussion of the conductance curves in the 14a0 6

L 621a0 elongation range, where the clustering happens for the 10e system (see

Fig. 8.2). We argue that it is the formation of the cluster in the break junction for the

10e system that is responsible for the shape of the conductance change from G = 3G0

to G = G0, as calculated in the present system. The cluster in the break junction

appears particularly clear in the ∆L = 21a0 panel of Fig. 8.2. The analysis of the

cluster charge from the calculated electronic density shows that it is close to 8, i.e., the

break junction represents the nearly spherical 8e magic cluster smoothly attached to

the R = 10.7a0 leads.

The situation at hand then closely corresponds to the case of a molecule attached to

two metal electrodes, the problem currently studied in the field of molecular electronics

[4, 213–217]. Intuitively, the electron transmission through the junction should show

resonant structures corresponding to the transient trapping of ballistic electrons inside

the cluster. On the other hand, resonances can be seen as discrete cluster states which

are broadened because of the coupling to the continua of the propagating electronic

states inside the leads [213, 214]. Table 8.III lists the lowest energy levels of the free-

standing spherical 8e cluster, as obtained with the present UJ jellium DFT calculations.

The results are reported with respect to the Fermi level of the pristine R = 10.7a0
nanowire. The occupied s (ℓ = 0) and p (ℓ = 1) shells and the unoccupied d (ℓ = 2) shell

fall into the energy range relevant for electron transport through the break junction.

Here, ℓ stands for the angular momentum. Figure 8.5 shows calculated free-standing

UJ clusters for different number of electrons. Note the spherical symmetry of the two-

and eight-electron (stable) clusters.

In order to reveal the role of the resonances in the electron transport through the

break junction, we show in Fig. 8.6 the energy-resolved transmission probability defined

for the given incident channel as follows:

T
|m|
n (E) =

∑

n′

T
|m|
nn′ (E), (8.5)

where the summation runs over all open final channels. Obviously α|m|G0T
|m|
n (EF ) =

G
|m|
n , as given by Eq. (8.4). For the 10e constriction at the elongation ∆L = 21a0

one clearly observes a well-resolved low-energy resonant structure in the transmission

within eachm-symmetry subspace. The transmission reaches unity at the resonance, as

is well documented for molecular junctions [214,215,218], and can be demonstrated on

the basis of the Lippmann-Schwinger equation in the case of the resonance-dominated
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Figure 8.5.: Charge density of UJ free-standing clusters for different number of electrons.
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Table 8.III.: Energies of the lowest-lying shells of the spherical free-standing 8e UJ cluster.
The results are given in eV with respect to the Fermi level of the R = 10.7a0 nanowire.

Shell Energy

s (m = 0) −1.93
p (m = 0,±1) −0.57
d (m = 0,±1,±2) 0.81

transmission [220, 221]. Comparison with the data reported in Table 8.III shows that

the resonant energies correspond to the s, p, and d shells of the free-standing 8e cluster

for the m = 0, 1, and 2 symmetries, respectively. For the m = 0 symmetry data, with

the (m = 0, n = 2) incident channel, we also observe a d-shell resonance in T0
2. This

is energetically degenerate, with a resonant structure in T2
1 for the m = 2 symmetry.

Thus, the junction can indeed be seen as a spherical cluster attached to the leads. The

resonant character of the electron transmission reflects, then, transient electron trap-

ping inside the cluster. Another valuable piece of information comes from the evolution

of the transmission curve and, in particular, that of the resonances as a function of

the elongation ∆L. While the energy position is preserved through the sequence 14a0-

18a0-21a0, the width of the resonance decreases, i.e., the resonant structure sharpens

[the minimum full width at half maximum (FWHM) is approximately 0.1 eV for a

Lorentzian fit]. This points at the change in the coupling between the cluster-localized

states and leads. Comparison of the ∆L = 14a0 and ∆L = 21a0 panels of Fig. 8.2 shows

that for ∆L = 21a0 the necks on each side of the cluster are much better defined. The

cluster appears less strongly coupled to the leads, consistent with the smallest widths

of the resonances in each m subspace. Finally, the resonances vanish for ∆L = 22a0,

when the 8e cluster structure disappears from the break junction.

While the well-defined lowest-lying transmission resonance within each m-symmetry

subspace can be unambiguously identified as the corresponding state of the free-

standing cluster broadened by the electron coupling with the leads, the number of

resonances observed in Fig. 8.6 is less than the number of states in the cluster. For

example, the resonance at −0.5 eV observed within the m = 1 symmetry emerges from

the p shell of the cluster and thus has to have its counterpart within the m = 0 sym-

metry. However, it is not revealed by the calculation. Similarly, the resonance at +0.8

eV, observed within the m = 2 symmetry, emerges from the d shell of the spherical

cluster. It thus has to appear within the m = 0 and m = 1 symmetry subspaces. This

d-shell-derived resonance is indeed present for the m = 0 symmetry, as follows from
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Figure 8.6.: Transmission probability T
|m|
n for different (m,n) incident channels. Results

are shown as a function of the energy of the incident electron for different elongations of
the nanowire (defined above each panel). The energy is measured with respect to the Fermi
level, denoted by the vertical dotted line. The solid (dashed) lines correspond to the system
with ten (five) electrons in the initial UJ deformable constriction. For further details, see
the legends.
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the (m = 0, n = 2) transmission curve, T0
2. At the same time, the m = 1 symmetry

results do not show a clear resonant structure within the corresponding energy range.

The “missing states” can be explained by a strong coupling between electronic states

trapped in the cluster and those propagating in the leads. Potential barriers between

the cluster and the leads are formed by the necks on each side of the cluster. Well-

defined resonances in transmission appear when the energy of the underlying cluster

state is below the potential barriers, so that only resonant transmission is possible. For

the energies above the potential barriers the resonant structures are broad. Moreover,

the contrast for the resonance observation is much reduced, since the nonresonant

over-the-barrier transmission is high [213]. To support this idea we have performed

additional calculations where the reflectivity of the potential barrier between the cluster

structure and the leads has been artificially increased. The self-consistent attractive

potential in both necks between the cluster structure and the leads has been set to

zero (i.e., to the vacuum level) in the regions with a width of 2a0 in the z coordinate

around each neck.

Results of this calculation are reported in Fig. 8.7. All the resonances expected from

the shell structure of the freestanding cluster emerge (see Table 8.III). An important

result follows from this calculation: both for the over-the-barrier and under-the-barrier

character of the transmission, T
|m|
n (E) reaches unity for the electron energy close to

the cluster-derived resonance. As far as the energy of the transmission resonance

is determined by the underlying Na cluster state, it is not surprising that the results

reported in Fig. 8.7 closely resemble those obtained within density functional formalism

for a sodium cluster attached to monatomic sodium chains [222]. Indeed, the coupling

of the cluster states to the leads represented by monatomic chains is small, allowing

well-defined resonances to be observed.

8.7. Cluster formation and conductance

We are now in a position to explain the difference in the calculated conductance jump

from 3G0 to G0 observed within the 14a0 6 ∆L 6 21a0 elongation range for the cases

with five and ten electrons initially in the deformable constriction. The change in

the conductance appears over a much broader elongation range in the latter case. As

follows from Fig. 8.4, the conductance variation in this elongation range is determined

by the change in transmission probability at the Fermi level for the doubly degenerate

(m = ±1, n = 1) incident channel. The energy-resolved data presented in Fig. 8.6

allow us to elucidate the underlying physics.
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Figure 8.7.: Transmission probability T
|m|
n (E) for the (m = 0, n = 1) and (m = ±1, n = 1)

incident channels for the 10e case. The results are shown as a function of the energy of the
incident electron, measured with respect to the Fermi level, denoted by the vertical dotted
lines. The calculations are performed for the nanowire elongation ∆L = 21a0. The dashed
and solid lines correspond to the results obtained with the self-consistent potential and the
potential with artificially increased reflectivity at the necks separating the cluster from the
leads, respectively.

For the 5e system the transmission probability grows from zero to unity within a

narrow energy range above a certain threshold energy Eth. Recalling that no clustering

happens in the break junction, this is a typical behavior for the change from the under-

barrier to over-barrier transmission. The height of the potential barrier separating the

two R = 10.7a0 leads is determined by the width of the neck formed in the middle

of the deformable constriction. For 14a0 6 ∆L 621a0 the neck between the leads

shrinks (see Fig. 8.2). The potential barrier and, correspondingly, Eth is raised well

above the Fermi level. The transmission at the Fermi level and so the contribution of

the (m = ±1, n = 1) incident channel to the total conductance for the 5e system then

sharply drops to zero.

The situation is strikingly different for the 10e system, where the 8e cluster is formed

in the deformable constriction between the leads. The Fermi level is sandwiched be-

tween the cluster-localized p and d shells. Transient electron trapping in the cluster-

localized states manifests itself through the resonances in the energy-resolved electron

transmission through the break junction. According to the discussion above, the trans-

mission is then fixed to unity at the resonance energies below and above the Fermi level.

Upon stretching, the cluster-localized states do not change their energy position, since

the underlying cluster structure is preserved. At the same time, since the necks sepa-
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rating the cluster from the R = 10.7a0 leads shrink (see Fig. 8.2), the coupling between

the cluster states and leads decreases, causing the resonances to narrow. A dip in the

transmission probability gradually develops at EF . However, T1
1(EF ) never reaches

zero, as long as the cluster structure is present in the deformable constriction. Thus,

the decrease of the contribution of the (m = ±1, n = 1) incident channel to the total

conductance upon stretching is much softer, as compared to the 5e system, where it

reflects the energy shift of the transmission threshold.

The 8e cluster structure in the break junction disappears for ∆L = 22a0. The

T1
1(E) curves then merge for the 5e and 10e systems, reflecting similar geometries of

the deformable constrictions where the monatomic wire with magic radius R = 4.5a0
is basically formed. As follows from Fig. 8.6(a), the T0

1(E) is also very similar for the

5e and 10e cases.

For the m = 0 symmetry, the resonances derived from the p shell and d shell of

the 8e cluster in the deformable constriction are energetically well above the potential

barrier formed by the necks separating the cluster from the leads. While a dip in

the transmission develops between the s- and p-shell resonances, as in the m = ±1
case, the transmission at the Fermi level is nearly unity within the relevant range of

elongations. The (m = 0, n = 1) incident channel then contributes nearly G0 to the

total conductance.

Coming back to Fig. 8.3, we observe that the results of Nakamura et al. [35] also show

a rounded shape in the jump from 3G0 to 1G0, which resembles our 10e curve. This is

while no clustering was observed. Nakamura et al. connect the shape of this jump with

the gradual conductance drop of two almost degenerate eigenchannels during smooth

atomic displacements. However, in contrast to our 10e system, the local density of

states integrated over the neck, calculated in Ref. [35], showed wide peaks due to the

strong coupling to the leads, i.e., no sharp resonances were found. With respect to the

overall length of the conductance curve and, in particular, in the jump from 3G0 to

1G0, their results are equivalent to our 5e conductance curve.

The above discussion shows that, while the presence of the cluster-derived struc-

tures in the break junction is a robust phenomenon, as follows from a number of

works [41, 44, 205], the particular shape of the conductance change is a much more

subtle effect depending on the exact properties of the system at hand [194,219]. Thus,

from the experimental point of view, the evidence for clustering should come from

the observation of the resonant structures in transmission. These are directly linked

to the very existence of the cluster structures in the break junction. This might be

possible by measuring the differential conductance, i.e., applying a bias voltage U to
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Figure 8.8.: Differential conductance dI/dU map for the breakage of the R = 10.7a0 Na
nanowire with ten electrons in the deformable construction. The results are shown as a
function of the applied bias voltage and nanowire elongation ∆L. The contributions coming
from the incident channels (±1, 2) and from channels with |m| > 2 are negligible in the
given bias energy range. The horizontal dashed line denotes the zero-bias conductance. For
further details see the main text.

the break junction and performing dI/dU spectroscopy [see Eq. (4.120)] upon elonga-

tion [4, 214–216].

The calculated elastic differential conductance is shown in Fig. 8.8 for the breakage

of the R = 10.7a0 Na nanowire with ten electrons in the deformable constriction. The

cluster-derived transmission resonances appear as peak structures in dI/dU , as follows

from the comparison of Figs. 8.8 and 8.6.

Thus, the well-defined peak in dI/dU at ±1 eV energy corresponds to the −0.5 eV

resonance within |m| = 1 symmetry (see Fig. 8.6). The structure at ±1.7 eV arises from

the superposition of the resonances at +0.8 eV within m = 0 and |m| = 2 symmetry,

and partially, from the broad resonance at −0.8 eV within m = 0 symmetry. Observe

that the resonant structures remain at fixed energies and sharpen upon elongation.

As explained above, the resonance energy is determined by the cluster structure in

the break junction, which is particularly stable for the magic clusters. The resonance

width depends on the coupling to the leads and thus on the elongation.

This finding suggests experimental ways to evidence the presence of clusters in the

break junction by dI/dU spectroscopy, although care should be taken with the under-

laying approximations assumed in our study. In particular, the change in structural
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geometry and energy resolved transmission upon applied bias is neglected, which might

lead to resonant peak suppression. Furthermore, inelastic transport effects have not

been accounted for.

8.8. Summary

We have presented a detailed study of the conductance during the elongation and

breakage of Na nanowires described with the ultimate jellium model. Self-consistent

density functional theory calculations have been performed for the nanowire structure.

The resulting one-electron potential has been used then in the follow-up wave packet

propagation treatment of the ballistic electron transport through the break junction.

A nanowire of magic radius R = 10.7a0 has been studied here. This is a typical

example of a stable Na nanowire structure allowing us to address the change of the

conductance both in the presence and in the absence of cluster-derived structures in

the deformable constriction during the stretching process. Indeed, depending on the

size of the deformable constriction, with ten (or five) electrons the breakage of the

nanowire is preceded (or not) by the formation of magic clusters of eight electrons in

the break junction [41].

We observe that the clustering changes the conductance G of the break junction, in

particular the shape of the G = 3G0 to G = G0 step upon elongation. Calculations

of the energy- and symmetry-resolved transmission through the break junction reveal

the underlying physics. Basically, when a cluster is formed, the electron transport

is strongly affected by the transient trapping of ballistic electrons inside the cluster

structure. These cluster-localized states sandwich the Fermi level of the Na leads, and

appear as resonances in the transmission of the break junction. It is important that (i)

the transmission reaches unity at resonances, and (ii) the energy of the resonances does

not change upon elongation, as long as a stable “magic” cluster structure is present in

the break junction. As a result, the decrease of the conductance upon elongation merely

reflects the decrease of the resonance width within the m = 1 symmetry subspace, i.e.,

the reduction of the coupling between the cluster and the leads. The conductance

G ≃ 3G0 is then maintained over a much broader range of nanowire elongations, with

a rounded transition to G = G0, as compared to the case when no clustering occurs.

For the case when no clustering occurs, the transmission through the break junction

shows a threshold behavior. It rapidly grows from zero to unity when the electron

energy approaches the height of the potential barrier formed by the neck between

the leads. Since the neck shrinks upon elongation, the threshold energy for electrons
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arriving from the R = 10.7a0 leads within the m = 1 subspace quickly shifts above the

Fermi level. This results in an abrupt steplike drop of the conductance from G = 3G0

to G = G0.

The study of the differential conductance shows the cluster-derived resonances and

their evolution upon elongation. For the particularly stable “magic” cluster, the reso-

nant structures in the differential conductance maintain their energy within a certain

elongation range. This is an indication that the cluster geometry is preserved. The

resonance width decreases as a result of the decreasing coupling between cluster struc-

ture and leads. This finding suggests experimental ways to evidence the presence of

clusters in the break junction.



Chapter 9
Summary and general conclusions

In this chapter we summarize the most important results obtained in this thesis work.

(I) Our studies are based on the following theoretical methods:

1. We have used jellium models and model potentials together with density

functional theory (DFT) formalism to obtain the one-electron description of

confined electron systems in metallic nanosized systems.

2. Many-body perturbation theory results have been used within the GW ap-

proximation for the calculation of the electron-electron decay rates of electron

(hole) excitations.

3. The wave packet propagation method has allowed us to calculate:

(i) Projected density of states of electronic systems.

(ii) The one-electron resonance energies, elastic widths and wave functions

of quasi-stationary states.

(iii) One-electron energy-resolved transmission probabilities through small

(tunneling) junctions.

(II) We have studied several aspects of the electronic structure, dynamics and spec-

troscopy of the following systems:

1. Pb thin overlayers on Cu(111) surfaces, where we have performed:

171
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(i) Self-consistent calculations of one-electron effective potentials describing

the Pb/Cu(111) system.

(ii) Electron-electron inelastic decay rate calculations of quantum well states

(QWSs) and QWSs hybridized with image states (IS) in Pb overlayers.

(iii) Extraction of one-electron resonant decay rates of quantum well reso-

nances (QWRs).

(iv) Calculations of the dZ/dV characteristics of the Pb/Cu(111) system,

directly comparable with scanning tunneling spectroscopy (STS) exper-

iments.

2. Nanocontacts formed during the breaking of a Na nanowire. In this systems

we have performed:

(i) Simulations of the stretching process of a Na nanowire (until breaking)

for different number of electrons in the deformable nanoconstriction.

(ii) Calculations of the zero-bias and differential ballistic conductance through

the above formed Na nanocontacts.

(III) Based on the studies of the above systems with the corresponding methods, we

have obtained the following original results.

1. The QWSs located at energies well below the Fermi level (∼ −8 eV) would

not be resolvable by photoemission experiments. This is because of the large

many-body decay rate compared to the energy separation between the QWSs

(∆En . 0.5 eV), with Γe−e > 1 eV (τe−e . 0.5 fs).

2. The QWSs in front of the projected gap of Cu(111) have much longer lifetimes

(& 5 fs):

(i) At small energies with respect to the Fermi level, the many-body decay

rate of the QWSs (both electron excitation and holes) approximately

follows the Quinn-Ferrell parabolic dependence with energy.

(ii) For the unoccupied QWSs located at higher excitation energies, a quasi-

linear dependence of the electron-electron decay rate with energy has

been found. The same quasilinear trend has been reported (Ref. [25]) in

a recent constant current scanning tunneling spectroscopy (STS) study

of the Pb/Ag(111) system.
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(iii) Only some deviations from the above trends are found for small overlayer

thicknesses (1–3 MLs), where smaller decay rate values are found. This

is understood, in part, in terms of the QWS wave function enhanced

spilling into the vacuum side for low coverages.

(iv) The contribution of the bulk states into the many-body decay of the

QWSs is comparable to that of the interband and intraband transitions

involving directly QWSs.

3. QWRs appear energetically below the projected band gap of the substrate

inside the Cu(111) sp band. The one-electron elastic decay rates of the QWRs

have been calculated for variable thickness of the overlayer, revealing several

general trends:

(i) The one-electron decay rate of the QWRs is small whenever the reflectiv-

ity of the Pb/Cu(111) interface is high, in particular close to the onset

of the Cu(111) projected band gap. In this energy region the QWRs

have decay rates comparable to those of the QWSs.

(ii) When the width d of the Pb overlayer increases, the decay rate of the

QWRs decreases in overall as 1/d. This is understood on the basis of

simple quasiclassical arguments.

(iii) Comparing the elastic decay rate of the QWRs with their many-body

decay rate estimated from the Quinn-Ferrell formula, we conclude that,

for the overlayers thicker than 30 ML, the inelastic decay dominates.

Basically this sets the transition to the limit of the thick Pb film, where

only inelastic decay is possible.

4. We have compared our theoretical results with available QWS and QWR

energies in Pb/Cu(111) observed by angle-resolved photoemission and with

electron excitation lifetimes in Pb/Cu(111) and Pb/Si(111), derived from

time-resolved two-photon photoemission (TR-2PPE) experiments:

(i) Calculated theoretical energies of occupied QWSs and QWRs, and ex-

perimental observations in Pb/Cu(111) in Ref. [16], are in good agree-

ment for thick layers.

(ii) Our theoretical lifetime estimates in Pb/Cu(111) are in agreement with

experiments, when the electron-phonon broadening is taken into ac-

count.
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(iii) The interpretation of the experimental lifetime data of Refs. [23] and [24]

obtained by TR-2PPE for Pb/Si(111), does not appear straightforward

in terms of our theoretical results in Pb/Cu(111). This is due to the

large differences found between the electronic structures of Cu(111) and

Si(111) substrates.

5. The hybridization between the QWSs and ISs in Pb/Cu(111) has been stud-

ied by modifying the one-electron effective potential as extracted from DFT

studies. It has been amended to properly account for the image potential tail.

We have found the following:

(i) As the energies of the QWSs approach the vacuum level EV , the elec-

tronic density of the states piles up in the vacuum side and acquires an

IS character.

(ii) In contrast to what it is expected from the quasilinear increase of the

electron-electron decay rate for “pure” QWSs, the decay rates of the

hybridized QWS-ISs saturate at around E − EV ∼ −1 eV, and then

drop. This is because an electron in a QWS-IS is moved away from

the surface into the vacuum so that the inelastic coupling to the metal

excitations is reduced.

(iii) For a given energy, the weight of a QWS-IS in the vacuum side depends

on the overlayer thickness. This in turn, induces a quantum size effect

(QSE) in the corresponding electron-electron inelastic lifetime. We have

derived an analytic expression reproducing this QSE based on the wave

function penetration into the metal for fixed energy.

(iv) For thick overlayers the QWS-IS peaks merge, leading to the continuum

states of the bulk Pb surface.

6. We have performed a theoretical study of the constant current STS of Pb

overlayers supported on Cu(111). The dZ/dV spectra have been calculated

for the 4–18 ML film thickness range. The tip-sample system is represented

with the flat-tip approximation. Relevant results are obtained for the correct

interpretation of recent constant current STS experiments in Pb/Cu(111) of

Ref. [20] and in Pb/Ag(111) of Ref. [25]:

(i) Within the studied range of overlayer thicknesses, the energies of the

calculated peaks in the STS spectra reproduce the experimental data

for bias below 4 eV. Particularly remarkable agreement with respect to
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the energies, widths, and relative intensities of the STS peaks is obtained

for thicknesses above 11 ML.

(ii) Only low-energy QWSs are unperturbed by the tip. At high bias, the

tip-induced Stark shift determines the energies of the QWSs and so the

peaks in the STS spectra.

(iii) The departure of the experimentally measured energies of the STS peaks

from the theoretical results above 4 eV bias reflects the departure of the

bulk Pb band structure along Γ-L from free-electron parabola.

(iv) The STS performed at different coverages can be used as a complemen-

tary tool to inverse photoemission in order to probe the dispersion of

the bulk bands of the overlayer material at energies well above the Fermi

level.

7. We have calculated the conductance during the elongation and breakage of

Na nanowires described with the ultimate jellium model. Self-consistent DFT

calculations have been performed for the nanowire structure. The result-

ing one-electron potential has been used then in the follow-up wave packet

propagation treatment of the ballistic electron transport through the break

junction:

(i) We have observed that the formation of a cluster-like structure in the

nanocontact, during the elongation process, changes the conductance G

of the break junction, in particular, the shape of the G = 3G0 to G = G0

step upon elongation. The conductance G = 3G0 is maintained over a

much broader range of nanowire elongations with a rounded transition

to G = G0, as compared to the case when no clustering occurs.

(ii) The above trends are explained by the existence of cluster-localized

states that sandwich the Fermi level of the Na leads, and appear as

resonances in the transmission of the break junction. The decrease of

the conductance upon elongation merely reflects the decrease of the un-

derlaying resonance widths, i.e., the reduction of the coupling between

the cluster and the leads.

(iii) The study of the differential conductance shows the cluster-derived res-

onances and their evolution upon elongation. For the particularly stable

“magic” cluster, the resonant structures in the differential conductance

maintain their energy within a certain elongation range. This is an

indication that the cluster geometry is preserved. The width of the
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resonance in the differential conductance decreases as a result of the

decreasing coupling between cluster structure and leads. This finding

suggests experimental ways to evidence the presence of clusters in the

break junction by differential conductance spectroscopy.
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Appendix A
Acronyms

a0 Bohr radius (0.529 Å)

a.u. Atomic units

DFT Density functional theory

DOS Density of states

FER Field emission resonance

FFT Fast Fourier transform

FGH Fourier grid Hamiltonian

GW G: Green’s function and W : Screened Coulomb interaction (from the

German word Wechselwirkung)

GWP Gaussian wave packet

ILDOS Integrated local density of states

IS Image state

ISR Image state resonance

KS Kohn Sham

LDA Local density approximation

MD Molecular dynamics
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180 Acronyms

ML Monolayer

PAM Phase accumulation model

PDOS Projected density of states

QF Quinn-Ferrell

QSE Quantum size effect

QWR Quantum well resonance

QWS Quantum well state

g-QWS Gap quantum well state

d-QWS Deep quantum well state

QWS-FER Mixed quantum well and field emission resonance state

QWS-IS Mixed quantum well and image potential state

RPA Random phase approximation

SOC Spin orbit coupling

STM Scanning tunneling microscope

STS Scanning tunneling spectroscopy

TDSE Time dependent Schrödinger equation

TISE Time independent Schrödinger equation

TR-2PPE Time-resolved two-photon photoemission

UJ Ultimate jellium

WKB Wentzel Kramers Brillouin

WPP Wave packet propagation



Appendix B
Electronic structure calculations: further

details

B.1. Electrostatic potential in slabs

Here we derive the expression for the electrostatic potential appearing in Eq. (2.19).

Thus we have to evaluate the following term:

VH(z) =

∫ ∞

−∞

̺−(z′)− ̺+(z′)
|r− r′| dr′, (B.1)

which due to the symmetry in parallel direction, should be only a function of z-

coordinate. This integral must be evaluated by the Coulomb interaction regularization

technique [68] to avoid divergences [although, quite heuristically, the correct solution

might be guessed by dropping the infinite terms obtained by the direct integration

of Eq. (B.1)]. The usual way to apply this technique is by replacing the Coulombic

interaction by the Yukawa’s one, so we obtain ṼH with the desired property:

lim
κ→0+

ṼH = lim
κ→0+

∫ ∞

−∞

[
̺−(z′)− ̺+(z′)

] e−κ|r−r
′|

|r− r′| dr
′ = VH . (B.2)

After transforming the (x, y)-coordinates in parallel direction into the more convenient

polar coordinates (ρ, θ), the integration in θ gives a factor 2π and by an additional

variable change (x − x′)2 + (y − y′)2 = ρ2 = ξ with dξ = 2ρdρ, we obtain for the
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following integral:

1

2

∫

dξ
e−κ
√

(z−z′)2+ξ

√

(z − z′)2 + ξ
= −1

κ
e−κ
√

(z−z′)2+ξ
∣
∣
∣

∞

0
=

1

κ
e−κ|z−z

′|. (B.3)

Thus we arrive to the expression

ṼH =
2π

κ

∫ ∞

−∞
dz′ [̺−(z

′)− ̺+(z′)]e−κ|z−z
′|. (B.4)

Note that at this point, the evaluation of the limit κ→ 0 still gives a divergent answer.

This problem is solved by representing the exponential term in a Taylor series,

ṼH =
2π

κ

∫ ∞

−∞
dz′ [̺−(z

′)− ̺+(z′)]
(
1− κ|z − z′|+O(κ2)

)
. (B.5)

Due to the assumed total charge neutrality condition, the term going as ∼ 1/κ is

canceled out and the rest of the terms containing κ-dependence go to zero when the

limit κ→ 0 is evaluated. Thus the only term left is the z-dependent potential

VH(z) = −2π
∫ ∞

−∞
[̺−(z

′)− ̺+(z′)]|z − z′| dz′. (B.6)

It is worth mentioning that the same solution can be obtained without any regular-

ization by solving the Poisson equation with help of Green’s functions as used in the

solution of differential equations.

B.2. Rayleigh Quotient Multigrid method for solving

Kohn-Sham equations

The self-consistent results shown in this thesis are obtained with real-space grid meth-

ods. The subroutines solving the Kohn-Sham equations are implemented in the com-

putational package MIKA (Multigrid Instead of K-spAce), nowadays out of further

development. Instead, the GPAW (Grid-based Projector-Augmented Wave method)

package has taken over the development efforts [223].

All self-consistent effective potentials used in this thesis have been calculated with

the MIKA code. On the other hand, further diagonalizations of built or modified

one-electron effective potentials has been obtained with the Fourier Grid Hamiltonian
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approach. All methods have been checked to give consistent results (including the

results derived from the wave packet propagation method).

In the Rayleigh quotient multigrid method (RQMG), the eigenvalues are obtained

by solving the (discretized) eigenvalue problem

Hu = λBu, (B.7)

by minimizing the Rayleigh quotient:

< u|H|u >
< u|B|u > , (B.8)

whereH andB are matrix operators originated from the discretization of the Schrödinger

equation on a real space grid. The u estimation is replaced by ũ = u + αd, where d

is a unit vector (one at a given grid point and zero elsewhere) and then, the mini-

mization of Eq. (B.8) reduces the problem to a quadratic equation on α. To avoid

the convergence slowing down due to the local character of the correction, a multigrid

approach is taken, where coordinate relaxation are done in coarser grids. In the MIKA

package, additionally, a generalization of the RQMG method leads to the possibility

of the simultaneous solution of several mutually orthogonal eigenpairs. Further details

can be found in Ref. [224].

In the particular case of 1D-systems, we have a finite set of N grid-points {zi},
where zi = z0 + h · i for i = 0, 1...N . In the MIKA code it is used a fourth order

central-difference discretization in the calculation grid,

f ′(zi) =
−f(zi + 2h) + 8f(zi + h)− 8f(zi − h) + f(zi − 2h)

12h
, (B.9)

f
′′

(zi) =
f(zi + 2h) + 16f(zi + h)− 30f(zi) + 16f(zi − h)− f(zi − 2h)

12h2
, (B.10)

where the calculation grid is set by adding 2 ghost points in order to define the deriva-

tives at the boundaries of the system volume. For the particular case of a finite system,

the boundary conditions are set such that the wave functions should vanish at the ghost

points.

B.3. Fourier Grid Hamiltonian method

The Fourier grid Hamiltonian (FGH) method is used to construct a matrix represen-

tation of the system Hamiltonian which is straightforward to implement. Then the
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eigenvalues and eigenfunctions in the grid can be obtained by diagonalization of the

matrix. The FGH is a powerful method in the sense that the potential is evaluated

locally and the description of the kinetic energy operator is only limited by inherent

grid description. Thus, in principle the unique numerical parameters to be set are the

grid size N (number of grid points) and the uniform step in mesh ∆z. The drawbacks

are that the diagonalization effort of a sparse matrix scales as O(N3), and that the

amount of memory required for the matrix diagonalization might limit the system size

being able to be addressed.

The matrix elements of the discretized Hamiltonian are calculated by projecting the

Hamiltonian in the discretized grid-points:

(0, . . . , 1
↑
i

, . . . , 0)H










0
...

1
...

0










← j, (B.11)

so the Hamiltonian matrix elements are given by Hij = Tij + Vij , with Vij = V (zi)δij ,

and Tij can be evaluated analytically (for N even [14]):

Tij =

{
K3

6 (1 + 2
N2 ) (i = j)

K2

N2

(−1)j−i

sin2(π j−i

N
)

(i 6= j),
(B.12)

where K = π/∆z is the maximum k (energy cutoff) in the description of the system

which is allowed by the grid.



Appendix C
Matrix elements of the noninteracting

density response

The Fourier components of the noninteracting density response function, entering

Eq. (3.48), are calculated explicitly (see Ref. [79]):

χ0,+n,n′(q, ω) =
µnµn′

d2







occ∑

leven

∞∑

l′even

Fl,l′(q, ω)G
++
n;l,l′G

++
n′;l,l′ +

occ∑

lodd

∞∑

l′odd

Fl,l′(q, ω)G
−−
n;l,l′G

−−
n′;l,l′







(C.1)

and

χ0,−n,n′(q, ω) =
4

d2







occ∑

leven

∞∑

l′odd

Fl,l′(q, ω)G
+−
n;l,l′G

+−
n′;l,l′ +

occ∑

lodd

∞∑

l′even

Fl,l′(q, ω)G
−+
n;l,l′G

−+
n′;l,l′






,

(C.2)

where

µn =

{

1 for n = 0

2 for n ≥ 1,
(C.3)

and

Fl,l′(q, ω) =

∫

dkk[F+
l,l′(q, k, ω)− F

−
l,l′(q, k, ω)], (C.4)
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with

F±l,l′(q, k, ω) =θ

(

ǫF − ǫl −
k2

2ml

)

×
[

q2k2

m2
l′
−
(

q2

2ml′
+ ǫl′ − ǫl +

k2

2ml′
− k2

2ml
± ω ± iη

)2
]−1/2

,

(C.5)

G++
n;l,l′ =c

+
l,0c

+
l′,0δn,0 +

1√
2

∑

n′ 6=0

(c+l,n′c
+
l′,0 + c+l,0c

+
l′,n′)δn,n′

+
1

2

∑

n′ 6=0

∑

n′′ 6=0

c+l,n′c
+
l′,n′′(δn+n′′,n′ + δn+n′,n′′ + δn′+n′′,n),

(C.6)

G−−n;l,l′ =
1

2

∑

n′ 6=0

∑

n′′ 6=0

c−l,n′c
−
l′,n′′(δn+n′′,n′ + δn+n′,n′′ − δn′+n′′,n), (C.7)

G+−
n;l,l′ =

1√
2
c+l,0c

−
l′,n +

1

2

∑

n′ 6=0

∑

n′′ 6=0

c+l,n′c
−
l′,n′′(−δn+n′′,n′ + δn+n′,n′′ + δn′+n′′,n), (C.8)

G−+n;l,l′ =
1√
2
c−l,nc

+
l′,0 +

1

2

∑

n′ 6=0

∑

n′′ 6=0

c−l,n′c
+
l′,n′′(δn+n′′,n′ − δn+n′,n′′ + δn′+n′′,n). (C.9)

Here δ is the kronecker delta:

δnn′ =

{

1 if n = n′

0 if n 6= n′.
(C.10)

For the particular case in which the effective masses of two bands are equal, i.e.,

ml = ml′ = m0, Eq. (C.4) can be directly integrated [78], so it is obtained

Fl,l′(q, ω) = −
m2

0

πq2‖

[

2al,l′(q) + i

[
1

m2
0

q2k2l −
[
al,l′(q)− ω − iη

]2
]1/2

−i
[

1

m2
0

q2k2l −
[
al,l′(q) + ω + iη

]2
]1/2

]

,

(C.11)

with

al,l′(q) =
1

2m0
q2 − (El − El′), (C.12)

and

kl = [2m0 (EF − El)]
1/2 . (C.13)
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For most of the calculations Eq. (C.11) has been evaluated with η = 0.01 and m0 = 1.

For different effective masses (ml 6= ml′) we have integrated numerically Eq. (C.4).

We also have checked that the numerically integrated solution is consistent with that

obtained from the analytical solution when ml,ml′ → m0. Eq. (C.11) diverges at

q = 0. This is circumvented by substituting the q = 0 value by a small q number,

q → 10−6.





Appendix D
Bulk Pb and Pb slabs: Supplementary

material

In this appendix a few issues concerning the electronic band structure and lifetime of

bulk Pb and (free standing) Pb slabs are briefly discussed.

We start with a simple discussion of the density of states in Pb slabs. The density

of states (DOS) of a homogeneous 3D electron gas [59] is given by

g3D(E) =
1

π2

√
2E, (D.1)

where E is the energy. For a 2D gas, the constant DOS per surface area unit is

g2D = 1/π. For an infinite potential well of finite thickness d, the DOS per unit

volume is

gwell(E) =
1

π

∑

n

θ(E − En)/d, (D.2)

where En are the eigenenergies given by Eq. (5.6) and θ is the Heaviside function.

Figure D.1 shows the DOS calculated with Eq. (D.2) for a 4-ML thickness (d = 21.64a0)

free-standing Pb slab modeled by jellium. This is compared with the 3D DOS for the

same material. The energies are measured with respect to the inner potential of the

Pb slab (≈ −13.55 eV). Both DOS plots almost coincide when a new QWS band starts

to contribute to the DOS. Furthermore, in overall, both densities show similar trends,

from which it can be inferred the 3D character of the QWS electron-electron decay

rates. The overall increase of the DOS of the Pb slab appears stronger than that of the

3D gas because the effective width of the Pb well increases with energy (the concept
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Figure D.1.: Comparison of density of states (DOS) for the 3D Pb electron gas (black line)
and for a Pb free-standing jellium slab of 4 ML thickness (stepped blue line). The vertical
dashed line denotes the Fermi level.

of the effective width is introduced along the discussion of the solutions of the finite

square well potential in Chapter 5).

It is instructive to compare the electronic structure followed from a jellium model

(including the image potential) for Pb slabs with the realistic ab initio calculations, as

done in Fig. D.2. One observes that the low-lying gap from −8 eV to −4 eV is not

reproduced by the jellium approach. However, the bands close to the Fermi level (EF )

are well described around Γ. Furthermore, the number of bands below EF and crossing

Γ are the same. Thus, the main physical properties depending on the density of states

at EF are expected to be reproduced at a qualitative level in the jellium approach. From

the same figure, one can also observe the variation of the effective mass of the bands

with energy as well as the band folding, in order to avoid the crossing with dropped

high-lying bands. The latter effects are out of the scope of the jellium description.

In Fig. D.3 different theoretical decay rates for bulk Pb and Pb overlayers on Cu(111)

(the results of this thesis) are compared. At energies close to the Fermi level they are

essentially lying at the Quinn-Ferrell parabola of Eq. (3.3) with rs = 2.3 (Pb). The

good agreement, even at energies up to 2 eV with respect to EF , between the ab initio

(dots and squares) and the Quinn-Ferrell formula is surprising, as far as the latter is

derived for high electron densities and close to the Fermi energy. However, at higher

energies, we have found a quasilinear trend for Pb/Cu(111) within the jellium model

for Pb. The differences between theoretical Pb free-electron gas results and our results

indicates an effect derived from the inclusion of the Cu-Pb and Pb-vacuum interfaces.
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Figure D.2.: Electronic band structure for the 8-ML-thick free-standing Pb slab along M−Γ
and Γ − K high-symmetry lines. Black: Parabolic band structure derived from the 1D
jellium description. Red: ab initio band structure in the reduced zone. Blue: Part of the
ab initio electronic structure is mirrored in the extended zone for direct comparison with
the simple model parabolic bands. Vertical dashed lines denote the M (left) and K (right)
high-symmetry points in the reciprocal space. The horizontal line denotes the Fermi level
(Ab initio data are provided by courtesy of Xabier Zubizarreta).

Finally, we quote in Table D.I the linear fits for the electron-electron decay rate

theoretical data discussed above and, in addition, we include the reported fit derived

from experimental data of QWSs in the Pb/Ag(111) system [25]. The agreement

between the experimental data and our theoretical results is remarkable. In fact, the

difference in b0 is of the order of the electron-phonon decay rate at the experimental

temperature of 5 K (Γe−ph ≈ 20 meV, see Ref. [61]).
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Figure D.3.: Comparison of the inelastic electron-electron decay rates in bulk Pb (symbols)
along Γ-L for free-electron gas and ab initio calculations [for the latter both scalar and
including spin-orbit coupling (SOC) are shown] from Refs. [61] and [29], together with
Pb/Cu(111) results obtained in this thesis (dashed line, for energies above 1 eV). The solid
blue line corresponds to the Quinn-Ferrell formula of Eq. (3.3) with rs = 2.3 (Pb).

Table D.I.: Comparison of different linear fits [b0 + b1(E − EF )] to available experimental
decay rate data of Ref. [25] for QWSs with energy above ≈ 1 eV in Pb/Ag(111) and ab initio

data for bulk Pb [scalar and including spin-orbit coupling (SOC)] reported in Ref. [61].

SOC [61] Scalar [61] This thesis Becker et al. [25]

b1 (meV/eV) 65.5 61.1 52 53

b0 (meV) −49.8 −42.7 −41 −23



Appendix E
Calculation of dZ/dV characteristic

Here we discuss the numerical procedure used to calculate the constant current dZ/dV

characteristic. At large enough tip-sample distances, we assume for the tip position a

well behaved function of the bias voltage V and electric current I, i.e., Z ≡ Z(V, I),

thus

dZ =

(
∂Z

∂V

)

I

dV +

(
∂Z

∂I

)

V

dI. (E.1)

Assuming small δV and δI variations, and recasting Eq. (E.1) together with initial

conditions, if necessary, determined by a simple root finding bisection method [225]

applied to the equation I(V, Z) = I0,

Z0
0 ≡ Z(V0, I0), (E.2a)

Z0
1 ≡ Z(V0 + δV1, I0 + δI0), (E.2b)

Z1
1 ≡ Z(V0 + δV1, I0), (E.2c)

we calculate iteratively the corresponding Z(Vj , I0) ≈ Zic
j = Zic

j−1+
∑ic

i=0 δZ
i
j for fixed

I0, and each Vj = Vj−1 + δVj (j = 2, 3, ...). The index value ic corresponds to the

ith iteration for which convergence is reached, defined by the convergence condition

|I ic − I0|/I0 < ∆c. We obtain Z0
j = Zic

j−1 + δZ0
j , with

δZ0
j =

{

Zic
j−1 − Z

ic
j−2

Vj−1 − Vj−2

}

δVj , (E.3)

and Zi
j = Zi−1

j + δZi
j (for ic > 0), with

δZi
j =

{
Zic
k − Z

ic−1
k

I ick − I
ic−1
k

}
{
I0 − I i−1j

}
, (E.4)
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Figure E.1.: Histogram of number of iterations required to obtain convergence at each Vj

during the calculation of a Z − V characteristic. Above data correspond to 111 calculated
points of the Z − V characteristic in the 15ML-Pb/Cu(111) system. The parameters used
are ∆c =0.001 and constant δV = 50 meV, with initial and final bias 0.45 eV and 5.95 eV.

where the k index refers to the highest k < j for which ic > 0. If ic > 1, the following

might be used for i running from 2 to ic:

δZi
j =

{

Zi−1
j − Zi−2

j

I i−1j − I i−2j

}

{
I0 − I i−1j

}
. (E.5)

We have performed most of the calculations with ∆c =0.001 and constant δVj = 50

meV. The latter value should be taken with care, because resonant peak energies

converge faster than linewidths. A histogram of the number of iterations needed to

reach self-consistency for the above parameters at each Vj is shown in Fig. E.1. It is

observed that only two iterations (ic = 1) are needed for most j.

The above procedure is essentially the application of the Newton-Raphson method

[Eq. (E.5)] to the equation I(Vj , Z)− I0 = 0, with an efficient prescription [Eqs. (E.3)

and (E.4)] for the initial guess of the root Zj .

Finally, the constant current dZ/dV spectra are obtained by numerical differentiation

of the calculated Z − V characteristics [see Fig. E.2(a)] as

dZ

dV

∣
∣
∣
∣
V=Vj

=
1

2δV

(
Zic
j+1 − Z

ic
j−1
)
. (E.6)

More efficient schemes, than the above one, for the calculation of the Z − V charac-

teristics are under study, where the information inside the calculated energy-resolved
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Figure E.2.: (a) An example of calculated Z − V characteristics for the 15ML-Pb/Cu(111)
system. (b) The corresponding dZ/dV (solid line) and dI/dV (dashed line) spectra, the
latter being scaled for the sake of comparison.

transmission corresponding to a previous Zj−1 could offer a better extrapolation for

the next Zj point, thus reducing the number of total iterations needed to reach the

convergence. This is an important issue when the computational effort required for

each calculated point is large, as for example, in the 3D calculations of a recent study

of the field emission resonances induced by alkali ad-islands on a Cu(100) surface [142].

In that work, the constant current Z − V characteristic was approximated by a linear

ramp. Then, resonances were obtained from the dI/dV spectra (through the Z − V
linear ramp) which were shown to be comparable to their constant current dI/dV

counterpart.

We have also calculated the constant current dI/dV spectra. This is done by perfom-

ing two additional calculations at the converged Zj tip position: I± = I(Zj , Vj ± δṼ )

with δṼ = 10 meV. Then,

dI

dV

∣
∣
∣
∣
V=Vj

=
1

2δṼ
(I+ − I−). (E.7)

As observed in Fig. E.2(b), the QWSs of the system appear as peak structures equally

well resolved in both dZ/dV spectra and differential conductance dI/dV . Indeed,
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Figure E.3.: Calculated logarithmic transmission as a function of electron energy E and
applied bias for 15ML-Pb/Cu(111). The dotted line shows the energy of the n = 26 QWS
calculated for the bare system (no tip), where n is a principal quantum number. The solid
line E = V defines a cut of the T [E, V, Z(V )] 2D plots corresponding to the spectroscopic
constant current mode (see Fig. 7.6).

I = I(V, Z) and Z = Z(V, I), so that the partial derivatives are related by [with

(∂I/∂Z)V 6= 0]:

(∂Z/∂V )I = −(∂I∂Z)−1V (∂I/∂V )Z . (E.8)

The similarity between the two spectroscopies is a consequence of the fact that (∂I/∂Z)V
is a smooth function of V , merely reflecting the evolution of the tunneling barrier be-

tween the tip and the surface.

The illustrative example of the calculated transmission probability T [E, V, Z(V )]

is shown in Fig. E.3 for the 15-ML-thick Pb overlayer on Cu(111). The results are

presented as a function of the applied bias V , and electron energy E measured with

respect to the Fermi level. Note that the tip-surface distance Z is bias-dependent

because of the constant current mode, where the constant current density has been set

as: I = 5×10−2 nA/Å2. The transmission resonances observed in Fig. E.3 correspond

to the QWSs of the system. We would like to stress that the rigorous definition of

these states assumes that the Hamiltonian is fixed, i.e., that the resonance analysis

is performed for the constant bias V cut of the 2D figure. For the fixed bias the

transmission probability rises in overall with electron energy, reflecting decrease of the

tunneling barrier. When the bias is increased, the tip moves away from the surface to
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reestablish the constant current via overall reduction of the transmission probability.

This is nicely seen in the figure when comparing data at the same energy, but for

increasing bias. The solid line E = V in the figure defines a cut of the T [E, V, Z(V )]

2D plots corresponding to the spectroscopic constant current mode. Basically, the

spectroscopically observed peaks are those of the T [E = V, V, Z(V )] function.
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[170] E. V. Chulkov, I. Sarŕıa, V. M. Silkin, J. M. Pitarke, and P. M. Echenique, Phys.

Rev. Lett. 80, 4947 (1998).

[171] S. Crampin, Phys. Rev. Lett. 95, 046801 (2005).

[172] A. Zugarramurdi, A. G. Borisov, N. Zabala, E. V. Chulkov, and M. J. Puska,

Phys. Rev. B 83, 035402 (2011).

[173] A. Weismann et al., Science 323, 1190 (2009).

[174] C. Corriol et al., Phys. Rev. Lett. 95, 176802 (2005).

[175] J. Li, W.-D. Schneider, R. Berndt, O. R. Bryant, and S. Crampin, Phys. Rev.

Lett. 81, 4464 (1998).

[176] M. A. Schneider, L. Vitali, N. Knorr, and K. Kern, Phys. Rev. B 65, 121406

(2002).



212 Bibliography
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