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Abstract

The notion of a filter is generalised and the resulting mathematical object is called a generalised filter. These filters
fit naturally into the context of generalised uniform spaces. The basic theory of generalised filters is established and the
relationship between generalised filters and prefilters is discovered. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Uniform spaces were introduced to form an appro-
priate abstract setting for the study of completeness.
These spaces, which fall between metric spaces and
topological spaces, have been extensively studied and
the reader is referred to [25] for the basic theory of
uniform spaces. The study of uniform space notions is
facilitated by the notion of a filter and the basic the-
ory of filters can also be found in [25]. For the record,
let us just note that a uniformity on a set X is sub-
set @ C2¥*X and a filter on X is a subset F C 2%,
In other words
Fe2”

2)( XX

De2®

Since the notion of a fuzzy set was introduced by
Zadeh [28], there has been an attempt to extend useful
mathematical notions to this wider setting, replac-
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ing sets by fuzzy sets. A fuzzy set, u, on a set X is
simply a function y: X — I, where I denotes the unit
interval. In [20], Lowen introduced the notion
of a fuzzy uniform space and the fuzzy uniform
space analogues of compactness, relative compact-
ness, completeness, precompactness and bound-
edness have now been extended to the fuzzy
setting [1-5, 9, 10, 21, 22]. The basic theory of
function spaces has also been extended to this set-
ting [6]. This was accomplished using the theory
of prefilters 18, 19]. The reader is referred to [2],
Section 2, [15], Section 2 for a summary of the basic
theory of prefilters. Let us recall that a fuzzy unifor-
mity on a set X is a subset 2 C/¥*¥ and a prefilter
on X is a subset # C IX. In other words,

e’ Fe)

The reader is referred to [2, Section 3], for a sum-
mary of the basic theory of fuzzy uniform spaces.
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Recently, in [14], the notion of a uniform space has
been generalised even further. A super uniformity, 9,
on a set X is defined to be a function

S5 IX xX — 1,
satisfying certain conditions. In other words,
5 6 II’( XX

As might be expected, a fundamental tool for in-
vestigating super uniform spaces is the analogue of
a filter in this setting, which is called a fuzzy filter.
A fuzzy filter, ¢, on X is a function @ : /¥ — [ satis-
fying certain conditions.

In other words,

el

In [7], another extension of the notion of a uniform
space was defined and investigated. A generalised
uniformity, d, on a set X is defined to be a func-
tion d : 2X %X — [ satisfying certain natural conditions.
In other words,

der™

There are natural injections between the sets as
indicated

11X XX
2],’(‘ XX 12)(‘ XX
22X XX

and it is shown in [15] that there are categorical
embeddings between the categories: US (of uniform
spaces), FUS (of fuzzy uniform spaces), GUS (of
generalised uniform spaces) and SUS (of super uni-
form spaces) as indicated

SUS
&G /‘ ’\ (7
GUS FUS
145 \ / Wy
Us

Although prefilters were used in the investigation
of generalised uniform spaces, it would seem that,

in this context, the natural analogue of a filter on X
would be a function f:2¥ —I. In other words, an
element

fel?,

satisfying certain conditions. We show that such an
analogue, which we shall call a generalised filter, does
exist and we establish the basic theory of these gener-
alised filters. We first recall some relevant definitions,
notation and results.

2. Preliminaries

For the sake of fixing notation, we recall some basic
definitions.

We shall let / denote the closed unit interval [0, 1]
and we let o & 1\{0} = (0,1], L =1\{1} =[0,1).

We denote the characteristic function of a subset
ACX by 1. If peI¥ we define

wW={xeX: u(x)>a}.

If X is a set then a filter on X is a nonempty subset
F C 2% satisfying the following conditions:
Fl1 0¢F,;
F2 F,GeF=FnGeF;
F3 FeF, FCG=GePl.
If | is nonempty and satisfies
FB1 0 ¢F;
FB2 VF,GeF, 3HeF, HCFNG
we call F a filter base on X
A prefilter on X is a nonempty subset #C I¥ which
satisfies the following conditions:
PFl 0¢ %,
PF2 vue F=>vAuc #,
PF3 ve #, vSu=pe #.
If # is nonempty and satisfies
PFB1 0¢ %
PFB2 Vv,,v, € #, dv; € #, Vi<V Avy
we call & a prefilter base on X.
Naturally, a filter is a filter base and a prefilter is a
prefilter base.
If X is a set and [ is a family of subsets of X, we
define

(F) € {4CX: IFeF, FCa).
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Similarly, if #C I* we define

(F) = Y uer’: ve # v<u).

If % is a prefilter base on X we define the charac-
teristic, c(F ), of F by

def .
o(F) = inf supv.
VEF

If # is a prefilter base and ¢(F ) >0, we define

Fe {Sur)(un — &) () € f’”}
e€ly

and call & the saturation of #. We say that %
saturated it F = F. X
Note that in case c(F ) =c¢ =0, if we define 7 as
before then we have 0 € #. We conclude that if &
saturated then ¢(#)>0.
If F is a prefilter base, ¢(F )=c>0and 0<a<c

then we define

A (Wive# p<al.
On the other hand, if F is a filter on X and % € (0, 1]
then we define

Fx & {(vel*:V<a, v eF}.

The reader is referred to [19, 20, 18] for the basic
notation and theory of prefilters as well as to [2, 15].
As regards notation, we follow the notation estab-
lished in [2] which is the notation of Lowen, with some
modifications.

We list some of the main results here. Firstly, con-
cerning prefilter bases:

Theorem 2.1. Let X be a set and F a prefilter base

on X, o(F)y=c,0<a<c Then

. {F) is a prefilter and FAF),

Co(FY=cl(F))

. F%is a filter base;

7= UO</£<1 ’grﬁ;

. If ¢>0 then F is a prefilter base and F C F:

 If ¢>0 then o(F) = o(F);

CIf ¢>0 then & &f (FV\=(F) is a saturated
prefilter.

Secondly, concerning prefilters:

Theorem 2.2. Let X be a set and F a prefilter on X,
o F)=c>0, 0<a<c Then

\. F=% is a prefilter and F C F;
F*is a filter,
F={vel*:Ve>0, v+ e€F};
o«(F)y=inflaclalycF}
=sup{eclaly & F}.

ENERESS

The proofs of the results in the last two theorems
can be found in the cited literature or supplied by the
reader. The next result is crucial and we include a
proof.

Theorem 2.3. Let % be a prefilter, o(F)=c>0 and
O<a<c. Then

Fr=(F).

Proof. Since #C #, #*C(%)". To show the re-
verse inclusion, let F €(#)*. Then there exists
veZ and f<a such that F =" Let 2e=oa —
and y=f +¢ Then u & v+ ccF and F=1 =
(v+eftr=weF* 0O

Corollary 2.4. Let # be a prefilter, o( F )= c>0and
O<a<c. Then

F= ) (F)r

O<a<ce

Proof. % is saturated and so, by ([15, Proposi-
tion 12]), we know that

F= ) &

O<a<e

Now, the result follows from the previous theorem. [

3. Generalised filters

We call a nonzero function f: 2% — I a generalised
filter (or a g-filter) on X ift
GF1 f(0)=0
GF2 VA, BCX, f(ANB)= f(4)A f(B);
GF3 V4,BCX, ACB = f(4)< f(B).

Of course, the requirement that f be nonzero is
equivalent to requiring that f(X)> 0.
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For f:2X¥ — 1 and 4 C X, we define
(YA E sup £(B).
BCA

If / is nonzero and satisfies
GFB1 f(#)=0;
GFB2 VA,BCX, f(4)A f(B)<(f)(4NB),
we shall call f a generalised filter base (or a g-filter
base) on X.
Naturally, a g-filter is a g-filter base. Furthermore,

Theorem 3.1. If X is a set and f is a g-filter base on
X then (f) is a g-filter.

Proof. The conditions GF1 and GF3 are easily
checked.

GF2: Let A, BCX. If (/Y (A)A(f)(B)=0 then
(DA SYB)S(SHANB). So let a<(fHA)A

(f)U(B).
Then

a< sup f(U)A sup f(V)
Uca yCB
= JUCH4, 3IJVCB,

a<f(UYAfV)S(FHUNY)
= IWCUNVCANB, a<f(W)
= a<(f)(A4NB).

Thus, ([N (f)B)<(fH(4NB). O

If f is a g-filter base on X, we define the charac-
teristic, c(f'), of f by

c(f)= sup f(4).
ACX

It follows from definition that c¢(f) > 0.
Just as for prefilters, we have:

Lemma 3.2. If X is a set and [ is a g-filter base on

X then

c(fy=c({f)).

Proof.

c({(f))= sup (f)(4)= sup sup f(B)

ACKX ACXBCA
=sup f(B)=c(f). O
BCX

The proof of the following lemma is straightforward
and is left to the reader.

Lemma 3.3. Let f be a g-filter on X and let A,B C X.
Then

L e(f)=fX);

2. f(ANB)=f(A) A f(B).

If f is a g-filter (base) on X with ¢( f) =c then for
0<a<c, we define the (upper) a-level filter (base),
[, associated with f by

FEFCx: f(F)>a)

and for 0 <a <c, we define the (lower) a-level filter
(base), f., associated with f by

def

fa=

Theorem 3.4. If [ is a g-filter (base) on X with
c(f)=c and.

(@) 0<a<c then f* is a filter (base) on X ;

(b) O<a<c then f, is a filter (base) on X.

(FCX: f(F)>a}.

Proof.

(a) Let fbeag-filteronX. f(X)=c>a=Xe€ f*
Thus, f* #0.
If F € f* then f(F)>ua>0, and hence, F #{.
If A, Bef* then f(A)A f(B)=f(ANB)>a,
and hence, ANB€ f*
Finally, if A€f* and ACB then f(B)=
f(4)>a, and hence, B € f*

The proofs of the remaining three assertions are left

to the reader. (O

It is left as an easy exercise to show that the a-level
filters decrease as « increases and we record this as a
lemma.

Lemma 3.5. If f is a g-filter (base) with c¢(f)=c
and 0<a<fi<c then

fecrfc ey

The notion of a g-filter is a strict extension of
the notion of a filter in the sense that we can as-
sociate a g-filter with every filter and there are g-
filters which are not merely copies of filters. More
precisely:



M.H. Burton et al. | Fuzzy Sets and Systems 106 (1999) 275-284 279

Theorem 3.6. Let X be a set, let F(X) denote the
collection of all filters on X and let G(X) denote the
collection of all g-filters on X. Let

V. F(X)— GX), Frlg
Then \ is injective but not surjective.
Proof. The proof that 1¢ is a g-filter is left as an
exercise.
To see that i is not surjective it is sufficient to

find a g-filter whose characteristic value is different
from1. O

We note the following examples of g-filters, leaving
the checking to the reader.

Examples 3.7.

(a) Let X ={1,2,3} and define f by
S(FY=0 ifl1¢F,
f{h=rq13hH =4,
rqnzh=4
F{1L2,3})=1.

(b) Let U, & {meN: m > n} and define g by

l/n ifF=U,
d f ns
g(F) = .
0 otherwise

and let f = (g).
(c) Let

if F ={a},

def | &
IralF) = {0 otherwise

and let £, s = (gua).
This g-filter has the special property that, for all
ABCX

fx,a(A UB)= fat,a(A) \ fot,a(B)-

4. G-filters from prefilters

Let & be a prefilter on X with ¢(#)=c>0. For
F CX define

S#(F) Y {ae(0,c): Fe F%).

Lemma 4.1. Let ¥ be a prefilter with ¢(F)=c>0.
Then Sz(F)=W0or Sg(F) is an interval of form (B, c].

Proof. If Sz(F)# @ then there exists some x&
S#(F).
Ifa<y<cthen F€ Z*C %" and so y € S¢#(F).
Since

7= |J #°
O0<f<a

we have

weS#F) = FeF*= U Fh

O<f<a
= df<a, FeFF

= 3df<a, BESH(F). a

This lemma allows us to define, for F C X

ar [c—inf Sz(F) if S#(F)#0,

We now need to check that the object defined above
is indeed a g-filter.

Theorem 4.2. If % is a prefilter with ¢(F)=c>0
then fz is a g-filter.

Proof.
(a)
Va<e(F), 0¢ F* = Va<c(F), ag S#(0)
= S#(0)=0
= f#(0)=0.

(b) Let 4,BC X. Then

< f#(4) A f#(B)
= infSg(4)<c—aand inf Sz(B)<c — a
c—a€Sz(A)and c — x € S5(B)
A,Be F*
ANBe F*
c—2ESz(ANB)
inf Sz(ANBY<c—a
c—inf Sg(ANB)= f#(ANB)>0.

L R A A



280 M_.H. Burton et al. | Fuzzy Sets and Systems 106 (1999) 275-284

Thus,

f#(ANB)Z f5(A) A f#(B).
(¢c)Let ACBCX. Then

f#(A)>a= c¢—inf Sz(d)>a

= infSz(d)<c—ua
¢c—o€eSz(4)
AeF*
BeF*
c—o€Sz(B)
inf Sg(B)<c—«
= c¢—infSx(B)= fz(B)=2.

It follows that fz(4)< f#(B). O

8 d

If # is a prefilter and p € I¥ we follow [18] and
define the characteristic set of F with respect to u,
denoted €#(%), by
CHF)={acl: Ve F, IxeX, v(x)>ux)+ a}

={ael pt+a¢F}.

The number c#(F) &f sup ¢¥(F) will be called
the characteristic value of & with respect to u. If

F CX we write ¢/ (%) instead of the more cumber-
some c!F(F).

Theorem 4.3. If F is a prefilter with ¢(F)=c>0
and F CX then f#(F)=c — cF(#F).

Proof. We just have to prove that cf(#)=
sup € (F) = inf Sz(F).

As usual, for FCX, lp-+ocd§f(lp+alx)/\land
it is easy to see that 1z + a=oaly V 1r. Now,
inf Sz(F) <o

= a€Sz(F)
Jue Z, P<a, y=rF
JpeF, I<a, u<Plx Vigp=1p+4
P<a, Ip+peF
a¢ 67 (F)

F(FH<o

¢G4l

Therefore, ¢ (#) < inf S#(F).
Furthermore,

=
= lpta=alyVigeF

= Vp>a (aly Vg =FecF?
= Vf>a, fESHF)

= infSg(F)<a.

Thus, ¢/ (F)= inf Sx(F). O

5. Prefilters from g-filters

Our next task is to show that a g-filter gives rise to
a prefilter. However, we first discover the connection
between the characteristic of a prefilter and the g-filter
that it generates.

Lemma 5.1. If % is a prefilter on X with ¢(F)=
¢>0 then:

c(f7)=c(F).
Proof. Let c =c(%). Then
c(f#)= f#(X)=c — inf S#(X).
Now,
Va<e, X€F*= Va<c, a€Sz(X)
= inf Sg(X)=0
= c(fp)=frX)=c. O

For a g-filter f with ¢(f)=c we define

o def

F = {vel’: Yo<a<c, Vf<a, e feey,

Of course, we need to check that this does produce a
prefilter.

Theorem 5.2. If f is a g-filter then % is a prefilter.

Proof.
(a) We observe that

VB<ce(f), 0F = {xeX: 0(x)> B} =0.
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It follows that
Vo<a<c, VB<a, 0P ¢ fc*

and this means that 0 ¢ %.
On the other hand, since c=c(f)= f(X)>0
we have

Yo<a<c V<o, (Ixf=Xefo*

and so 1y € #.
(b) Let u,ve . It follows from

vB<e(f), vt =(vAp)

that vA p € #.
(c) Let ve F and v<u. Let 0<a<c, f<o. Then
v e fe=*_ Since v# C u# we have

fuhyzfF)ze—a
Thus, p€ % O

The following lemma simplifies some of the work
later on.

Lemma 5.3. If f is a g-filter with c(f)=c>0 then
F={vel*: VO<y<c, V € foiy}.

Proof. Let us define

g & {vel*: Yog<y<e, V' € fooy}.

Let v € % . To show that v € ¢ let 0 <y <c. Choose
o such that y <a <c. Then v/ € f°~*. Since « is arbi-
trary, we have

Yo e (y,¢), f(W)>c—a

and hence, f(v')>=c — 7. In other words, v’ € f._,.

Conversely, let ve¥4. To show that ve % let
0<a<c, 0<p<a. Then we have 0<fB <c. Thus,
v € fe—p and so f(Fy=c — p>c — a. Therefore,
e O

The correlation between g-filters and prefilters is not
completely straightforward. In fact, as we shall see,
the prefilter associated with a g-filter is rather special.

Theorem 5.4. If f is a g-filter then the associated
prefilter % is saturated.

Proof. Suppose that
Ve>0, v+ e€H

We show that ve%. To this end, we let
a<c(f)and B<o and show that v¥ € ==,

Choose y such that f <7y <o and let ¢ =y — f8. Then,
since v + ¢ € % we have

v+ey=(v+eft=ver D

We saw, in Lemma 5.1, the connection between
the characteristic of a prefilter and the g-filter that it
generates. Let us now find the connection between a
g-filter and the prefilter that it generates.

Theorem 5.5. Let [ be a g-filter on X. Then
o(F)=c(f)
Proof. Let c(f)=c. Then
Ve F, YOS B<a<c, Ve fo°
= WeF, VO<h<a<c, vV #0

Vv e Fr, VOSB<a<c, supy>f

Ve F, supv=c

P

inf supv=c(F)=c.
vEFyr ’

On the other hand,
Va<e, VB<a, (clyp =X e fo
and so cly € % . Thus,
o(Fr)= ‘1611; supv< supcly =c. O
The use of a-level theorems has proved to be very

useful in various situations. See, e.g. [26, 27, 17].
We therefore, investigate the a-levels of g-filters.

Lemma 5.6. Let f be a g-filter with c(f)=c and let
ae(0,c). Then

g’,fa o fC‘—{Z'

Proof. Let Fe(%)*. Then there exists ve %,
B<a such that F=1% Since veF, we have
V=F € f
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Conversely, if F€ f<~* then f(F) ©>c—a Let
v=(c — t)ly V 1p. We intend to invoke Lemma 5.3
to show that v € %;. To this end, let 0<y <c.

If ye[c — t,c¢) then v' =F and so f(v')= f(F)
=tzc—7.

If y€[0,c — ¢) then v =X and so f(V')= f(X)
=c=2c— 7.

We therefore have v € f._, forall y €[0,c) and so
ve Frand F=v"" withc—t<a. Thus, FEF”. O

Lemma 5.7. If & is a prefilter on X with o(F)=
¢>0 then, for x €[0,¢)

(f?_)d:g;c—a.

Proof.

A€(f7) & f#(d)=c—infSg(4)>a
& inf Sgp(d)<c—a
& c—aeSz(A4)
& AeF T O

We now establish the g-filter analogue of Theorem
2.14.

Lemma 5.8. If [ is a g-filter with c(f)=c and 0<
a<c then

r=y 7~

c>f>a

Proof. If F € f* choose f such that a<fi< f(F).
Then Fe f# and so F ey, /7

Conversely, let FEUE>/3>afﬁ- Then Fe f#
for some B>a. Thus, f(F)>p>a and hence,
Fef O

Corollary 5.9. If f is a g-filter with c¢(f)=c and
O0<o<c then

fc—-at —_ U fc_ﬁ-

0<f<a

In [2] we saw that saturated prefilters are specified
by their a-level filters. We show that a similar situation
pertains for g-filters.

Lemma 5.10. If f and g are g-filters with c(f)#
c(g) then f #g.

Lemma 5.11. Let f and g be g-filters with ¢(f)=
c(g)=c. Then

Va<e, [*=¢* & f=g.
Proof.

Ya<e, fP=¢g° & Voa<c, VACX, Aef* & A4eg”
& VACKX, Va<e,
(fA)>aeg(d)>a)
< VACKX, f(4)=g(4)
& f=g. O
We have seen that to each g-filter there corresponds
a saturated prefilter and, conversely, to each prefilter

there corresponds a g-filter. This inspires the following
theorem:

Theorem 5.12. Let

def

FX)Y={Fe 2'": F is a saturated

prefilter on X},

%(X) -4 {r el [ is a g-filter on X }.

Then
VX)) - 9X), Feo o fs
is a bijection.
Proof. We first show that ¥ is injective. To this end,
let #,9 € FS(X) with F#%.
If ¢(F) # () then
fF(X)=c(F) —inf{a<c(F) X € F*}
=c(F)-0
# (%)
= f4(X)

and so f; #fr;
If o(F)=c(%)=c then

Ja<e, F #%
This follows from the fact that saturated prefilters
are completely determined by their a-level filters

([1, Theorem 2; 15, Theorem 11]). Suppose that
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F € #*\%* Then o € §#( F N\ S F\. Thus. inf S#(F\
<g angd o < inf Sg(F). Thus,

f#(F)=c —inf Sz(F)>c — a>c — inf Sg(F)
= fu(F).

8a, aace again, /v 7 /7.
In order to show that ¥ is surjective, let f € ¥(X)
and nt AP r =0 Ther

Fr={vel*:Va<c, YB<a, v e fo7).
Now, appealing to Lemmas 5.6 and 5.7, we have
Vae[0,c), (f5) =(F) ==

It therefore follows from Lemma 5.11 that
WF=fz=/f DO
We extract the following corollaries:

Corollary 5.13. If f is a g-filter on X then
fz=1r

Corollary 5.14. If % is a saturated prefilter on X
then

Fy=F.
Proof. Let . ¥ — % as in the thearem. Then
WF)=f»

and

W)= fiz,= 17

Thus, it follows from the injectivity of i that
F=%, O

We have developed the g-filter analogues of various
prefilter notions and it is natural, therefore, to seek a
g-filter analogue of the saturation operator. In other
words, if f is a g-filter, we seek a definition of £, the
saturation of f, which is consistent with the theory
which we have developed thus far. We would require,
wmorg Guer trngs, tiat We satucation of e g-fitter
‘ESOCTANOE WiT & prefitier is ire g-filter assocraced with
the saturation of the prefiiter. in symbois

f#=15

However, we have the following levamar
Lemma 5.15. If % is a prefilter then
J#7=fs
Procl. ForF L X
AR =t F sk o F e (FF)

=co(F) - inf{a: Fe(F)*}
=f#(F) 0O

Thus, for a prefilter #

f5=/

The most natural definition of # which accom-
plishes this is the simple

fey

In this sense, g-filters are already saturated. This
explains why, in {7], the definition of a generalised
uniformity did not include a saturation condition
analagous to FU2 in Definition 2.1 of [20]. The sit-
uation is also illustrated by the following theorem
which extends Theorem 5.4.

Theorem 5,16, If # is g prefilter then

A

T, =7

Proof. From Theorem 5.4 we know that %, is a sat-
urated prefilter and so, according to {15, Theorem 11],
we must show that

Va<o(F) =c(F), (F,) = (F).
Now,

(F)=(fp)*=F=F* O

From this last result we obtain the following
characterisation of the saturation of a prefilter.

Coxallaxy S0, If 7 is o pyefltes with s{(Fd=r>0
then

F= {verf: vo<a<c, VB<a, v‘*e?’"}.
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Proof.

VEF & vVE Fr,
< Vo<a<ce, Vi<a,
de(fpr7=7* O

This concludes our study of the basic properties
of generalised filters. In [8], we investigate prime
g-filters and the behaviour of images and preimages,
of g-filters.
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