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Abstract

Let F be a riemannian flow on a closed manifold M. We stablish a Gysin
sequence relating the de Rham cohomology of M and the basic cohomo-
logy of F. We also give a geometric characterization of the vanishing of
the Euler class. These results generalize the isometric case.
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1 Introduction

Given a smooth free action of the circle S! on a manifold M the de Rham
cohomologies of M and that of the orbit space B are related by a long exact
sequence

... —» HY(B) 5 H"*(B) - H™*(M) - H*"(B) —» - -,

called the Gysin sequence.

A more general Gysin sequence is obtained by considering a smooth action
®:R x M — M preserving a riemannian metric g on M, that is, an isometric
action. Since the orbit space can be very wild (even totally disconnected), the
right cohomology to study the transverse structure is the basic cohomology
H*(M/F) of the flow determined by the action. Of course, when the action
is periodic we are in the previous case and moreover H*(M/F) = H*(B). In
this context there exists the Gysin sequence [7]

oo > H(M/F) S HYA(M/F) - HT*(M) - HY(M/F) - -,
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which we construct in section 3.

In section 4, we describe a third Gysin sequence, which is obtained in the
case of a smooth action ®:R x M — M preserving not a riemannian metric
i on M, but just the restriction of y to the normal bundle of F, that is, a
riemannian action. In this context we have constructed the following Gysin
sequence

o > HY(MJF) S HT?2(M/F) - H2(M) - HYY(M/F) — ---,

where & is the mean curvature of the flow and H};(M/F) is the twisted basic
cohomology (this result has been developed in [13]).

The vanishing of the Fuler class e of the foliation in the isometric case has
a geometrical interpretation: the flow is orthogonal to a fibration (see [16]).
We show that in the riemannian case the vanishing of the corresponding Euler
class also has a geometrical interpretation.

2 Gysin problem

In this paper, M denotes a smooth compact connected manifold without
boundary and F a flow, that is:

- a smooth vector field without zeroes, or
- a smooth action ¥:R x M — M without fixed points.

The right cohomology to study the quotient space M /F (or transverse
structure of F) is the basic cohomology H (M/F). Tt is defined from the
complex of basic differential forms

Q (M/F) ={weQ (M) ixw=ixdw = 0}.

Notice that when the flow is periodic, M/F is an orbifold B (or a manifold if
all the isotropy groups are trivial) and H (M/F) = H (B).

We shall study two particular cases of flows: the isometric flows and more
generally the riemannian flows. For these kind of flows, the cohomological
behavior of the basic cohomology is similar to the cohomological behavior of a
riemannian manifold. The basic cohomology is finite dimensional (cf. [4]) and
it verifies both the Poincaré duality (cf. [7]) and the Hodge theory (cf. [5]).

Since any basic form is a differential form, we have the short exact sequence

*

Q" (M)

0— Q (M/F) — Q (M) — T O

— 0,
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and therefore the long exact sequence, Gysin sequence

it+1 (

o H(MJF) » H (M) > & (M, F) -5 H™ (MJF) > -+
We want to compute the third term of this sequence, the Gysin term, and the
connecting morphism § (cf. [15]).

The periodic case has been treated in [11]. There,

- &' (M, F)=H " (M/F),
- the connecting map is the product by the Euler class e € H ? (M/F), and

- the vanishing of the Euler class is equivalent to the fact that, up to a finite
. 1 . . ;
covering, M = B x S endowed with the action ©(¢,b,2) = (b,e?™2).

3 Isometric flows

The flow F is isometric when it preserves a riemannian metric y of M, that
is,
Lxp=0 or¥ju=u foreach t.

Example 1 The first example is the linear flow of the torus M = T", which
is defined by
<Pt(z1, c ,zn) = (zl . 627ra1t’ 2 627rant)’

where a1, ...,a, € R.

The closure of an orbit on a isometric flow is always a torus and the
induced flow is the linear flow (this a direct consequence of the below (i)).
These tori may have different dimensions. Take for ezample M = S® and
P(t, (21, 22)) = (21 - €2, 20 - €27V2). Here, the closures of the orbits are 2-tori
(12112 + |z2|?> =, 0 < r < 1) and two circles ({z1 = 0},{z = 0}).

The cohomological study of isometric flows is based in the two following rele-
vant properties:

(i) The flow of X lives in Iso (M, i), which is a compact Lie group.

(ii) The differential of the characteristic form x = ixpu € QI(M ) is a basic
form, that is, ,
dx € QO (M/F).

The cohomological class e = [dy] € H” (M/F) is the Euler class. It is impor-
tant to notice that this class does not depend on the choice of u, up to the
normalisation p(X, X) = 1.
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The property (i) implies that the subcomplex of differential forms of M
invariant by the flow computes the cohomology of M. The property (ii) gives
the isomorphism

o

*

Q' (M/F)® Q" (M/F),D) = (@ (M),d),

defined by ®(«, ) = a + X A B, where D(«, ) = (da + dx A 8, —df3). From
the short exact sequence

0— Q' (M/F) — Q' (M/F) @ Q" (M/F) — Q" (M/F) — 0,
we get the Gysin sequence (cf. [8])
o H(M/F) > H M) > H  (M/F) - H"(M/F) > ---.
In other words, we get the following solution for the Gysin problem
- & (M,F)=H " (M/F),
- the connecting map is the product by the Euler class e € H 2(M /F).

Relatively to the vanishing of the Euler class we have (cf. [16])

Proposition 3.1 The Fuler class e € Hz(M/]-") vanishes if and only if there
exists a foliation G transverse to F which is defined by a cycle.

Proof. If vy € QI(M/}") with dX = dry we take w = X — v and we consider the
foliation G defined by w.

On the other hand, let w € Q" (M) be the cycle defining G. From (i) we
can consider that w is an invariant cycle. The flow X is isometric with respect
to the metric

V=w® W+t lug-

Since the new characteristic form is X, = w then we have dX, =dw =0. &

Remark 1 The foliation G can be choosen a fibration. It may exist G trans-
verse to F although e is not 0.
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4 Riemannian flows

4.1 Definitions

A riemannian metric u on M is said to be bundle-like when a geodesic per-
pendicular at one point to a leaf of F remains perpendicular to the leaves at
all of its points (cf. [12]).

Let @ be the normal bundle TM/TF and let pg be the induced metric.
Then, p is bundle-like if the metric pg is invariant by the flow, that is,

Lxpg =0.

It is clear that any isometric flow is a riemannian flow. When a such metric
exists, we shall say that the flow F is riemannian. We can choose a nonsingular
vectorfield X defining F with u(X, X) = 1. The characteristic form is the one-
form X = ixpu.

The geometry of a riemannian flow is similar to the geometry of an iso-
metric flow. For example, the closure L of an orbit is a torus and the induced
flow is linear as in the riemannian case (cf. [2]). Moreover, in both cases,
the closure L possesses an isometric neighborhood. The difference between
riemannian and isometric flows is a global matter. Let us see the classical
example of a riemannian flow which is not an isometric flow.

4.2 An example (cf. [2])

The manifold M = T? is obtained by suspending the diffcomorphism A: T —

2 1
2 : _ .
']I‘w1thA-(1 1).

T3 = T2 x [0, 11/ (u,0)~(Au, 1)+
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Choose the metric u on M by saying that {X;, X2, X3} is an orthonormal
parallelism. Put {X1,Xs,X3,} C Q' (M) the dual forms. We have

Lx, X1 =Xz and Lx,Xo = Lx, X3 = 0.
Relatively to u we have:
- Since Lx,pg = Lx, (X2 ® X2 + X3 ® X3) = 0 then X is riemannian.
- Since Lx, = X3 ® X1 + X1 @ X3 # 0 then X is not isometric.

So, there appears the following natural question: Is there another metric for
which the flow F would be isometric? In other words, is the flow F geodesible?

This is not the case. In fact, since A, Xy = (1/)) - X3 then there is not a
two basic cycle not zero and therefore H ? (’]I‘?;l /F ) = 0, but on the other hand
we know that

Proposition 4.1 (¢f. [10]) Let M be a closed manifold of dimension m en-
dowed with a riemannian flow F. Then F is isometric iff H"  (M/F) # 0.

Taking A = Identity we get an isometric flow on T% = T3, but both

foliations have the same local (saturated) geometrical structure.

4.3 Two main actors

The Gysin sequence that we construct uses the differential forms s and e that
we introduce now. Both of them are semi-basic (ixx = ixe = 0):



J.I. Royo PRIETO AND M. SARALEGI ARANGUREN 187

- the mean curvature one-form k = LxX € Q' (M) (Lx stands for the Lie
derivative) and

- the Euler form e € Qz(M ) which is determined by the condition

e=dX+rAX.

Notice that the flow is isometric (relatively to u) if and only if k = 0. We shall
weaken this condition in the next paragraph.

4.4 Two key points

A riemannian foliation does not necessarily verify the conditions (i) and (ii)
of isometric flows. In this context, the conditions we are going to use are the
following.

(iii) For each leaf L € F there exists a saturated neighborhood U of the
closure L, called Carriére’s neighborhood, such that

— there is a diffeomorphism U — S’ x T* x D"~* mapping L onto
S’ x T* x {0},

— the flow restricted to U is conjugated to the flow obtained by the
suspension of a diffeomorphism 7' x R of TF x D% where T is an
irrational translation and R is a rotation of R*~* (cf. [2]).

Note that the flow is isometric with the canonical metric. In the case of the
Example 4.2 we have that T is an irrational rotation on T = S!, R is the
identity on D"~* =]—1,1[ and therefore U is the product ]—1,1[ x T?.

iv) There exists a bundle-like metric p such that & is a basic cycle and e is
a basic form (cf. [3]).

Consequently, without loss of generality, we shall work with such a bundle-
like metric. The cohomological class [k] € H (M/F) is an invariant of the
flow (cf. [1]). We call it the Alvarez class. This class vanishes if and only if
the flow is geodesible. Since the natural inclusion H (M/F) — H (M) is a
monomorphism then, any riemannian flow on a simply connected manifold is
an isometric flow.
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4.5 Twisted cohomology

To solve the Gysin problem we use the twisted cohomology H, (M /F). This
cohomology is defined from the complex of basic forms Q" (M/F) using the
twisted derivative

dew = dw — K A w.

This cohomology depends on « but only through its class:

*

H, 4(M/F) = H,(M/F),

the isomorphism is just given by w — efw. Similar definitions apply to —x.
In particular, H,(M/F) = H (M/F) when the flow is geodesible. The Euler
form e is in fact a (—k)-twisted cycle. We define the Euler class as e = [e] €
H’ _(M/F). Notice that H(M/F) is not an algebra but we have the wedge
product

AH_(M/F)x H (M|F) — H (M/F).

The twisted cohomology is finite dimensional for a compact manifold and
it appears naturally when one stablishes a Poincar Duality Theorem (cf. [7]).

Proposition 4.2 Let M be an oriented closed manifold of dimension m en-
dowed with a riemannian flow F. The pairing

m—i—1

:H (M/F)x H. "~ (M/F) > R,

K

defined by I(a, B) = [, ABAX, is perfect.

5 The Gysin sequence

The first step to construct the Gysin sequence in the isometric case was the
computation of the cohomology of M by using just the basic data. This was
possible because the flow of X lives on a compact Lie group. In the riemannian
case this is not longer true, so a more sophisticated tool is needed. We use the
local description of the riemannian flow given by Carriére [2] and we get the
following result:

Proposition 5.1 We have the isomorphism:

*

H (9" (M/F) @ Q" (M/F),D) = H (M),

where D(a, 8) = (da+e A B,—dB + k A ).
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Proof. Consider the differential operator
Fyg: (@ (M/F) @ Q" (M/F), D) — (2" (M), d)

defined by Fy(a,8) = a+ X A . A direct calculation using (iv) proves that
Fy is a differential operator. We prove that Fj; induces an isomorphism in
cohomology, which concludes the proof.

Using the usual Mayer-Vietoris techniques, one reduces the problem to
M = U, a Carriére’s neighborhood. Here the flow is geodesible and we can
find a basic function with xk = df on U. Consider the new riemannian metric
w =efp. Then X' = e X, X' =efX, k¥ =0 and € = efe. Since the flow F
is isometric relatively to the metric 4/, then we have already seen that F}, = ®
induces an isomorphism in cohomology. Consider now the differential operator

e (Q(M/F)®Q (M/F),D) — (U (M/F)& Q"  (M/F),D'),

defined by
e(e, ) = (a,e /).

One checks directly that this operators is an isomorphism verifying Fy = Fyoe.
This completes the proof. &

Now, we arrive at the following:

Theorem 5.2 Given a riemannian flow F on a compact manifold M we have
the long exact sequence

o> H' (MJF) » H (M) - H. "(MJF) S B (M/F) > -,

where the connecting map & is the product by the Euler class e € Hz_K(M/}")
up to sign.

Proof. The long exact sequence comes from the result from the above Propo-
sition and from the short exact sequence

0— (Q(M/F),d) = (8 (M/F)®Q ' (M/F),D) - (" (M/F),d.) = 0.

For the connecting map we consider a basic differential p-form 8 with d,8 = 0.

Since D(0,8) = (e A 8,0) then 6[5] = [(—1)Pe A ] L]
In other words, we get the following solution for the Gysin problem:
- &' (M,F) = H, (M/F),

- the connecting map is the product by the Euler class e € H~ (M/F).
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5.1 Vanishing of the Euler class

The riemannian flow determines the Euler class e € H”_(M/F). This class
depends a priori on the choice of the metric u. However, we obtain the fol-
lowing;:

Proposition 5.3 Let 1 and pa be two bundle-metrics with basic mean cur-
vature forms k1 and ky. Consider the canonical (up to a multiplicative positive
constant) isomorphism

T H, (M/F) — H., (M/F),

defined from the differential operator T'(w) = efw, where df = ko — k1. Then,
T*[e2] and [e1] are proportional. In particular, the vanishing of the Euler class
does not depend on the choice of the bundle-like metric, but just on F.

Proof. Using the same techniques employed in the proof of the above Theorem
we can find an isomorphism

*

H (Q*,nj(M/]-") ®Q T (M/F), Dj) ~ H

*

L, (M),
with differential Dj(c, 8) = (d—x;a + €; A B, —df), for j = 1,2. This leads us
to the twisted Gysin sequence
i i i— 0j i
o HL (M/F) — H-, (M)~ H™ (M/F) 3 HS (M/F) = -
The connecting morphism is the multiplication by the Euler class e; and then
ej = 0;(1). The differential isomorphism

* *

(T*,1d.): (., (M/F) @ Q" (M/F),Dy) — (., (M/F)® Q" (M/F),Dy)

—K2

induces a chain isomorphism between both exact sequences and therefore
T(eg) = T62(1) = (51(1) = €e1. *

In both the periodic and the isometric cases the vanishing of the Euler
class indicates the existence of a particular foliation transverse to the flow.
This is also the case for a riemannian foliation. Recall that a foliation G
transverse to X is defined by a connection form w satisfying:

wX)=1 and dw=7Aw.
The form 7 is said to be the torsion of G.

Proposition 5.4 An Euler class e € Hi,e(M/}") vanishes if and only if there
exists a foliation G transverse to F whose torsion T is basic.
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Proof. If e = 0 then there exists v € QI(M/]-") with e =dy+ kK A7y. Take G
defined by w = X — . It verifies w(X) = 1 and dw = dX — dy = kK A w which
gives the basic torsion 7 = k.

Consider on the other hand the metric ¥ = w @ w + pg. It is a bundle-
like metric since pg = vg. The characteristic form is X, = w and therefore
dX, = T AX,. So k, = T is a basic cycle and e, = 0. The metric v verifies (iv)
and therefore e, = 0. &

5.2 An example (cf. [6], [14])

The vanishing of the Euler class and the Alvarez class are independent. A
trivial bundle and the Hopf fibration are immediate examples of isometric
flows with zero and nonzero Euler class, respectively. Example 4.1 shows
a non-isometric riemannian flow with zero Euler class. Now, we describe a
riemannian flow which is not isometric and has nonzero Euler class.
Consider the matrix A of example 4.1 and the matrixes B,I € SL(4,7Z)

given by:
(A O _(Idy O
B—(O A) and I—(O Idg)’

which determine automorphisms of the torus T*. We define M® as the orbit
space of the action ¥ : Z2 x (T* x R?) — (T* x R?), given by:

\P((k’l)a [yl,yQ,Zla zQ]’ (t’ :L')) = (BkoIl([ylayQ’ZlazQ])a (:L‘ +k,t+ l))

We can think of it as a fibration = : M® — T? with fiber T*. A parallelization
of M is given by: aligned=;array

ad 0 0 0
= 8_55, TZ&, Y;:)‘E(az—"i_bz—)a

I I IO A TN e
Z; = .Z‘)\i(aia—yl + bza—yg) + Z((I,za—z1 + 16—22)’
where A\ and Ay are the eigenvalues of A, and {(a1, b1), (a2, b2)} an orthonor-
mal basis of eigenvectors. Denote by {a,,71,72,d1,02} the dual basis of
1-forms. Choose a metric u on M® by saying that {X,T,Y1,Ys, Z1, Z,} is an
orthonormal parallelism. The flow F defined by Y7 is riemannian respect to
u, for Ly, pg = 0. We also obtain from the formulae above:

X=mv, k=ogA)a, e=—-BAd.

Notice that both x and e are basic. As [a] = 7*([]), where [n] is one of the
generators of H' (M), we have that the Alvarez class of F is not zero. To see
that the Euler class of F does not vanish, we first notice that the —x—twisted
cohomology of F can be computed using w-basic functions as coefficients. A
direct computation shows that no basic 1-form w can satisfy d_,w = e.
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