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Abstract. In this paper, we present new results on the tautness of Riemannian foliations in
their historical context. The first part of the paper gives a short history of the problem. For a
closed manifold, the tautness of a Riemannian foliation can be characterized cohomologically.
We extend this cohomological characterization to a class of foliations which includes the
foliated strata of any singular Riemannian foliation of a closed manifold.
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In the paper [5], using his PhD thesis, Carrière conjectured that, for Riemannian foliations of
compact manifolds, the property “taut” understood as the existence of a Riemannian bundle-like
metric making all leaves minimal, is equivalent to the nontriviality of the top-dimension basic
cohomology group. The conjecture was based on previous results of Haefliger [16] proving that
“tautness” is a transverse property and on his own research on Riemannian flows on 3-manifolds.
For over a decade, the conjecture was the subject of intensive study by a group of “feuilleteurs” and
was finally solved by Masa [22] and refined by Álvarez [1]. The best account of the development of
the theory up to 1995 can be found in Tondeur’s book [43].

The case of noncompact manifolds is much more complicated, because the tautness class of a
Riemannian foliation cannot be defined in the standard way used in the case of closed manifolds [7].
However, for some noncompact manifolds, it is possible to propose a similar characterization. In
a previous paper, we proved that if a foliated Riemannian manifold (M,g,F) can be embedded
as a regular stratum of a singular Riemannian foliation (SRF), then the following conditions are
equivalent: (1) F is taut; (2) κ = 0, where κ = [κµ] ∈ H1 (M/F) , and κµ is the mean curvature form
of the bundle-like Riemannian metric µ; (3) H0

κµ
(M/F) 6= 0, where µ is a bundle-like Riemannian

metric; (4) Hn
c (M/F) 6= 0, where n = codimF and the foliation is transversally oriented.

In this paper, we extend this characterization to a class of noncompact foliated Riemannian
manifolds which include not only regular strata of SRFs but other strata as well (Theorems 3.2, 3.3,
and 3.5).

Below, M and N are connected second countable Hausdorff manifolds of dimension m, without
boundary and smooth (of class C∞). All the mappings are assumed to be smooth unless otherwise
stated. Consider a Riemannian foliation1 F on M whose codimension is n. If V is a saturated
submanifold of M , denote by (V,F) the induced foliated manifold.

We thank the referee for helpful comments and suggestions.

1. HISTORICAL OVERVIEW OF THE PROBLEM
An involutive subbundle E of dimension p of TM is called a foliation of dimension p and of

codimension n = m − p. The foliation F is said to be modelled on a n-manifold N0 if it is defined
by a cocycle U = {Ui, fi, gij}I modelled on N0, i.e.,

1. {Ui} is an open covering of M ,
2. fi : Ui −→ N0 are submersions with connected fibres, and
3. gijfj = fi on Ui ∩ Uj .
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***Partially supported by the KBN grant 2 PO3A 021 25.
1For the notions related to Riemannian foliations, we refer the reader to [27, 43].
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The n-manifold T =
∐

Ti, Ti = fi(Ui), is called the transverse manifold associated with the
cocycle U , and the pseudogroup H of local diffeomorphisms of T generated by gij is called the holo-
nomy pseudogroup representative on T (associated with the cocycle U); T is a complete transverse
manifold. The equivalence class of H is referred to as the holonomy pseudogroup of F (or (M,F)).
It can readily be seen that different cocycles defining the same foliation provide us with equivalent
holonomy pseudogroups [17, 18]. In general, the converse is not true. The notion of a Riemannian
foliation was introduced by Reinhart in [30, 31].

A foliation F on a smooth manifold M is said to be Riemannian if there is a Riemannian metric
on T such that the local diffeomorphisms gij are isometries. Equivalently, F is Riemannian if there
is a bundle-like metric µ on M for F (i.e., a geodesic perpendicular to a leaf of F at a point remains
perpendicular to every leaf it meets). In a local adapted chart (x1, . . . , xp, y1, . . . , yn), the bundle-
like metric µ has a representation

∑p
ij=1 µij(x, y)vi ⊗ vj +

∑n
αβ=1 µαβ(y)dyα ⊗ dyβ , where vi is a

1-form annihilating the bundle TF⊥, and vi(∂/∂xj) = δi
j .

Let (M,F) be a Riemannian foliation with a bundle-like metric µ. Then it is defined by a cocycle
U = {Ui, fi, kij}I modelled on a Riemannian manifold (N0, g) such that

(i) fi : (Ui, µ) → (T0, µ) is a Riemannian submersion with connected fibres;
(ii) kij : fj(Ui ∩ Uj) → fi(Ui ∩ Uj) are local isometries of (T0, µ);
(iii) fj = kjifi on fi(Ui ∩ Uj).

A foliation F on a Riemannian manifold (M,µ) is said to be minimal if all its leaves are minimal
submanifolds of (M,µ). A foliation F on a manifold M is said to be taut if there is a Riemannian
metric µ on M for which all leaves are minimal submanifolds of (M,µ).

Among other things, Reinhart introduced and studied the basic cohomology of these foliations.
In the presence of the Riemannian metric µ, the tangent bundle TM admits an orthogonal

splitting TM = TF ⊕TF⊥. A k-form α is said to be of pure type (r, s), r + s = k, if, for any point
of M , there is an adapted chart (x1, . . . , xp, y1, . . . , yn) such that α =

∑
fIJvi1 ∧ · · · ∧ vir

∧ dyj1 ∧
· · · ∧ dyjs

, where 1 6 i1 < · · · < ir 6 p, 1 6 j1 < · · · < js 6 n, and I = (i1, . . . , ir), J = (j1, . . . , js).

Denote by Ωk(M) the space of k-forms M and by Ωr,s(M) the space of forms of pure type (r, s).
Then Ωk(M) =

⊕
r+s=k Ωr,s(M), or, briefly, Ωk =

⊕
r+s=kΩr,s.

The exterior differential d : Ωk(M) −→ Ωk+1(M) can be decomposed into three components
d = dF + dT + δ, where dF is of bidegree (1, 0), dT is of bidegree (0, 1), and δ is of bidegree (−1, 2),
i.e., dF : Ωr,s → Ωr+1,s, dT : Ωr,s → Ωr,s+1, and δ : Ωr,s → Ωr−1,s+2.

In this work, we use three types of cohomologies.
(a) The basic cohomology H∗(M/F) is the cohomology of the complex Ω∗(M/F) of basic forms.

A differential form ω is said to be basic if iXω = iXdω = 0 for every vector field X tangent
to F . The complex Ω∗(M/F) can be identified with the complex of holonomy invariant
forms on the transverse manifold T , Ω∗

H (T ) .

In particular, if the foliation F is developable and if D : M̃ → T is its development with connected
fibres and h : π1(M) → Diff(T ) is the development representation, then the complex of basic forms
Ω∗(M/F) can be identified with the complex of h(π1(M))-invariant forms on T.

(b) The compactly supported basic cohomology H∗
c (M/F) is the cohomology of the basic sub-

complex Ω∗
c (M/F) = {ω ∈ Ω∗(M/F) | the support of ω is compact}.

(c) The twisted basic cohomology H∗
κ (M/F) with respect to the cycle κ ∈ Ω1(M/F) is the

cohomology of the basic complex Ω∗(M/F) with respect to the differential dκω = dω −
κ ∧ ω. This cohomology does not depend on the choice of the cycle, namely, H∗

κ (M/F) ∼=
H∗

κ+df (M/F) through the isomorphism: [ω] 7→ [efω].

1.1. Example (Ghys, [13]). Consider the unimodular matrix A =
( 1 0

1 1

)
inducing a diffeomor-

phism of T
2 = R

2/Z
2. Let T

3
A be the torus bundle over S

1 determined by A and let F be the flow
obtained by suspending A. Then the basic cohomology H2(T3

A/F) is infinite-dimensional because
the basic forms correspond to A-invariant forms on T

2; i.e., the 1-forms are written as f(x)dx, and
thus are closed, while the 2-forms are represented as u(x)dx ∧ dy.

In [31], Reinhart claimed that the basic cohomology of a Riemannian foliated closed manifold is
finite-dimensional and satisfies the Poincaré duality property Hk(M/F) ∼= Hn−k(M/F).
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Soon it became apparent that the proof was not rigorous and contained some gaps. For a long
time, this remained an open problem. Only the beginnings of the eighties brought some striking
new developments. In addition to Sullivan’s characterization of taut foliations (“a foliation is taut
if and only if no foliation cycle is the limit of boundaries of tangent chains,” [41]) and Rummler’s
thesis, [35], Haefliger published in 1980 [16] perhaps the most influential result in this theory
claiming that the “tautness” property is a transverse property, i.e., depends only on the properties
of the holonomy pseudogroup. After this, Kamber and Tondeur proved their correct version of the
Poincaré duality property for taut Riemannian foliations on closed manifolds [20, 21]. However, a
counterexample was not found until Carrière’s thesis (1981). The thesis presented the classification
of 1-dimensional tangentially orientable Riemannian foliations (flows) on closed 3-manifolds. He
found some flows which are not defined by a Killing vector field, and these are characterized by the
property that the 2-dimensional basic cohomology is trivial [5].

1.2. Flows. Let us begin with Carrière’s example. Let A be a matrix in SL2(Z) with trace
greater than 2 with two different eigenvalues, λ and 1/λ, and with two corresponding eigenvectors
v1 and v2, respectively. Denote by T

3
A the 3-manifold obtained by suspending A, i.e., a T

2-fibre
bundle over S

1. In fact, it is obtained as the quotient space of T
2 × R by the equivalence relation

generated by the identification of (m, t) with (A(m), t + 1). The lines parallel to the eigenvectors
v1 and v2 define A-invariant foliations (flows) Φ1 and Φ2, respectively, on T

2. In turn, they induce
flows on T

3
A, which we denote by the same letters. Each flow is dense in the tori which form the

fibres of our 3-manifold T
3
A. One can show [5] that the flow Φ2 on T

3
A is a transversally Lie flow

modelled on the affine group GA of the real line.

As the flow is transversally Lie, there is a developing mapping D : R
3 → GA (R3 is the universal

covering of T
3
A) such that the fibers of D are the leaves of the lifted flow. Moreover, there is a group

homomorphism h : π1(T
3
A) → GA, and its image is called the holonomy group Γ of the foliation. The

global basic forms on (T3
A,Φ2) correspond to Γ-invariant forms on GA, and thus to K = Γ-invariant

forms, where K is the closure of Γ in GA. Therefore, the basic cohomology of the foliated manifold
(T3

A,Φ2) is isomorphic to the cohomology of the complex of K-invariant forms on GA. If we identify
the group GA with R

2 and the product given by the formula (t, s)(t′, s′) = (t + t′, λts′ + s), then
the group K can be identified with the subgroup {(n, s) : n ∈ Z, s ∈ R}.

These considerations permit us to show that H2(T3
A/Φ2) = 0. To this end, we must prove

that any K-left invariant 2-form on GA is exact. The 1-forms α = dt and β = ds/λt are left-
invariant. A smooth function is K-invariant if it does not depend on the variable s and if it satisfies
f(t) = f(t+1) for any real number t. Hence, a one-form ω is K-invariant if and only if ω = fα+gβ
and both the functions f and g are K-invariant. A K-invariant 2-form Ω can be represented as
Ω = hα ∧ β, where h is a K-invariant function. We must prove that, for any K-invariant function
h, there are K-invariant functions f and g such that d(fα + gβ) = hα ∧ β, or, equivalently,
g′(t) + g(t) log λ = h(t) for any real number t.

If we assume that g(t) = λ−tg1(t), then we must find a function g1 for which g′1(t)λ
−t = h(t).

However, a function of this kind is given by integration, g1(t) = c +
∫ t

0
λxh(x) dx, where c is a real

constant. Thus, g(t) = λ−t
(
c +

∫ t

0
λxh(x) dx

)
. To obtain the invariance condition g(t) = g(t + 1),

we must take c = 1
λ−1

∫ 1

0
λxh(x) dx, which is always possible as λ 6= 1.

Moreover, it is not difficult to show that the flow Φ2 is not isometric.
This example should be seen in the light of the following proposition [43, Prop. 6.6].

Proposition 1.2.1. Let F be a flow defined by a nonsingular vector field V (with the normalized
vector field W = (1/|V |)V ) on a Riemannian manifold (M,µ). Then the following conditions are
equivalent :

(i) all leaves of F are minimal submanifolds of (M,µ), i.e., the foliation is minimal ;
(ii) the orbits of V are geodesics;
(iii) θ(W )χµ = 0;
(iv) ∇W W = 0, where ∇ is the Levi-Civita connection of (M,µ).

The combined effort of Gluck and Sullivan [14, 41] can be summarized in the following theo-
rem [43, Prop. 6.7]. The equivalence of the fifth condition is due to Carrière [5].
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Theorem 1.2.2. Let F be a flow given by a nonsingular vector field V on an m-manifold M .
Then the following conditions are equivalent :

(i) there exists a Riemannian metric on M making the orbits of V geodesics and V of unit
length;

(ii) there exists a 1-form χ ∈ Ω1(M) such that χ(V ) = 1 and θ(V )χ = 0;
(iii) there exists a 1-form χ ∈ Ω1(M) such that χ(V ) = 1 and iV dχ = 0;
(iv) there exists an (m − 1)-plane subbundle E ⊂ TM complementary the flow and such that

[V,X] is a section of E for any section X of E;
(v) there exists a Riemannian metric on M for which V is a Killing vector field.

1.3. Tautness and basic cohomology. In addition to all these deep results, the following one
seems to indicate a close relationship between tautness and basic cohomology, cf. [43, Th. 4.32].

Theorem 1.3.1. Let F be a transversally oriented Riemannian foliation of codimension n of
a closed and orientable Riemannian manifold (M,µ) whose leaves are minimal. Then the basic
cohomology class of the transverse volume form ν is nontrivial.

Proof. Assume that there exists a basic form α such that dα = ν. Let χµ be the volume form
along the leaves of the foliation. Then d(α ∧ χµ) = dα ∧ χµ + (−1)n−1α ∧ dχµ.

The minimality assumption implies that the form dχµ is of degree (p− 1, 2) and, since the form
α is of degree (0, n − 1), the form α ∧ dχµ vanishes. Therefore, the form ν ∧ χµ, which is a volume
form of the manifold M , is exact, a contradiction.

Moreover, Kamber and Tondeur [21] proved that the basic cohomology of a taut Riemannian
foliation of a closed manifold is finite-dimensional and satisfies the PD property. The above results
and Haefliger’s theorem [16], which assured that the existence of a Riemannian metric making all
leaves minimal is a transverse property, helped to formulate (1982) the following Carrière conjecture,
first expressed for flows.

Conjecture. Let F be a Riemannian foliation of a closed Riemannian manifold (M,µ). Then
there exists a (bundle-like) Riemannian metric making all leaves minimal (i.e., the foliation is taut)
if and only if the top-dimensional basic cohomology is nontrivial.

For flows, the conjecture was solved by Molino and Sergiescu in 1985 [29] as follows.

Theorem 1.3.2. Let F be a Riemannian flow on a closed oriented m-manifold M . In this case,
a Riemannian metric for which F is an isometric flow exists if and only if the top-dimensional
basic cohomology is nontrivial.

However, at that time, the solution of the full conjecture was far away.
El Kacimi, Sergiescu, and Hector proved that the basic cohomology of a Riemannian foliation

on a compact manifold is finite-dimensional [11]. For the same class of foliations, Kamber and
Tondeur [20, 21] established a Hodge theorem under the extra assumption that the leaves are
minimal submanifolds. The basic Hodge decomposition in the general case, without any additional
assumptions, was proved by El Kacimi and Hector [10].

Theorem 1.3.3. Let F be a transversally oriented Riemannian foliation on a closed oriented
manifold M. Then the following two conditions are equivalent :

(i) Hn(M/F) 6= 0;
(ii) the basic cohomology H∗(M/F) satisfies the Poincaré duality property.

This theorem, together with the Kamber–Tondeur result mentioned at the beginning of the
subsection, strongly hinted that Carrière’s intuition was correct. Finally, in 1991, Masa [22] showed
that the tautness is equivalent to the nontriviality of the top-dimensional basic cohomology, solving
the conjecture positively.

Theorem 1.3.4. Let F be a transversally oriented Riemannian foliation of a closed manifold M .
Then a Riemannian metric on M for which all leaves are minimal exists if and only if the top-
dimensional basic cohomology Hn(M/F) is nontrivial.

To complete the story of basic cohomology, note that, in 1993, El Kacimi and Nicolau proved that
the basic cohomology of a complete Riemannian foliated manifold is a topological invariant [12].
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454 J. I. ROYO PRIETO et al.

1.4. Mean curvature form. In the story of the proof of the tautness conjecture, a certain
1-form turned out to be of great importance.

For a foliation F of a Riemannian manifold (M,µ), we define the shape operator W on the leaves
by using the natural splitting of the tangent bundle TM = TF ⊕ TF⊥. Namely, for any section Y
of TF⊥ and any tangent vector field X, we have W (Y )(X) = −π⊥(∇XY ), where π⊥ : TM → TF⊥

is the orthogonal projection.

The trace of W is linear in Y, and thus it defines a section of TF⊥∗
. We extend it to a global

1-form κµ on M by setting κµ(X) = trace W (X) if X ∈ TF⊥ and κµ(X) = 0 if X ∈ TF . The
1-form κµ(X) is referred to as the mean curvature 1-form of F on the Riemannian manifold (M,µ).

If f : (M1,F1) → (M,F) is a foliated embedding between two Riemannian manifolds with f(M1)
saturated in M and if dimF1 = dimF , then

f∗µ is a bundle-like metric on (M1,F1) and f∗κµ = κf∗µ. (1)
Thus,

if U is an open subset of M , then (κµ)|U = κµ|U . (2)
This form is of particular interest. In [20], the authors proved that, if the form κµ is basic, then

it is closed. Thus, it defines a 1-basic cohomology class [κµ], which proved to be of importance in
the study of taut foliations [20].

Proposition 1.4.1. Let F be a Riemannian foliation on a closed manifold M with a bundle-like
metric µ for which κµ is basic and [κµ] = 0. Then the bundle-like metric µ can be modified along
the leaves to obtain a bundle-like metric µ′ for which all leaves of F are minimal.

Proof. Since [κµ] = 0, there is a smooth basic function f on (M/F) such that κµ = df. Write

λ = ef and modify the metric µ as follows µ′ = λ2/pµF ⊕ µ⊥, where p stands for the dimension
of leaves and µF and µ⊥ for the Riemannian metric induced on leaves of F and the orthogonal
subbundle, respectively. The splitting is defined by the metric µ. The mean curvature form κµ′ is
equal to κµ − d log λ = 0.

Let F be a tangentially oriented foliation. We define the characteristic form χµ, a p-form, by the
rule that χµ(Y1, . . . , Yp) = det(µ(Yi, Ej)ij) for any p-tuple (Y1, . . . , Yp) of vectors of TxM , where
i, j = 1, . . . , p and E1, . . . , Ep stands for an oriented orthonormal frame of TxF .

There is a close relationship between the characteristic form and the mean curvature form.
Namely [35], the following assertion holds.

Theorem 1.4.2. Let F be a tangentially oriented foliation of a Riemannian manifold (M,µ), let
χµ be its characteristic form, and let κµ be its mean curvature form. Then θ(Y )χµ = −κµ(Y )χµ+β
for any vector field Y orthogonal to the foliation, where β is a p-form of type (p − 1, 1).

As a corollary, we obtain the following assertion.

Corollary 1.4.3. A tangentially oriented foliation F is taut if and only if, for any vector field
Y orthogonal to the foliation, the form θ(Y )χµ is of type (p − 1, 1), which is equivalent to the
condition that dχµ is of type (p − 1, 2), i.e., dχµ(Y, Y1, . . . , Yp) = 0 for any vector Y and any
vectors (Y1, . . . , Yp) tangent to the foliation.

Research concerning the tautness conjecture has concentrated on the study of the basic coho-
mology and the mean curvature form.

The following theorem [20, 21] gave further evidence that tautness, the mean curvature class,
and the PD property for basic cohomology are linked in some way. The result of El Kacimi and
Hector suggested that the nonvanishing condition for the top-dimensional basic cohomology can be
related to the tautness of the foliation, i.e., the vanishing of the mean curvature form.

Theorem 1.4.4. Let F be a transversally oriented Riemannian foliation on a closed oriented
manifold M. Let g be a bundle-like metric with basic mean curvature form. Then the pairing α⊗β →∫

M
α∧β∧χµ induces a nondegenerate pairing Hr(M/F)⊗Hn−r

κµ
(M/F) → R of finite-dimensional

vector spaces.

In the development of the theory, Álvarez López’s paper [1] of 1992 proved to be of great interest.
In the paper, it is proved that the space of smooth forms Ω(M) on a foliated closed Riemannian
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manifold (M,µ,F) can be decomposed as the direct sum of Ω(M/F) (of basic forms) and its

orthogonal complement Ω(M/F)⊥. Therefore, the mean curvature form κµ of (M,µ,F) can be
decomposed into the basic component κµ,b and the orthogonal one. The 1-form κµ,b is closed. It
defines the 1-basic cohomology class κ = [κµ,b] which does not depend on µ. Moreover, as was
proved in [1], any form cohomology equivalent to κµ,b (in the complex of basic forms) can be
realized as the basic component of the mean curvature form for some bundle-like metric of F with
the same transverse Riemannian metric. Additionally, one can prove that changing the orthogonal
complement of F does not change the form κµ,b.

As an application, the orientability assumption for M was removed from the original formulation
of Theorem 1.3.4.

For some time, the condition that the mean curvature form is basic seemed to be a major obstacle
to the existence of such a Riemannian metric. However, in 1995, Domı́nguez published his theorem
[8, 9] with the following statement.

Theorem 1.4.5. Let F be a Riemannian foliation on a closed manifold M . Then there is a
bundle-like metric for F for which the mean curvature form is basic.

These Riemannian metrics are very important in the remaining part of the paper. Therefore, a
bundle-like metric for which the mean curvature form is basic is referred to as a D-metric.

This theorem, together with Proposition 1.4.1, ensures that a “taut” Riemannian metric can be
chosen to be a D-metric. Below we shall use the following fact:

if U is a saturated open subset of M such that µ|U is a D-metric, then κµ,b|U = κµ|U . (3)

The final characterization of taut Riemannian foliations of closed manifolds can be summarized
in the following theorem [43, 7.56].

Theorem 1.4.6. Let F be a transversally oriented Riemannian foliation on a closed oriented
Riemannian manifold (M,µ). Then Hn

κµ
(M/F) ∼= R, and the following conditions are equivalent :

(i) Hn(M/F) ∼= R;
(ii) F is taut ;
(iii) κ = 0;
(iv) H0

κµ
(M/F) = R.

Moreover, in this case, the basic cohomology of the foliated manifold (M/F) has the Poincaré
duality property.

1.5. Open manifolds. The theory has not been well developed for open manifolds. There is
a fine and very general version of Poincaré duality theorem published in 1985 by Sergiescu [38].
Cairns and Escobales (1997) presented a very interesting example [7] of a Riemannian foliation on
an open manifold for which the mean curvature form is basic but not closed.

1.5.1. SRFs. A singular Riemannian foliation2 (SRF for short) on a connected manifold X
is a partition K by connected immersed submanifolds, the so-called leaves, verifying the following
properties.

I- The module of smooth vector fields tangent to the leaves is transitive on each leaf.
II- There is a Riemannian metric ν on N , the so-called adapted metric, such that each geodesic

perpendicular at a point to a leaf remains perpendicular to every leaf it meets.

The first condition implies that (X,K) is a singular foliation in the sense of [40] and [42]. Note
that the restriction of K to a saturated open subset produces an SRF. Each (regular) Riemannian
foliation (RF in short) is an SRF; however, the first interesting examples are as follows.

- The orbits of an action by isometries of a Lie group.
- The closures of the leaves of a regular Riemannian foliation.

1.5.2. Stratification. Classifying the points of X by the dimension of the leaves, one obtains
a stratification SK of X whose elements are called strata. The restriction of K to a stratum S is
the RF KS . The strata are ordered by S1 � S2 ⇔ S1 ⊂ S2. The minimal (maximal) strata are the
closed strata (open strata). Denote by Smin the union of the closed strata. Since X is connected,

2For the notions related to singular Riemannian foliations, we refer the reader to [2, 26–28].
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there is just one open stratum, which is denoted by RK. It is a dense subset. This is the regular
stratum, and the other strata are said to be singular.

The depth of SK, denoted by depthSK, is defined to be the largest i for which there is a chain of
strata, S0 ≺ S1 ≺ · · · ≺ Si. Thus, depthSK = 0 if and only if the foliation K is regular. The depth
of a stratum S ∈ SH, denoted by depthH S, is defined to be the largest i for which there is a chain
of strata of the form S0 ≺ S1 ≺ · · · ≺ Si = S.

The basic cohomology of such foliations on closed manifolds is finite-dimensional, and it is a
topological invariant [44]. However, as far as the tautness property is concerned, the situation is
totally different.

1.5.3. Example. Consider the isometric action Φ: R × S
2d+2 → S

2d+2 given by the formula
Φ(t, (z0, . . . , zd, x)) = (ea0πit · z0, . . . , e

adπit · zd, x), where (a0, . . . , ad) 6= (0, . . . , 0). Here S
2d+2 =

{(z0, . . . , zd, x) ∈ C
d+1 × R | |z0|

2 + · · · + |zd|
2 + x2 = 1}. There are two singular strata, namely,

the north pole S1 = (0, . . . , 0, 1) and the south pole S2 = (0, . . . ,−1). The regular stratum is
S

2d+1×]−1, 1[. Let r be the variable of ]−1, 1[. The basic cohomology H∗(S2d+2/F) of the foliation is

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = · · · i = 2d i = 2d + 1
1 0 0 [dr ∧ e] 0 [dr ∧ e2] · · · 0 [dr ∧ ed]

where e ∈ Ω2
2

(
S

2d+2/F
)

is an Euler form.

The top-dimensional basic cohomology group is isomorphic to R; however, this cohomology fails
to have the Poincaré duality property, despite the flow being isometric. Certainly, the foliation is
not minimal for any adapted (bundle-like) Riemannian metric.

Moreover, in [24], the authors proved that a singular foliation on a closed manifold admitting an
adapted Riemannian metric for which all leaves are minimal must be regular. This fact led us to
study singular Riemannian foliations closer. We have introduced basic intersection cohomology to
recover some kind of Poincaré duality [36, 37, 33]. We hope to complete our task soon and prove
the perverse version of the Poincaré duality property for basic intersection cohomology for singular
Riemannian foliations of closed manifolds. In his thesis, [32], written under the supervision of
Saralegi and Macho, Royo Prieto established (among other results on singular Riemannian flows) the
Poincaré duality for basic intersection cohomology and the singular version of the Molino–Sergiescu
theorem. Inspired by these results, we have started to investigate possible generalizations to the
SRF case and, at the same time, we have found that our research gives some interesting insights
into the problem on noncompact manifolds [33, 34]. The second part of this work is concerned with
this problem.

We complete the section with the presentation of the BIC for the above example, in which the
PD property can easily be seen.

When considering the BIC of our example, the picture changes. The following table presents the
BIC IH∗

p

(
S

k=2d+2/F
)

for the constant perversities.

i= 0 1 2 3 4 5 6 7 · · · k−2 k−1
p < 0 0 [dr] 0 [e ∧ dr] 0 [e2 ∧ dr] 0 [e3 ∧ dr] · · · 0 [ed ∧ dr]
p=0, 1 1 0 0 [e ∧ dr] 0 [e2 ∧ dr] 0 [e3 ∧ dr] · · · 0 [ed ∧ dr]
p=2, 3 0 0 [e] 0 0 [e2 ∧ dr] 0 [e3 ∧ dr] · · · 0 [ed ∧ dr]
p=4, 5 1 0 [e] 0 [e2] 0 0 [e3 ∧ dr] · · · 0 [ed ∧ dr]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

p=k−4, k−3 1 0 [e] 0 [e2] 0 [e3] 0 · · · 0 [ed ∧ dr]

p > k−2 1 0 [e] 0 [e2] 0 [e3] 0 · · · [ed] 0

Note that the top-dimensional basic cohomology group is isomorphic either to 0 or R. These
cohomology groups are finite-dimensional. We recover the Poincaré duality in the perverse sense,
IH∗

p

(
S

k/F
)
∼= IHk−1−∗

q

(
S

k/F
)

for two complementary perversities, p + q = t = k − 3.

Theorem 1.5.4. Let M be a connected closed manifold endowed with an SRF F . If ℓ =
codimM F and p is a perversity on (M/F), then IHℓ

p (M/F) = 0 or IHℓ
p (M/F) = R.
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Corollary 1.5.5. Let M be a connected compact manifold endowed with an SRF F . Suppose
that F is transversally orientable. Consider a perversity p on (M,F) with p 6 t. If ℓ = codimM F ,
then the two following statements are equivalent.

(1) The foliation FR is taut, where R is the regular stratum of (M,F).

(2) The cohomology group IHℓ
p (M/F) is R.

Otherwise, IHℓ
p (M/F) = 0.

The BIC of a conical foliation F defined on M by an isometric action of an Abelian Lie group
on an oriented manifold M satisfies the Poincaré duality,

IHℓ
p (M/F) ∼= IHℓ−∗

q,c (M/F) . (4)

Here ℓ = codimM F , and the two perversities p and q are complementary.

Remark. Due to limited room devoted to this overview of the problem, we have not mentioned
many partial results (e.g., [1, 19, 18]) and some survey papers (e.g., [6, 39]).

2. GEOMETRICAL PRELIMINARIES
In this section, we present foliations we are going to use in this work, namely, the CERFs. A

CERF is essentially a Riemannian foliation defined on a noncompact manifold which is embeddable
in a closed manifold in a nice way.

2.1. CERFs. We consider here a special case of Riemannian foliations defined on noncompact
manifolds. They have an outside compact manifold (zipper) and an inside compact submanifold
(reppiz). Consider a manifold M endowed with a Riemannian foliation F .

A zipper of F is a closed manifold N endowed with a (regular) Riemannian foliation H verifying
the following properties:

(a) The manifold M is a saturated open subset of N and F is the restriction of H to M .

The open subset M is also F -saturated. Thus, the closure L of a leaf L ∈ F is compact.
A reppiz of F is a saturated open subset U of M verifying the following properties:

(b) the closure U (in M) is compact,
(c) the inclusion mapping U →֒ M induces an isomorphism H∗(U/F) ∼= H∗(M/F).

A saturated open subset of M need not be a reppiz. Just consider M = S
1 endowed with the

pointwise foliation and take U = S
1\{(cos(2π/n), sin(2π/n)) / n ∈ N\{0}}.

We say that F is a Compactly Embeddable Riemannian Foliation (or CERF)3 if (M,F) possesses
a zipper and a reppiz. If M is closed, then (M,F) is clearly a CERF if M by itself is a zipper and
a reppiz. Neither the zipper nor the reppiz are unique.

The main example of a CERF is given by the strata of a singular Riemannian foliation defined on
a closed manifold. This family is treated in the next section. The interior of a Riemannian foliation
defined on a manifold with boundary is a CERF if the foliation is tangent to the boundary; we can
consider the double of the manifold as a zipper. When the foliation is transverse to the boundary,
the foliation is not a CERF.

Now let us present some geometrical tools needed to study an SRF (X,K).

2.2. Tubular neighborhood. A singular stratum S ∈ SK is a proper submanifold of the
Riemannian manifold (X, ν). Thus, it possesses a tubular neighborhood (TS , τS , S). Recall that the
following smooth mappings are assigned to this neighborhood.

+ The radius mapping ρS : TS → [0, 1[ defined fiberwise by z 7→ |z|. Each t 6= 0 is a regular
value of the ρS . The pre-image ρ−1

S (0) is S.
+ The contraction HS : TS × [0, 1] → TS defined fiberwise by (z, r) 7→ r · z. The restriction

(HS)t : TS → TS is an embedding for each t 6= 0, and (HS)0 ≡ τS.

These mappings verify ρS(r · z) = rρS(z). The above tubular neighborhood can be chosen verifying
the two following important properties [27].

(a) Each (ρ−1
S (t),K) is an SRF.

3The definition of CERF given in [34] is more restrictive; see Proposition 2.4.
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(b) Each (HS)t : (TS ,F) → (TS ,F) is a foliated mapping.

We then say that (TS , τS , S) is a foliated tubular neighborhood of S.

The hypersurface DS = ρ−1
S (1/2) is the core of the tubular neighborhood. Moreover, depthSKDS

= depthSKTS
− 1. Note that the mapping

LS : (DS×]0, 1[,K × I) → ((TS\S),K), (5)

defined by LS(z, t) = HS(z, 2t), is a foliated diffeomorphism. Here, and from now on, I stands for
the foliation by points of R, and the leaves of the product foliation K × I are of the form L × {t}
with L ∈ K.

A family of foliated tubular neighborhoods {TS | S ∈ Ssin
F } is a foliated Thom–Mather system of

(N,H) if the following conditions hold.

(TM1) For each pair of singular strata S, S′, we have TS ∩ TS′ 6= ∅ ⇐⇒ S � S′ or S′ � S.

Suppose that S′ ≺ S. The other two conditions are:

(TM2) TS ∩ TS′ = τ−1
S (TS′ ∩ S).

(TM3) ρS′ = ρS′ ◦ τS on TS ∩ TS′ .

As was shown in [34], any closed manifold endowed with an SRF possesses a foliated Thom–
Mather system. For the rest of the paper, we choose some foliated Thom–Mather system.

2.3. Blow up. Molino’s blow up of an SRF produces a new SRF of the same generic dimension
and of smaller depth (see [27] and also [37, 34]). The main idea is to replace every point of the
closed strata by its link (a sphere).

In fact, for a given SRF (X,K) with depth SK > 0, there is another SRF (X̂, K̂) and a continuous

mapping L : X̂ → X, the so-called blow up of (X,K), such that

- depthS
K̂

= depth SK − 1,
- there is a commutative diagram

L−1(X\Smin) (X\Smin) × {−1, 1}

X\Smin

@
@

@
@R

�
�

�
�	

-
f0

L projection

where f0 : (L−1(X\Smin), K̂) → (X\Smin × {−1, 1},K × I) is a foliated diffeomorphism,
- for any minimal (closed) stratum Sc, there is a commutative diagram

L−1(TSc
) DSc

×] − 1, 1[

TSc

@
@

@
@R

�
�

�
�	

-
fS

c

L LSc

where fSc
: (L−1(TSc

), K̂) → (DSc
×] − 1, 1[,K × I) is a foliated diffeomorphism and the

mapping LSc
is defined by LSc

(z, t) = HSc
(z, 2|t|). Note that fSc

: (L−1(Sc), K̂) → (DSc
×

{0},K × I) is also a foliated diffeomorphism.

The stratification induced by K̂ can be described as follows. For each nonminimal stratum
S ∈ SK, there is a unique stratum SL ∈ S

K̂
with L−1(S) ⊂ SL such that S

K̂
= {SL / S ∈ SK

and S ∩ Smin = ∅}. In fact, f0

(
SL ∩ L−1(X\Smin)

)
= S × {−1, 1} and fSc

(
SL ∩ L−1(TSc

)
)

=
(S ∩ DSc

)×] − 1, 1[ if Sc is a closed stratum with Sc � S.
The CERFs and the SRFs are related as follows.

Proposition 2.4. Let X be a closed manifold endowed with an SRF K. For any stratum S of
SK, the foliation KS is a CERF.
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Proof. If S is a closed stratum, it suffices to take the zipper (S,K) and the reppiz S. Consider
now the case in which S is not closed (minimal). We proceed in two steps.

A zipper for (S,K). Proceeding by induction on depthSK, we know that there is a zipper (N,H)

of (SL, K̂). Since the mapping ξ : (S,K) → (SL, K̂) defined by x 7→ f−1
0 (x, 1) is an open foliated

embedding, we can identify (S,K) with its (open) image (ξ(S), K̂). Thus, the foliated manifold
(N,H) is a zipper of (S,K).

A reppiz for (S,K). For each i ∈ {0, . . . , s − 1}, where s = depthH S, write

- Σi for ∪{S′ ∈ SH | depthH S′ 6 i},
- Ti for the union of the disjoint tubular neighborhoods {TS′ / TS′ ⊂ Σi\Σi−1},
- ρi : Ti → [0, 1[ for its radius function, and
- Di = ρ−1

i (0) for the core of Ti.

The family {S ∩ T0, S\ρ
−1
0 ([0, 7/8])} is a saturated open covering of S. The inclusion mapping

I : ((S ∩ T0)\ρ
−1
0 ([0, 7/8]),K) →֒ (S ∩ T0,K) induces an isomorphism for the basic cohomology.

This comes from the fact that the inclusion I is foliated diffeomorphic to the inclusion J : ((S ∩
D0)×]7/8, 1[,K × I) →֒ ((S ∩ D0)×]0, 1[,K × I) (by (5) and because S ∩ Σ0 = ∅). It follows from
the Mayer–Vietoris sequence (see, e.g., [34]) that the inclusion S\ρ−1

0 ([0, 7/8]) →֒ S induces the

isomorphism H∗(S/K) ∼= H∗(
(
S\ρ−1

0 ([0, 7/8])
)
/K).

The family {TS′\ρ−1
0 ([0, 7/8]) | S′ ∈ SF , depthH S′ > 0} is a foliated Thom–Mather system

of (S\ρ−1
0 ([0, 7/8]),H) [34, (1.6)]. The above argument applied to the stratum S\ρ−1

0 ([0, 7/8])
gives H∗

((
S\ρ−1

0 ([0, 7/8])
)

/K
)
∼= H∗

(((
S\ρ−1

0 ([0, 7/8])
)
\ρ−1

1 ([0, 7/8])
)
/K

)
. This procedure leads

us to H∗(S/K) ∼= H∗((S\ρ−1
0 ([0, 7/8]))/K) ∼= H∗((S\(ρ−1

0 ([0, 7/8]) ∪ ρ−1
1 ([0, 7/8])))/K) ∼= · · · ∼=

H∗((S\(ρ−1
0 ([0, 7/8]) ∪ · · · ∪ ρ−1

s−1([0, 7/8])))/K). Take U = S\(ρ−1
0 ([0, 7/8]) ∪ · · · ∪ ρ−1

s−1([0, 7/8])),
which is an open saturated subset included into S. By construction, the inclusion U →֒ S induces
the isomorphism H∗(S/K) ∼= H∗(U/K). This gives (a).

Let K = S\(ρ−1
0 ([0, 1/8[)∪ · · · ∪ ρ−1

s−1([0, 1/8[)). This is a subset of S containing U . Its closure in

S is K = S\(ρ−1
0 ([0, 1/8]) ∪ · · · ∪ ρ−1

s−1([0, 1/8])) ⊂ S\
(
(ρ−1

0 ([0, 1/8[))¡ ∪ · · · ∪ (ρ−1
s−1([0, 1/8[))

¡) =

S\
(
ρ−1
0 ([0, 1/8[) ∪ · · · ∪ ρ−1

s−1([0, 1/8[)
)

= S\(ρ−1
0 ([0, 1/8[) ∪ · · · ∪ ρ−1

s−1([0, 1/8[)), since S\S ⊂ Σs−1

= ρ−1
0 ({0}) ∪ · · · ∪ ρ−1

s−1({0}). Thus, K is closed in S, and hence a compact set. This gives (b).

2.5. Basic cohomology. As in the regular case, the basic cohomology H∗(X/K) is the co-
homology of the complex Ω∗(X/K) of basic forms (cf. [44]). A differential form ω is basic if
iXω = iXdω = 0 for every vector field X tangent to F .

Associated with a covering {U, V } of X by saturated open subsets, we have the Mayer–Vietoris
short exact sequence 0→ (Ω∗(X/K), d)→ (Ω∗(U/K), d) ⊕ (Ω∗(V/K), d)→ (Ω∗((U∩V )/K), d)→ 0,
where the mappings are defined by restriction (the proof is the same as that of Lemma 2.1.1 in [34]
for the regular case).

3. TAUTNESS IN THE NONCOMPACT CASE
We prove in this section that the above cohomological characterizations of the tautness of an

RF F are still valid if the manifold is noncompact, whereas the foliation F is a CERF.
For the rest of this section, we fix a CERF F defined on a manifold M . We also fix a zipper

(N,H) and a reppiz U .
3.1. Tautness class of F. Since N is compact, we see from Theorem 1.4.5 that M possesses

a D-metric µ. The tautness class of (M,F) is the class κ = [κµ] ∈ H1(M/F) (cf. the text below
Theorem 1.4.4). This class is well defined by the following proposition.

Proposition 3.1.1. Any two D-metrics on (M,F) define the same tautness class.

Proof. Fix a zipper (N,H) and a reppiz U . Since N is compact, the tautness class κN is well
defined. Let µ be a D-metric on M . The key point of the proof is to relate the class [κµ] to κN .

It follows from 2.1 (a) and (b) that {M,N\U} is a saturated open covering of M . It possesses a
subordinated partition of the unity {f, g} made up by basic functions [34]. Consider a D-metric ν
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on N , which always exists since N is compact. Thus, the metric λ = fµ + (1− f)ν is a bundle-like
metric on N with λ|U = µ|U , which is a D-metric. This gives κλ,b|U = κµ|U = κµ|U ((3) and (2)).
Denote by I : U → M and J : U → N the natural inclusions. We have

I∗[κµ] = [κµ|U ] = [κλ,b|U ] = J∗[κλ,b] = J∗
κN .

Consider another D-metric µ′ on M . The above relation gives I∗[κµ] = I∗[κµ′ ]. It follows from 2.1
(c) that [κµ] = [κµ′ ].

The first characterization of the tautness is the following assertion.

Theorem 3.2. Let M be a manifold endowed with a CERF F . Then the following two state-
ments are equivalent.

(a) The foliation F is taut.

(b) The tautness class κ ∈ H1(M/F) vanishes.

Proof. Let us prove the two implications.

(a) ⇒ (b). There is a D-metric µ on M with κµ = 0. Then κ = [κµ] = 0.

(b) ⇒ (a). See [43, Prop. 7.6].4

For the second characterization of the tautness, we use the twisted basic cohomology H∗
κµ

(M/F),
where µ is a D-metric. Note that this cohomology does not depend on the choice of the D-metric
(cf. Proposition 3.1.1 and assertion (c) above Example 1.1).

Theorem 3.3. Let M be a manifold endowed with a CERF F . Consider a D-metric µ on M .
Then the following two assertions are equivalent.

(a) The foliation F is taut.

(b) The cohomology group H0
κµ

(M/F) is R.

Otherwise, H0
κµ

(M/F) = 0.

Proof. We proceed in two steps.

(a) ⇒ (b). If F is taut, then κ = [κµ] = 0. Thus, H0
κµ

(M/F) ∼= H0(M/F) = R.

(b) ⇒ (a). If H0
κµ

(M/F) 6= 0, then there is an f , 0 6= f ∈ Ω0(M/F), with df = fκµ. The set

Z(f) = f−1(0) is clearly a closed subset of M . Let us show that it is also open. Take x ∈ Z(f)
and consider a contractible open subset V ⊂ M containing x. Thus, there is a smooth mapping
g : V → R with κµ = dg on V . The calculation

d(fe−g) = e−gdf − fe−gdg = e−gfκµ − e−gfκµ = 0

shows that fe−g is constant on V . Since x ∈ Z(f), we have f ≡ 0 on V , and therefore x ∈ V ⊂ Z(f).
This shows that Z(f) is open.

Since M is connected, we have Z(f) = ∅. It follows from d(log |f |) = (1/f)df = κµ that κ = 0.
The foliation F is taut.

We have also proved that H0
κµ

(M/F) 6= 0 ⇒ H0
κµ

(M/F) = R.

3.3.1. Remark. To prove that (b) ⇒ (a), we do not need F to be a CERF, whereas the
existence of a D-metric µ is in use (see [43, Prop. 7.6]).

For the third characterization, we must extend the basic Poincaré duality to the noncompact
case. We find in [38] another version of this Poincaré duality using the cohomological orientation
sheaf instead of the twisted basic cohomology used above (compare also with [43, Prop. 7.54]).

Theorem 3.4. Let M be a manifold endowed with a transversally oriented RF F possessing a
zipper. Consider a D-metric µ on M . If n = codimF , then H∗

c (M/F) ∼= Hn−∗
κµ

(M/F) .

Proof. See Appendix.

The third characterization of tautness is as follows. Compare with [43, Prop. 7.56].

4At the beginning of Chapter 7 of [43], it is said that the manifold M must be compact. In fact, this condition is

not necessary for the proof of Proposition 7.6.
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Theorem 3.5. Let M be a manifold endowed with a CERF F . Suppose that F is transversally
oriented. If n = codimF , then the following two assertions are equivalent.

(a) The foliation F is taut.
(b) The cohomology group Hn

c (M/F) is R.

Otherwise, Hn
c (M/F) = 0.

Proof. It suffices to apply Theorem 3.4 and Theorem 3.3.

As a direct application, we extend the scope of a well-known result for closed manifolds (see
[1, Cor. 6.6]) to arbitrary CERFs.

Corollary 3.6. Any codimension-one CERF is taut.

Proof. Let F be a codimension-one CERF defined on a manifold M . Without loss of generality,
we can suppose that F is transversally oriented [1, Lemma 6.3]. Proceeding by contradiction,
suppose that F is not taut. Then H0

κµ
(M/F) = 0 by Theorem 3.3, and κ 6= 0 by Theorem 3.2.

Thus, H1 (M/F) 6= 0. Now H0
κµ,c (M/F) 6= 0 by Remark 4.11 (b), and hence H0

κµ
(M/F) 6= 0.

Theorem 3.4 yields H1
c (M/F) 6= 0, a contradiction.

4. APPENDIX
This appendix is devoted to the proof of Theorem 3.4. We distinguish two cases following the

orientability of M . Let us first introduce two technical tools.
4.1. Bredon’s Trick. The Mayer–Vietoris sequence allows us to make computations if the

manifold is equipped by a suitable finite covering. The passage from the finite case to the general
one can be carried out by using an adapted version of Bredon’s trick, [3, p. 289], which we present
now.

Let X be a paracompact topological space and let {Uα} be an open covering, closed with respect
to finite intersections. Suppose that Q(U) is a statement about open subsets of X, satisfying the
following three properties:

(BT1) Q(Uα) is true for each α;
(BT2) Q(U), Q(V ), and Q(U ∩ V ) =⇒ Q(U ∪ V ), where U and V are open subsets of X;
(BT3) Q(Ui) =⇒ Q(∪iUi), where {Ui} is an arbitrary disjoint family of open subsets of X.

Then Q(X) is true.

4.2. Mayer–Vietoris. Associated with a covering {U, V } of M by saturated open subsets is
the Mayer–Vietoris short exact sequence

0 → (Ω∗(M/F), d) → (Ω∗(U/F), d) ⊕ (Ω∗(V/F), d) → (Ω∗((U ∩ V )/F), d) → 0,
where the mappings are defined by restriction (see, e.g., [34]). In the context of compact support,
we have the Mayer–Vietoris sequence

0 → (Ω∗
c ((U ∩ V )/F) , d) → (Ω∗

c (U/F) , d) ⊕ (Ω∗
c (V/F) , d) → (Ω∗

c (M/F) , d) → 0,
where the mappings are defined by extension (see, e.g., [34]). Finally, for the twisted basic coho-
mology, we have the Mayer–Vietoris sequence

0 → (Ω∗(M/F), dκµ
) → (Ω∗(U/F), dκµ

) ⊕ (Ω∗(V/F), dκµ
) → (Ω∗((U ∩ V )/F), dκµ

) → 0,
where the mappings are defined by restriction.

Orientable case

4.3. Integration. To define the duality operator, we choose (a) an oriented manifold M , (b) a
transversally oriented RF F (TORF for short) on M , and (c) a D-metric µ on (M,F). We say that
(M,F , µ) is a D-triple. The associated tangent volume form is χµ (it exists since F is also oriented).
With all these ingredients, we define a morphism

∫
M

: H∗
c (M/F) −→ Hom

(
Hn−∗

κµ
(M/F); R

)
=(

Hn−∗
κµ

(M/F)
)⋆

by
∫

M
([α])([β]) =

∫
M

α ∧ β ∧ χµ. Here n = codimM F . This operator is well
defined since M is oriented and we have the Rummler formula

iY1
· · · iYr

dχµ + χµ(Y1, . . . , Yr) · κµ = 0, (6)

where {Y1, . . . , Yr} are vector fields tangent to TF and r = dimF [43]. We prove in this section
that the operator

∫
M

is an isomorphism.

Before studying the general case, we consider first some special cases.
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Lemma 4.4. Suppose that the D-triple (M,F , µ) is (E × R, E × I, µ), where (E, E) is a closed

foliated manifold and the leaves of E are dense. Then the operator
∫

M
is an isomorphism.

Proof. For the proof of the lemma, we proceed in several steps. Introduce the following notation.
For a differential form (or Riemannian metric) ω on E × R, denote by ω(t) the restriction I∗t ω,
where It : E → E × R is defined by It(x) = (x, t) for any t ∈ R.

First Step. The cohomology H∗
c ((E × R)/E × I). Consider a smooth compactly supported func-

tion f : R → [0, 1] such that
∫

R
fdt = 1. As is known, the correspondence [γ] 7→ [fγ∧dt] establishes

an isomorphism between H∗(E/E) and H∗+1
c ((E × R)/E × I) [34]. In fact, this isomorphism does

not depend on choice of f .

Second Step. The cohomology H∗
κµ

((E × R)/E × I). Note that the metric µ(0) is a D-metric (1).

Thus, we have two D-metrics on E × R, µ and µ(0) + dt2, with κµ(0)+dt2 = κµ(0). Since E × I is a

CERF (it suffices to take E×]−1, 1[ as a reppiz and (E×S
1, E ×I) as a zipper), there is a function

g ∈ Ω0((E × R)/E × I) with κµ = κµ(0) +dg (cf. Proposition 3.1.1). Since the leaves of E are dense
in N , the (basic) function g is smooth on R.

We know (see (c) above Example 1.1) that the assignment [ω] 7→ [egω] establishes an isomorphism
between H∗

κµ(0)
((E × R)/E × I) and H∗

κµ
((E × R)/E × I). The usual technique shows that the as-

signment [ω] 7→ [ω] establishes an isomorphism between H∗
κµ(0)

(E/E) and H∗
κµ(0)

((E × R)/E × I) .

Last Step. Note that (E, E , µ(0)) is a D-triple. Since E is compact, the morphism∫

E

: H∗(E/E) −→
(
Hn−1−∗

κµ(0)
(E/E)

)⋆
, (7)

defined by
∫

E
([γ])([ζ]) =

∫
E

γ ∧ ζ ∧ χµ(0), is an isomorphism [21]. Following the previous steps, it

suffices to show that the morphism
∫ #

E
: H∗(E/E) −→

(
Hn−1−∗

κµ(0)
(E/E)

)⋆
defined by

∫ #

E
([γ])([ζ]) =

∫
E×R

fegγ ∧ dt ∧ ζ ∧ χµ is an isomorphism. Let us prove that
∫ #

E
is a monomorphism. Consider

[γ] ∈ H∗(E/E) with
∫ #

E
([γ]) ≡ 0. We have

∫
R

f(t)eg(t)
(∫

E
γ ∧ ζ ∧ χµ(t)

)
dt = 0 for every [ζ] ∈

Hn−1−∗
κµ(0)

(E/E) and any smooth compactly supported function f : R → [0, 1] with
∫

R
f = 1. Thus,∫

E
γ ∧ ζ ∧ χµ(t)dt = 0 for any [ζ] ∈ Hn−1−∗

κµ(0)
(E/E) and any t ∈ R. Hence

∫
E

([γ])([ζ]) = 0 for

every [ζ] ∈ Hn−1−∗
κµ(0)

(E/E). Next,
∫ #

E
is an epimorphism. It follows from (7) that dimH∗(E/E) =

dim
(
Hn−1−∗

κµ(0)
(E/E)

)⋆
, which is finite since E is compact [11]. Thus,

∫ #

E
is also an epimorphism.

Lemma 4.5. Let (M,µ,F) be a D-triple. Suppose that (M,F) possesses a transversally paral-

lelizable zipper. Then
∫

M
is an isomorphism.

Proof. Denote by (N,H) the zipper in question. Since H is transversally parallelizable, there
is a fiber bundle π : N → B whose fibers are the closures of the leaves of H. Since M is saturated
for the leaves of HM , it is also saturated for the closures of these leaves. We obtain an open subset
VM ⊂ B with M = π−1(VM ).

Choose an open subset V of VM . The foliation Hπ−1(V ) admits the zipper (N,H). Note that

π−1(V ) is oriented and Hπ−1(V ) is a TORF. Then (π−1(V ),Hπ−1(V ), µπ−1(V )) is a D-triple. Thus,

the operator
∫

π−1(V )
is well defined. We claim that this operator is nondegenerate. Then the proof

can be completed by taking V = VM .
Let (E, E) be a generic fiber of π. The manifold E is closed, and the leaves of E are dense

in E. We know that the fibration π : π−1(V ) → V has a foliated atlas A = {ϕ : (π−1(U),H) −→
(U × E,I × E)}. Suppose that the covering U = {U | ∃(U,ϕ) ∈ A} is a good covering of V (i.e., if
U1, . . . , Uk ∈ U , then the intersection V = U1 ∩ · · · ∩Uk is diffeomorphic to R

dimB [4]) and is closed
with respect to finite intersections. Consider the statement Q(U) claiming that the integration

operator
∫

π−1(U)
is an isomorphism, where U ⊂ V is an open subset. Following Bredon’s trick, it

suffices to prove (BT1), (BT2), and (BT3) with respect to the covering U .

+ (BT1). It follows directly from the Lemma 4.4.

+ (BT2). The integration operator
∫

commutes with the restriction and inclusion operators. It
suffices to apply the five–lemma to the Mayer–Vietoris sequences in 4.2.
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+ (BT3). Straightforward.

4.6. Frame bundle. Let (M,µ,F) be a D-triple possessing a zipper (N,H). Consider the bun-

dle p : Ñ → N of transverse oriented orthonormal frames of N [25]. It is an SO(n)-principal bundle.

The canonical lift H̃ of H is a transversally parallelizable foliation on the closed manifold Ñ with

codim
Ñ
H = n + dim SO(n). The restriction bundle morphism p∗ : T H̃ → TH is an isomorphism.

We can lift (M,F , µ) as follows.

- Lifting F . Since M is a saturated open subset of (N,H), M̃ = p−1(M) is a saturated open

subset of (Ñ , H̃). Denote by F̃ the restriction of H̃ to M̃ . Note that F̃ is transversally parallelizable

(and thus a TORF). The manifold M̃ is oriented since p : M̃ → M is a SO(n)-bundle and M is

oriented. The foliation F̃ possesses (Ñ , H̃) as a zipper.
- Lifting µ. Consider the decomposition µ = µ1+µ2 with respect to the orthogonal decomposition

TM = TF ⊕ (TF)
⊥µ . Since the restriction bundle morphism p∗ : T F̃ → TF is an isomorphism, we

have the decomposition TM̃ = T F̃ ⊕p−1
∗ (TF)

⊥µ . Moreover, since (M̃, F̃) is a Riemannian foliated

manifold (TP in fact), there is a Riemannian metric ν2 on p−1
∗ (TF)

⊥µ such that the Riemannian

metric ν = p∗µ1+ν2 is bundle-like on (M̃ , F̃). Then the associated volume forms satisfy χν = p∗χµ.
Rummler’s formula (6) gives

κν = p∗κµ. (8)

We conclude that (M̃, F̃ , ν) is a D-triple possessing a transversally parallelizable zipper. By

Lemma 4.5, the integration operator
∫

M̃
: H∗

c

(
M̃/F̃

)
−→

(
Hn+ℓ−∗

κν

(
M̃/F̃

))⋆
is an isomorphism.

Here ℓ = dimSO(n). We shall prove Theorem 3.4 by relating (M,F , µ) with (M̃ , F̃ , ν) with the
help of two spectral sequences.

4.7. Spectral sequence.5 Let F pΩp+q
c

(
M̃/F̃

)
=

{
ω ∈ Ωp+q

c

(
M̃/F̃

)
| iXu0

· · · iXuq
ω = 0

for each {u0, . . . , uq} ⊂ g
}

be the usual filtration, where Xu ∈ X(M̃ ) is determined by an
element u ∈ g (the Lie algebra of SO(n)). It induces a filtration in the differential complex

I
K∗ =

(
Ω∗

c

(
M̃/F̃

))SO(n)
by F p

I
Kp+q =

I
Kp+q∩F pΩ∗

c

(
M̃/F̃

)
, leading us to a first-quadrant spec-

tral sequence
I
Ep,q

r such that

(a)
I
Ep,q

r ⇒ Hp+q
c

(
M̃/F̃

)
, and

(b)
I
Ep,q

2
∼= Hp

c (M/F) ⊗ Hq(SO(n)).

Let us prove this. The inclusion
I
K∗ →֒ Ω∗

c

(
M̃/F̃

)
induces an isomorphism in cohomology. This

is a standard argument based on the fact that SO(n) is a connected compact Lie group [15, Th. I,
Chap. IV, Vol. II]. This gives (a).

Denote by γu = iXu
ν the associated fundamental differential form. Note that the assignment

α ⊗ u 7→ α ∧ γu induces the identification
⊕p+q=∗

(
F pΩp

c

(
M̃/F̃

)
⊗ ∧qg

)
= Ω∗

c

(
M̃/F̃

)
. (9)

Thus,
I
Ep,q

0
∼=

(
F pΩp

c

(
M̃/F̃

)
⊗

∧q
g
)SO(n)

. A straightforward calculation gives (see also [15, (9.2),
Vol. III]) d0 = − Identity⊗ δ, where d0 is the 0-differential of the spectral sequence and δ is the

differential of ∧∗g. This gives
I
Ep,q

1
∼=

(
F pΩp

c

(
M̃/F̃

))SO(n)
⊗Hq (SO(n)) [15, 5.28 and 5.12, vol. III].

On the other hand,
(
F pΩp

c

(
M̃/F̃

))SO(n)
=

{
ω ∈ Ωp

c

(
M̃/F̃

) /
iXu

ω = LXu
ω = 0 for each u ∈ g

}
=

p∗Ωp
c (M/F), and hence

I
Ep,q

1
∼= Ωp

c (M/F)⊗Hq (SO(n)). Since d1, the 1-differential of the spectral
sequence, becomes d⊗ Identity, we conclude that

I
Ep,q

2
∼= Hp

c (M/F)⊗Hq(SO(n)). This gives (b).

4.8. Another spectral sequence.6 Let F pΩp+q
(
M̃/F̃

)
=

{
ω ∈ Ωp+q

(
M̃/F̃

)
| iXu0

· · · iXuq
ω =0

for each {u0, . . . , uq} ⊂ g
}

be the usual filtration. The complex
II

K∗ =
((

Ωn+ℓ−∗
(
M̃/F̃

))SO(n))⋆

5This is the spectral sequence of [15, 9.1, Chap. IX, Vol. III].
6This is the spectral sequence of [15, 9.1, Chap. IX, Vol. III] associated with

(
Ω∗

κν

(
M̃/F̃

))
⋆

, which is not a

differential graded algebra.
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admits ∇κν
, the dual of dκν

, as a differential since (8). Consider the filtration F p
II

Kp+q =
{
L ∈

II
Kp+q / L ≡ 0 on

(
Fn−p+1Ωn+ℓ−(p+q)

(
M̃/F̃

))SO(n)}
. A straightforward calculation gives that

F p+1
II

K∗ ⊂ F p
II

K∗ and ∇κν
(F p

II
Kp+q) ⊂ F p

II
Kp+q+1. Thus, it induces a first-quadrant spec-

tral sequence
II

Ep,q
r verifying

(a)
II

Ep,q
r ⇒

(
H

n+ℓ−(p+q)
κν

(
M̃/F̃

))⋆
,

(b)
II

Ep,q
2

∼=
(
Hn−p

κµ

(
M/F

))⋆
⊗

(
Hℓ−q(SO(n))

)⋆
.

Let us prove this. As in 4.7 (a), the inclusion
(
Ω∗

(
M̃/F̃

))SO(n)
→֒ Ω∗

(
M̃/F̃

)
induces an isomor-

phism in the corresponding twisted basic cohomology. This yields (a).

The identification similar to (9) here is ⊕p+q=∗

(
F pΩp

(
M̃/F̃

)
⊗ ∧qg

)
= Ω∗

(
M̃/F̃

)
. Thus,

we obtain
II

Ep,q
0

∼=
((

Fn−pΩn−p
(
M̃/F̃

)
⊗ ∧ℓ−qg

)SO(n))⋆
. A straightforward calculation shows

that the 0-differential of the spectral sequence is the dual of − Identity⊗ δ. This gives
I
Ep,q

1
∼=((

Fn−pΩn−p
(
M̃/F̃

))SO(n))⋆
⊗

(
Hℓ−q(SO(n))

)⋆
. On the other hand,

(
Fn−pΩn−p

(
M̃/F̃

))SO(n)
={

ω ∈ Ωn−p
(
M̃/F̃

) /
iXu

ω = LXu
ω = 0 for each u ∈ g

}
= p∗Ωn−p(M/F), and hence

I
Ep,q

1
∼=(

Ωn−p
(
M/F

))⋆
⊗

(
Hℓ−q

(
SO(n)

))⋆
. Since the 1-differential of the spectral sequence becomes the

dual of dκµ
⊗ Identity (cf. (8)), we conclude that

I
Ep,q

2
∼=

(
Hn−p

κµ
(M/F)

)⋆
⊗

(
Hℓ−q(SO(n))

)⋆
.

Proposition 4.9. Let (M,µ,F) be a D-triple. Suppose that F possesses a zipper, then the

operator
∫

M
is an isomorphism.

Proof. Let ∆:
((

Ω∗
c

(
M̃/F̃

))SO(n)
; d

)
−→

(((
Ωn+ℓ−∗

(
M̃/F̃

))SO(n))⋆
;∇κν

)
be the differential

operator defined by ∆(ω)(η) =
∫

M̃
ω ∧ η ∧ χκν

(cf. 4.3). By the degree reasons, it preserves the

involved filtrations, i.e., ∆ (F p
I
Kp+q) ⊂ F p

II
Kp+q. It induces the morphisms

+ [at ∞-level]

∫

M̃

: Hp+q
c

(
M̃/F̃

)
−→

(
Hn+ℓ−(p+q)

κν

(
M̃/F̃

))⋆
,

+ [at 2-level]

∫

M

⊗

∫

SO(n)

: Hp
c (M/F

)
⊗Hq(SO(n)) −→

(
Hn−p

κµ
(M/F)

)⋆
⊗

(
Hℓ−q(SO(n))

)⋆
.

Since the operators
∫

M̃
and

∫
SO(n)

are isomorphisms (cf. Lemma 4.5), Zeeman’s comparison theorem

proves that
∫

M
is an isomorphism (see, e.g., [23]).

Nonorientable case

For the nonorientable case, it suffices to consider an orientable covering in order to apply the
previous results.

Proposition 4.10. Let F be a TORF defined on a manifold M . Suppose that F possesses a
zipper. Consider µ a D-metric on M . If n = codimF , then H∗

c (M/F) ∼= Hn−∗
κµ

(M/F) .

Proof. Suppose that M is not orientable. Choose a zipper (N,H) of F . Regard µ as a D-metric
on (M,F).

Consider the two-fold orientable covering ⊘ : Ň → N of N . It gives an oriented closed manifold.
Denote by Ȟ the lifted foliation, which is Riemannian. In fact, there is a smooth foliated action
Φ: Z2 × (Ň , Ȟ) → (Ň , Ȟ) such that ⊘ is Z2-invariant and Ň/Z2 = N . Write ♭ : (Ň , Ȟ) → (Ň , Ȟ)
for the foliated diffeomorphism generating this action.

The restriction ⊘ : ⊘−1 (M) → M is a two-fold orientable covering of M . The manifold M̌ =
⊘−1(M) is oriented and Ȟ-saturated. The diffeomorphism ♭ : M̌ → M̌ preserves the foliation F̌
induced by Ȟ by restriction. It preserves the D-metric µ̌ = ⊘∗µ as well.

Since the foliation F is transversally oriented, the foliation F̌ is also transversally oriented.
Moreover, the diffeomorphism ♭ : M̌ → M̌ preserves the transversal orientation of F̌ . It does not
preserve the orientation of M̌ , because M is not an orientable manifold. We see that ♭ does not
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preserve the tangential orientation of F̌ , and this gives

♭∗χµ̌ = −χµ̌. (10)

The foliated manifold F̌ is a TORF on an oriented manifold M̌ with (Ň , Ȟ) as a zipper. Thus,
(M̌, F̌ , µ̌) is a D-triple. It follows from Theorem 3.4 that

∫
M̌

induces an isomorphism

H∗
c

(
M̌/F̌

)
∼= Hn−∗

κµ̌

(
M̌/F̌

)
, (11)

where n = codimM̌ F̌ = codimM F .

On the other hand, the mapping ⊘ induces the isomorphisms H∗
c (M/F) ∼=

(
H∗

c

(
M̌/F̌

))Z2
and

H∗
κµ

(M/F) ∼=
(
H∗

κµ̌

(
M̌/F̌

) )Z2
since ♭∗κµ̌ = κµ̌. By (11), it suffices to prove that

∫
M̌

is Z2-invariant.
This comes from the relation∫

M̌

♭∗α∧β ∧χµ̌
(10)
= −

∫

M̌

♭∗α∧β∧ ♭∗χµ̌
♭−1=♭
==== −

∫

M̌

♭∗α∧ ♭∗♭∗β ∧ ♭∗χµ̌
♭ not orient.
=======

∫

M̌

α∧ ♭∗β∧χµ̌,

where α ∈ Ω∗
c

(
M̌/F̌

)
and β ∈ Ωn−∗

(
M̌/F̌

)
.

4.11. Remarks.

(a) The above proof shows as a by-product that the pairing I : H∗
c (M/F)⊕Hn−∗

κµ
(M/F) −→ R

defined by I([α], [β]) =
∫

M̌
⊘∗α ∧ ⊘∗β ∧ χµ̌ is nondegenerate.

(b) Under the assumptions of Theorem 3.4, we also have H∗ (M/F) ∼= Hn−∗
κµ,c (M/F) , where the

twisted cohomology is with compact supports.
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