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Abstract—Power electronic applications need high voltage and
current ranges which are impossible to obtain with discrete
devices. Parallelization technique is a solution to increase power
converter current capacity. Current distribution problems may
reduce device lifetime and cause converter malfunction. Paral-
lelization requires a total control of circuit parasitic elements
which depend on layout physical materials and dimensions. The
objective of this article is to show, by electromagnetic (EM) model
simulations, layout non ideal effects for power circuits, in order to
understand and control circuit stray elements, especially parasitic
inductances, and current distributions.

Index Terms—Parallelization, layout, parasitic inductance
(Lp), current distribution, coupling parasitic effect (Mp), sim-
ulation, EM model, non ideal effects, ADSTM .

I. INTRODUCTION

Nowadays, power electronic applications need higher volt-
age and current ranges. These ranges are out of operational
limits of discrete chips and power modules, and they are only
possible with serial and parallel configurations. A solution to
improve power converter density is to use the parallelization
of discrete devices, because of increasing current capacity.
Parallel designs are composed of several dies in parallel where
current imbalances appear due to physical properties of the
design. For parallel proper operation, power semiconductor
current distributions should be as equal as possible, since
imbalances reduce the device lifetime and deteriores electrical
properties of the design [1], [2]. The design depends on
semiconductor characteristic parameters (Vcesat , delays tdon

and tdoff
, temperature coefficient, etc), gate-emitter (Zge) and

collector-emitter (Zce) impedances [3], [4].
Power printed circuit board (PCB) or direct bonded copper

(DBC) presents structural parasitic impedances such as path
inductances and resistances with their substrate capacitances
(figure 1) [5]. It is important to analyse the parasitic induc-
tance effets because their diL/dt generates voltage drops and
current peaks which affect circuit operation [6], [7]. In a
power module design, controlling layout physical dimensions
are fundamental to use each chip at maximum ratings. For
this reason, layout needs to be as symmetrical as possible
disposing power semicondutctors, linking traces and external
pins, so overvoltages and current imbalances are reduced
[8]. Moreover, power modules operate at higher frequencies
and designs are more compact, so the effects of parasitic
inductance coupling increases electromagnetics emissions [9].
Besides, the equivalent mesh models are more complex. It
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Fig. 1. Parasitic elements of paths in power layouts.

is essential to develop EM model simulations to understand
current distributions and to predict circuit behaviour [10], [11].

The present work analyses layout impedances, voltages
and current distributions of four different switch designs
with four parallel IGBT. The aim is to compare simulations,
using Keysight ADSTM software, of these basic power layout
designs to understand the variations due to different geometries
during switching state. The study helps in establishing criteria
in order to develop a good power converter design.

II. ELECTRICAL EQUIVALENT CIRCUIT
The power converter design requires an analytical model

to take into account layout non ideal effects for designs with
hundreds of paths and connections.

A. Extraction of layout parasitic elements
The parasitic elements in a power circuit can be represented

by partial element equivalent circuit (PEEC) where each layout
structure can be modelled by resistance (R), autoinductance
(Lp) and mutual coupling inductance (Mp) between traces
[1], [7], [12], [13]. Figure 2 shows the PEEC equivalent
circuit of two rectangular loops with one segment in common.
The electrical loop behaviour depends on circuit elements
proportional to coplanar physical l, w and t dimensions (figure
3) and some material characterisitics as resistivity, ρ, and
permeability, µ. Then, each path or trace is simplified as R
(1), Lp (2) and Mp (3) for low frequencies (<1 MHz) [14]–
[16]. Moreover, Mp depends on current direction to be added
or subtracted in the total loop inductance value (Lloop). In the
circuit shown in figure 2, Mp values are added because loops
have the same current direction through inductances, so Lloop1

and Lloop2 can be obtained as (4) and (5), and total mutual
inductance M12 is (6).

R = ρ · l · 103 · w/t; (1)
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Lpi = 0.00508 ·
(

l

25.4

)
·

·
(
2.303 · log10

(
2 · l
w + t

)
+ 0.5 + 0.2235 · w + t

l

)
;

(2)

Mpij =
µ

π
· cosh−1

(
w + s

w

)
· l. (3)

Lloop1 = Lp1 + Lp2 + Lp3 + Lp4 + 2Mp24 + 2Mp13;

where Mp24 =Mp42; Mp13 =Mp31;
(4)

Lloop2 = Lp4 + Lp5 + Lp6 + Lp7 + 2Mp46 + 2Mp57;

where Mp46 =Mp64; Mp57 =Mp75;
(5)

M12 =M21 =Mp15 +Mp17 +Mp24+

+Mp26 +Mp37 +Mp35 +Mp46 + Lp4.
(6)

However, in the layout design there are several number of
interconnections with their coupling inductances. The electri-
cal model becomes very complex to be solved analitically and
only provides a constant current density [17]. For this reason,
other methods are necessary to calculate stray elements effects.

B. Mesh model development for non ideal circuit simulations

The PEEC analytival method were developed some years
ago [7], [12], [13]. An electrical simulator is necessary to
process thousands of connections. Besides, with a 3D mesh
is possible to show non uniformities in current distribution
taking into account two perpendicular directions [2], [17].
Keysight ADSTM software provides a tool to analyse the
design equivalent impedances. The software is based on in-
put/output microwave technology to get the scattering matrix
(7) [18] for a particular frequency.

Sij =
V −i
V +
j

∣∣∣∣∣
V +
k =0 for k 6=j

(7)

For each design, S-parameters are calculated for 0 Hz - 1 MHz
(low frequency) with 2.5 kHz step. The mesh is formed by a
lot of cells which include parasitic elements (figure 1). Then, a
co-simulation between power semiconductor electrical models
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Fig. 4. Substrate used in the designs.

and the layout S-parameters give a non ideal circuit behaviour
during transit simulation which helps to understand voltage
and current distributions.

III. PARALLELIZATION DESIGN TECHNIQUE

In order to develop a correct design for power converters
with devices in parallel it is fundamental to control transistor
currents, since parasitic inductances produce drop voltages and
high current peaks.

The aim of this section is to simulate different layouts of the
same basic circuit to study parallelization effects, especially
current density distribution, due to the differences in physical
geometries and stray impedances. The switch circuit consists
of 4 parallel IGBTs (IGBT AUIR4067D1, 600 V/160 A) in
different topologies connected to a load. The configurations
for this switch circuit are shown in the figure 5:

1) Design 1© (figure 5(a)) is a linear topology connection of
IGBTs. The main terminals (gate, collector and emitter)
are in the same side of layout, Ic and Ie path currents
have opposite directions.

2) Design 2© (figure 5(b)) is similar to design 1©, but the
emitter main terminal is in the opposite side, so Ig , Ic
and Ie path currents have the same direction.

3) In design 3© (figure 5(c)) the emitter main terminal
appears in the middle of the trace. For this, there are
two Ie current directions in the same path, like a mix
between design 1© and 2©.

4) Design 4© (figure 5(d)) presents IGBTs in a square
configuration around their gates (symmetric concept)
and in two layers (top and bottom) with a better coupling
effect (parallel plate) [15].

Once layout design is defined, the first step is to obtain the
equivalent impedances (Zge and Zce) between input/output
common terminals with each IGBT terminals. The equiva-
lent path resistances and inductances are calculated, the gate
voltage signals (gate-emitter close loop) and IGBT currents
(collector-emitter close loop) are analysed to understand par-
allelization in each proposed design.

A. Extraction of Zge and Zce equivalent impedances

In order to calculate Zge and Zce impedances gate-emitter
and collector-emitter close loops, the substrate topology has to
be analysed (figure 4), because impedances depend on material
properties.

The gate-emitter close loop gives the equivalent Zge

impedances value between gate and emitter main terminals
with each IGBT gate and emitter. Measurements in collector-
emitter close loop also give the equivalent Zce values between
collector and emitter main terminals with each IGBT collector
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Fig. 5. Layout designs of a parallel switch with their equivalent circuit.

and emitter. The impedance values are extracted from S-
parameters matrix in complex numbers and a conversion is
applied to obtain R and L values. It is necessary to transform
S-parameters in Y-parameters (8), since Y11 parameter gives
directly the equivalent admittance value short-circuiting the
load [18]. The R and L values are calculated applying (9).

Yij =
Ii
Vj

∣∣∣∣∣
Vk=0 for k 6=j

; (8)

R = Real

(
1

Y11

)
; L =

Imag
(

1
Y11

)
2 · π · freq

. (9)

Tables I(a) and I(b) show R and L gate-emitter close loop
(Rge and Lge) and collector-emitter close loop (Rce and Lce)
for 10 kHz (modulation frequency of the power converter).
The results show that design 4© has the lowest Rge, Lge, Rce

and Lce values, due to its symmetrical topology, short paths
and better coupling effect.

However, design 2© presents maximum Zge and Zce values,
so losses in these traces are high. But variations between Rge,
Lge, Rce and Lce are minimum, so that the current per each
IGBT is more evenly distributed, producing lower imbalances
than in other designs. This is because Ig , Ic and Ie currents
have the same direction in layout traces.

The main different between design 1© and 2© is the Ie
current direction, and for this, impedance values are different
because of mutual coupling effects. The values Rge, Lge, Rce

TABLE I
Zge AND Zce MEASURES FOR EACH DESIGN AT 10 KHZ.

(a) Zge gate-emitter impedance.

Rge

(mΩ)

Lge

(nH)

Rge

(mΩ)

Lge

(nH)

Rge

(mΩ)

Lge

(nH)

Rge

(mΩ)

Lge

(nH)

Rge

(mΩ)

Lge

(nH)

Rge

(mΩ)

Lge

(nH)

1 0.67 12.68 1.34 31.47 2.00 50.65 2.67 69.90 1.99 57.22 2.67 69.90

2 1.64 72.01 1.64 72.32 1.64 72.32 1.65 72.58 0.01 0.56 1.65 72.58

3 0.99 33.46 1.00 33.53 1.33 43.15 1.99 62.14 1.00 28.69 1.99 62.14

4 0.90 11.93 1.03 16.59 0.97 14.48 0.73 8.70 0.30 7.89 1.03 16.59

Max.

Variation
Maximum

Gate - Emitter Loop

IGBT4

D
es

ig
n IGBT1 IGBT2 IGBT3

(b) Zce collector-emitter impedance.

Rce

(mΩ)

Lce

(nH)

Rce

(mΩ)

Lce

(nH)

Rce

(mΩ)

Lce

(nH)

Rce

(mΩ)

Lce

(nH)

Rce

(mΩ)

Lce

(nH)

Rce

(mΩ)

Lce

(nH)

1 0.64 10.86 1.29 24.28 1.94 37.80 2.59 51.33 1.96 40.47 2.59 51.33

2 1.61 73.17 1.62 73.09 1.62 73.04 1.63 73.04 0.02 0.14 1.63 73.17

3 0.96 34.10 0.97 34.07 1.30 40.85 1.95 54.32 0.99 20.25 1.95 54.32

4 0.50 12.38 0.45 13.70 0.50 12.18 0.39 8.01 0.11 5.68 0.50 13.70

Max.

Variation

Collector - Emitter Loop

MaximumIGBT4

D
es

ig
n

IGBT1 IGBT2 IGBT3

and Lce of 1© are lower than design 2©, but variations between
IGBT branches are higher.

Design 3©, with the emitter in the middle, reduces Rge,
Lge, Rce and Lce values compared with design 1©, but it is
not enough compared with designs 2© and 4©.

B. Gate-emitter close loop influence on Vge signals

Connection between IGBTs and driver circuit (gate con-
nection) generate a close gate-emitter loop where different
feedback effects produce variations between parallel IGBTs
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Fig. 6. Vge voltage signals for different designs of a 4 parallel IGBTs switch.

gate voltage signals (Vge). These Vge signal variations affect
the turn off process, generating differences in switching losses.

Different feedback effects are produced in the designs
because of emitter topology and equivalent inductances (tables
I(a) and I(b)). The following equations only take into account
the emitter inductances (the most critical because die

dt >>
dig
dt )

to simplify the behaviour of feedback effects (Lei 6= Lgei ):
1) Design 1© presents a negative asymmetric feedback

(figures 5(a) and 6(a)) causing IGBT4 to turn on slower
than IGBT1 because of the inductances (L = Le2 =
Le3 = Le4 6= Le1 ) which generate voltage drops
(VL = VLe2

= VLe3
= VLe4

6= VLe1
) (10).

Vge4 = (Vge − 3 · VL − VLe1
) < Vge3 =

= (Vge − 2 · VL − VLe1
) < Vge2 =

= (Vge − VL − VLe1
) < Vge1 = (Vge − VLe1

).

(10)

2) Design 2© has a positive asymmetric feedback (figures
5(b) and 6(b)), so IGBT1 is turned on faster than IGBT4,
in (11) taking into account inductances (L = Le1 =
Le2 = Le3 6= Le4 ) and voltage drops (VL = VLe1

=
VLe2

= VLe3
6= VLe4

) simplifications.

Vge1 = (Vge − 3 · VL − VLe4
) < Vge2 =

= (Vge − 2 · VL − VLe4
) < Vge3 =

= (Vge − VL − VLe4
) < Vge4 = (Vge − VLe4

).

(11)

3) Design 3© is a positive and negative feedback (figures
5(c) and 6(c)), because there are emitter currents in two
directions. Mutual inductances have an important effect

causing that Le3 < Le2 < Le4 < Le1 and voltage
inductance drops VLe3

< VLe2
< VLe4

< VLe1
(12).

Vge3 = (Vge − VLe3
) > Vge2 = (Vge − VLe2

) >

> Vge4 = (Vge − VLe3
− VLe4

) > Vge1 =

= Vge − VLe1 − VLe2 .

(12)

4) Design 4© works like two positive asymmetric feedback
(figures 5(d) and 6(d)) because of trace lengths Le4 <
Le1 and Le3 < Le2 , so voltage emitter inductance drops
are VLe4

< VLe1
and VLe3

< VLe2
(13).

Vge4 = (Vge − VLe4) > Vge1 = (Vge − VLe1) >

Vge3 = (Vge − VLe4 − VLe3) > Vge2 =

= (Vge − VLe1 − VLe2).

(13)

Designs 2© and 4©, which present lower Zge and Zce varia-
tions, have lower Vge voltage drops between IGBTs because of
this voltage behaviour. The currents through IGBTs are more
balanced. However, design 1© presents a wide Vge variation
because its emitter inductances are very unequal, causing
high imbalances between IGBT currents. Design 3© has two
different Vge (two Ie current directions in the same copper
trace) levels proportional to the distance between each IGBT
emitter and main emitter layout terminal.

C. Collector-emitter close loop influence on Ice
Parallel IGBTs have different current distribution because

of trace connections. Apart from IGBT gate and driver con-
nections, which generate delays between device gate signals
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Fig. 7. IGBT currents for the designs and Ice, Rce and Lce variations with frequency.

(Vge), the path between collectors and emitter of the IGBTs
is a critical parameter. The designs have different current
distribution which is analysed in the figure 7:

1) Design 1© presents the worst current distribution for
10 kHz switching signals (figure 7(a)) with 47 A current
variation due to the high differences between Zce IGBT
values and its linear topology.

2) Design 2© has similar current per IGBT branch (figure
7(b)) with only maximum variation of 8.5 A. Moreover,
turn on initial oscillation is lower than in other design
due to higher Zce values compared with the other
designs impedances. In spite of its linear geometry, cou-
pling effects compensate its dimensions, due to current
directions.

3) Design 3© has the same problems as 1©. The current dis-
tribution presents a maximum 24.5 A variation between
IGBTs at 10 kHz (figure 7(c)) because Rce and Lge are
very different between parallel IGBTs. However, results
are better, since emitter main terminal gives to design
more symmetry.

4) Design 4© has the best current distribution between
IGBT branches with a maximum variation of 4.1 A at
10 kHz (figure 7(d)), due to symmetrical dimensions and
equal values of Zce between IGBTs and main terminals.

IGBT current distribution depends on Rce and Lce. When
these values are very unequal between IGBTs and layout main
terminals, current distribution presents wide variations, like in
designs 1© and 3©. However, if Rce and Lce values are similar,
current variations are lower, like designs 2© and 4©. This kind

of behaviour is shown in figures 7(e), 7(f) and 7(g) and it
is stable between 5 - 50 kHz (switching frequency range to
silicon power modules).

D. Current density distributions

Current distribution depends on Zge and Zce, proportional
to physical dimensions, Vge voltage signals, which generate
delays between parallel IGBTs, and current direction, because
of adding/substrating mutual coupling effects.

According to Vge signals and Ice IGBT currents, design
1© (figure 8(a)) and 2© (figure 8(b)) present bad current
density distribution on layout, because in both designs 10 kHz
signals present the w© area with a high current density, when
the rest of paths have lower density, because design 1© and
2© are not symmetrical. Design 3© presents a better current
density distribution (figure 8(c)), since emitter main terminal
( y© area) gives to the circuit a symmetrical behaviour at
10 kHz and an equal current emitter distribution, but design
3© presents a higher current density in the w© area which
unbalances collector current. Design 4© (figure 8(d)) has the
best symmetrical current density distribution, because 10 kHz
signals have similar current density through paths of w© and
z© areas with high current density levels.

IV. CONCLUSIONS

The main problem of parallel design is current distributions
which generates current imbalances. These imbalances reduce
lifetime of power semiconductor and affect efficiency, so
they have to be reduced. Physical geometries and dimensions
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Fig. 8. Current density distribution in 3D layouts at 10 kHz.

of the layout must be properly designed because equiva-
lent circuit impedances depend on path physical forms and
materials. Taking into account current directions, since Zge

and Zce impedance values can increase or decrease with
mutual coupling effects. Apart from Zge impedance values,
emitter current direction affects Vge voltage signals of parallel
IGBTs, because different feedback effects produce different
Vge voltage drops. These Vge signals turn on/off IGBTs with
different delays, increasing current imbalances. Finally, for a

correct design, Zce values must be reduced to decrease stray
elements losses. However, it is more important that there are
minor Zce variations between parallel connections to have
better current distributions than reducing their values.
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