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The Gysin Sequence for Riemannian Flows

José Ignacio Royo Prieto

Abstract. Let F be a riemannian flow on a closed manifold M . The Gysin
sequence relating the de Rham cohomology of M and the basic cohomology
of F has been constructed for isometric flows in [7]. In this paper, we extend
this result to riemannian flows. We also give a geometric characterization of
the vanishing of the Euler class, similar to the one given in [11], and describe
an example of a non-isometric riemannian flow with nonzero Euler class.

1. Introduction

Let M be a (n + 1)-dimensional closed smooth manifold. A smooth action
Ψ : R × M −→ M without fixed points defines a 1-dimensional foliation F . We
are interested in the relation between the de Rham cohomology of M and the
cohomology of the orbit space M/F . Since this space may be somewhat pathological
from the cohomological point of view, we shall use the basic cohomology, which has
proven to be a rich and adapted invariant for the study of M/F . When the action is
periodic, we have indeed a circle action, and the mentioned relation is given by the
classical Gysin sequence. In [7], the Gysin sequence has also been constructed for
isometric flows, i.e., actions R× (M,µ) −→ (M,µ) preserving a riemannian metric
µ on M . We denote by Ω∗(M/F) the complex of basic forms and by H∗(M/F) its
cohomology. The Gysin sequence obtained is:
(1.1)

· · · → Hi(M/F) −−−−→ Hi(M) −−−−→ Hi−1(M/F)
∧[dχ]−−−−→ Hi+1(M/F) → . . .

where the connecting morphism is multiplication by the Euler class [dχ] ∈ H2(M/F),
being χ the characteristic form of the flow. The main tool used to get this is the
quasi-isomorphism (i.e., isomorphism in cohomology):

(1.2) (Ω∗(M), d) ' (Ω∗(M/F)⊕ Ω∗−1(M/F), D)

where the differential D is given by D(α, β) = (dα + dχ ∧ β,−dβ). In the proof,
it is crucial that the closure of the 1-parameter group {Ψt}t in the group of diffeo-
morphisms of M is compact.
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In this paper we extend the scope of the Gysin sequence to the case of rie-
mannian flows. A flow F on M is riemannian if there exists a riemannian metric µ
which is bundle-like, i.e., if the orthogonal component of µ is invariant (note that
in the isometric case, the entire metric must be invariant). There are two main
differences with the isometric case. In one hand, dχ is basic for an isometric flow,
but in the riemannian case, we have a decomposition dχ = e+κ∧χ, where e and κ
are, respectively, the Euler form and the mean curvature form of the flow. We can
suppose these two forms to be basic for a suitable bundle-like metric µ (see [5]).
On the other hand, the closure of {Ψt}t is no longer necessarily compact. So, we
need a different approach, using strongly the local structure of the flow, to get a
decomposition like (1.2). The quasi-isomorphism we get is:

(1.3) (Ω∗(M), d) ' (Ω∗(M/F)⊕ Ω∗−1(M/F), D),

with a new differential D(α, β) = (dα + e ∧ β,−dβ + κ ∧ β), where the new term
κ∧ β appears, showing the difference with the isometric case. The Gysin sequence
derived canonically is:

· · · → Hi(M/F) −−−−→ Hi(M) −−−−→ Hi−1
κ (M/F)

∧[e]−−−−→ Hi+1(M/F) → . . .

where H∗
κ(M/F) denotes the twisted cohomology, and the connecting morphism

is, up to sign, multiplication by the Euler class [e] ∈ H2
−κ(M/F). We also give

a geometric characterization of the vanishing of the Euler class similar to the one
given in [11]. The vanishing of the Euler class is equivalent to the presence of a
foliation transverse to the flow, with an additional condition, stated in Theorem
4.2. These results have been announced in [9]. Here, we also describe an example
of a non-isometric riemannian flow with nonzero Euler class.

2. Riemannian flows

In this section, we review some well known facts about riemannian flows. Recall
that a flow is a 1-dimensional oriented foliation. A flow F is riemannian if there
exists a holonomy invariant riemannian metric µ. Such a metric is said to be
bundle-like. We can choose a smooth nonsingular vector field X defining F such
that µ(X, X) = 1. We call the 1-form χ = iXµ the characteristic form of the flow,
where iX denotes the contraction by X. The mean curvature form of F is defined
by κ = LXχ, where LX is the Lie derivative respect to X. These two forms depend
on the flow F and the metric µ. A form ω ∈ Ω∗(M) is basic if for every vector field
V tangent to F , we have iV ω = iV dω = 0. We denote the complex of basic forms
as Ω∗(M/F), and its cohomology by H∗(M/F).

It has been shown in [5] that we can choose a bundle-like metric µ such that κ
is basic. In this conditions, κ is closed, and defines a class [κ] ∈ H1(M/F), which
does not depend on the metric µ (see [1]), and that vanishes if and only if the
flow is isometric. We shall call this invariant of F the Álvarez class. We have the
decomposition:

(2.1) dχ = e + χ ∧ κ.

The 2-form e thus defined is called the Euler form, and satisfies de = −κ ∧ e.
We denote by H∗

κ(M/F) the twisted cohomology, which is the dual of the basic
cohomology (see [8]), i.e. Hi(M/F) ∼= Hn−i

κ (M/F) for every i ≥ 0. The twisted
cohomology can be described as the cohomology of the basic complex endowed
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with the κ-twisted differential dκω = dω − κ ∧ ω. We also define the (−κ)-twisted
differential d−κω = dω + κ ∧ ω.

The local structure of a riemannian flow has been described by Carrière in [4].
Let L be a leaf of the flow. Then, the closure of L is diffeomorphic to a torus Tk+1,
and there exists a neighbourhood U of L such that F restricted to U is conjugated
to the flow obtained by suspension of a diffeomorphism (T, R) of Tk×Dn−k, where
T is an irrational traslation of Tk and R a rotation of Rn−k. We shall refer to such
a neighbourhood U ∼= Tk+1×Dn−k as a Carrière neighbourhood. If we consider the
metric induced in U by the flat metric of Tk+1 × Dn−k, both the mean curvature
form and the Euler form vanish. Hence, the flow restricted to U is isometric.

3. Gysin sequence

The short Gysin sequence is the following sequence of differential complexes:

(3.1) 0 −→ Ω∗(M/F) ι−−−−→ Ω∗(M)
ρ−−−−→ Ω∗(M)/Ω∗(M/F) −→ 0

where ρ is the proyection induced by the inclusion ι. The cohomology of the complex
Ω∗(M)/Ω∗(M/F) is called the F-relative de Rham cohomology, and some of its
properties have been studied in [10]. Our aim is to describe it in terms of basic
forms. To achieve this, we use the following:

Proposition 3.1. In the above conditions, we have the quasi-isomorphism:

(3.2)
Φ : (Ω∗(M/F)⊕ Ω∗−1(M/F), D) −→ (Ω∗(M), d)

(α, β) 7−→ α + χ ∧ β

where the differential D is defined by D(α, β) = (dα + e ∧ β,−dβ + κ ∧ β).

Proof. Denote by F the foliation induced by the closures of the leaves of F .
We can consider a basis of the stratified manifold M/F consisting of projections of
Carrière neighbourhoods. Applying a Mayer-Vietoris argument (see [3], p.289) to
M/F , it suffices to prove the result for a Carrière neighbourhood U , and this holds
due to the isometric case. ¤

From 3.2 and 3.1, we obtain that the F-relative cohomology and the twisted
cohomology are quasi-isomorphic. This leads us to the long Gysin sequence:

Theorem 3.2 (Gysin sequence). Let F be a riemannian foliation on the closed
manifold M , and choose a metric µ with basic mean curvature form. Then, we
have the following long exact sequence:
(3.3)

· · · → Hi(M/F) −−−−→ Hi(M) −−−−→ Hi−1
κ (M/F)

∧[e]−−−−→ Hi+1(M/F) → . . .

where the connecting morphism is, up to sign, multiplication by the Euler class
[e] ∈ H2

−κ(M/F).

In the case of an isometric flow, we can choose a metric such that the mean
curvature form vanishes. So, (3.3) generalizes (1.1).

Remark 3.3. The long Gysin sequence does not depend on the metric µ.

Remark 3.4. From the quasi-isomorphism (3.2) and the duality result of [8],
we obtain that the terms E·,1

2 and E·,0
2 in the spectral sequence of a riemannian

flow are dual. This has been proven with more generality in [2] using analytic
techniques, different from our geometric approach.
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4. Vanishing of the Euler class

The Euler form e vanishes if and only if the orthogonal complement of F is
involutive. These equivalent conditions have been weakened in [11] for isometric
flows. In that case, the Euler class [dχ] ∈ H2(M/F) is an invariant of the foliation,
and its vanishing is equivalent to the presence of a fibration transverse to F . For a
riemannian flow, we prove that the Euler class [e] ∈ H2

−κ(M/F) does not depend
on the metric in the sense of the following:

Proposition 4.1. Let µ1 and µ2 be two bundle-like metrics with basic mean
curvature forms κ1 and κ2. Consider the canonical (up to a multiplicative positive
constant) isomorphism:

(4.1) ϕ : H2
−κ2

(M/F) −→ H2
−κ1

(M/F)

given by ϕ([ω]) = [efω], where df = κ1−κ2. Then, ϕ([e2]) and [e1] are proportional.
In particular, the vanishing of the Euler class does not depend on µ, but just on F .

Proof. Proceeding as in Proposition 3.1, we get the twisted Gysin sequence:

−→ Hi
−κ(M/F) −−−−→ Hi

−κ(M) −−−−→ Hi−1(M/F)
∧[e]−−−−→ Hi+1

−κ (M/F) −→
for every basic κ. The isomorphism (4.1) induces a chain morphism between the
twisted Gysin sequences for κ1 and κ2, yielding the result. ¤

Let G be a foliation transverse to a nonsingular vector field X defining F .
There is a unique 1-form ω determined by kerω = TG and iXω = 1. We mean by
a torsion of G respect to X a 1-form τ such that dω = ω ∧ τ . Note that if a torsion
is basic, for F , then it must be LXω.

Theorem 4.2. For a riemannian flow, the following conditions are equivalent:
(1) the Euler class vanishes;
(2) there exists a foliation G transverse to F , with basic torsion.

Proof. Assume (1) and take γ ∈ Ω1(M/F) such that d−κγ = e. Then,
ω = χ − γ is integrable, defining a foliation G that satisfies (2). For the converse,
pick a bundle-like metric µ and construct ν = ω ⊗ ω + µG . Then, ν is bundle-like,
κν is basic, and eν = 0. ¤

Remark 4.3. The vanishing of the Euler class of F implies the vanishing of
the Godbillon-Vey class of the transverse foliation G described in Theorem 4.2.

5. An example

The vanishing of the Euler class and the Álvarez class are independent. A
trivial bundle and the Hopf fibration are immediate examples of isometric flows
with zero and nonzero Euler class, respectively. In [4], Carrière exhibits a non-
isometric riemannian flow whose Euler class is zero. In this section, we describe a
riemannian flow where neither the Álvarez class or the Euler class vanish.

Consider the matrix B =
(

2 1
1 1

)
∈ SL(2,Z), and its two real eigenvalues λ1

and λ2, which satisfy 0 < λ1 < 1 < λ2 and λ1λ2 = 1. Denote by {(a1, b1), (a2, b2)}
an orthonormal basis of eigenvectors. The matrixes of SL(4,Z) given by:

A =
(

B 0
0 B

)
and I =

(
Id2 Id2

0 Id2

)
,
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define automorphisms of the torus T4. We define M6 as the suspension of the
representation ρ : Z2 −→ Diff(T4) given by ρ(k, l) = Ak ◦ I l. More precisely, M6 is
the orbit space of the action Υ : Z2 × (T4 × R2) −→ (T4 × R2), given by:

Υ((k, l), [y1, y2, z1, z2], (t, x)) = (ρ(k, l)([y1, y2, z1, z2]), (x + k, t + l)).

Notice that there is a fibration π : M6 −→ T2 with fiber T4. This manifold was
introduced in another context in [6], where some of its properties are studied. A
parallelization of M6 is given by:

(5.1)
X =

∂

∂t
, T =

∂

∂x
, Yi = λt

i(ai
∂

∂y1
+ bi

∂

∂y2
)

Zi = xλt
i(ai

∂

∂y1
+ bi

∂

∂y2
) + λt

i(ai
∂

∂z1
+ bi

∂

∂z2
)

i = 1, 2.

denote by {α, β, γ1, γ2, δ1, δ2} the dual basis of 1-forms. Let F be the flow defined
by Y1, and µ the metric such that (5.1) is an orthonormal parallelism. One can
check that LY1µQ = 0, and so, µ is bundle-like. From (5.1), we obtain for F :

(5.2) χ = γ1, κ = (log λ1)α, e = −β ∧ δ1.

Notice that both κ and e are basic.

Proposition 5.1. The Álvarez class of F is not zero.

Proof. Since ι∗ : H1(M6/F) −→ H1(M6) is injective, it suffices to prove that
[α] ∈ H1(M6) is not zero. This holds because [α] = π∗([ζ]), where ζ is one of the
generators of H1(T2). ¤

Proposition 5.2. The Euler class of F is not zero.

Proof. The cohomology of (Ω∗(M6/F), d−κ) can be computed using π-basic
functions as coefficients. Suppose that there exists a form ω ∈ Ω1(M6/F) such
that d−κω = e. Using (5.2) we get the equations X(f) = 1 and T (f) = 0 on T2,
being f = iZ1ω. This is a contradiction. ¤
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[5] D. Domı́nguez, Finiteness and tautness for riemannian foliations, Amer. J. Math. 120 (1998),

1237–1276.
[6] M. Fernández, M. de León, M. Saralegi, A six dimensional compact symplectic solvmanifold

without Kähler structures, Osaka J. Math. 33 (1996), 19–35.
[7] F. Kamber, P. Tondeur, Duality theorems for foliations, Astérisque 116 (1984), 458–471.
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tsitatea, Apartado 644, 48080 Bilbao, Spain

E-mail address: mtbroprj@lg.ehu.es


