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o All spaces considered will be assumed to be Tg.
No further separation axiom will be assumed (unless properly stated).
Not even T7!
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e The notion of monotone normality was introduced in 1966 by Borges an
named in 1970 by Zenor as a strengthening of normality and is probably
what you would guess if asked to define “normal in a monotone way".

> C Borges, On stratifiable spaces, Pacific J. Math. (1966).
@ P. Zenor, Monotonically normal spaces, Notices Amer. Math. Soc. (1970).

& R.W. Heath, D.J. Lutzer, P.L. Zenor, Monotonically normal spaces, Trans.
Amer. Math. Soc. (1973).

e The notion appeared in the context of generalizations of metrizability.
(Probably this is the reason why monotonically normal spaces are usually assumed
to be Ti, hence Hausdorff. Note that normal spaces are not necessarily Hausdorff!)

e Every metrizable and every linearly ordered space is monotonically normal.
(So monotone normality is not a strange condition.

In fact, it can be argued that if a space can be “explicitly” and “constructively”
shown to be normal, then it is probably monotonically normal.
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Monotonically normal space

From Wikipedia, the free encyclopedia

In mathematics, a monotonically normal space is a particular kind of normal space, with
some special characteristics, and is such that it is hereditarily normal, and any two separated
subsets are strongly separated. They are defined in terms of a monotone normality operator.

A Tl topological space ( X , T) is said to be monotonically normal if the following condition
holds:

For every + € (3, where G is open, there is an open set 'u_(;r, G—') such that
1.zepu(x,G) CG
2.if u(x,G) N p(y, H) # Dtheneithery € Hory € G.

There are some equivalent criteria of monotone normality.
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Equivalent definitions (edi

Definition 2 [edit]
A space X is called monotonically normal if it is Tl and for each pair of disjoint closed subsets ,—L D thereis
an open set G(;l‘ B) with the properties

1. ACG(A,B) C G(A, B)” C X\Band

2.G(A,B) CG(A', B') whenever 4 C A'and B’ C B.
This operator (7 is called monotone normality operator.
Note that if G is a monotone normality operator, then é defined by Cw,‘(A{‘ B) = G(A‘ B)\G(B‘ A)_
is also a monotone normality operator; and é‘satisiies

G(A,B)NG(B,4) =0
For this reason we some time take the monotone normality operator so as to satisfy the above requirement;
and that facilitates the proof of some theorems and of the equivalence of the definitions as well.




What is monotone normality? Wikipedia

Properties [edi

An important example of these spaces would be, assuming Axiom of Choice, the linearly
ordered spaces; however, it really needs axiom of choice for an arbitrary linear order to be
normal (see van Douwen's paper). Any generalised metric is monotonically normal even
without choice. An important property of monotonically normal spaces is that any two
separated subsets are strongly separated there. Monotone normality is hereditary property and
a monotonically normal space is always normal by the first condition of the second equivalent
definition.

We list up some of the properties :

1. A closed map preserves monotone normality.
2. A monotonically normal space is hereditarily collectionwise normal.

3. Elastic spaces are monotonically normal.
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normality is usually defined in the absence of the T; axiom. Why?

From Wikipedia: T; = normal + T3

Definitions (edi

A topological space X is a normal space if, given any disjoint closed sets E and F, there are open neighbourhoods U of Eand V
of Fthat are also disjoint. More intuitively, this condition says that £ and F can be separated by neighbourhoods.

A T4 space is a T1 space X that is normal; this is equivalent to X being Hausdorff and normal.

A completely normal space or a hereditarily normal space is a topological space X such that every subspace of X with
subspace topology is a normal space. It turns out that X is completely normal if and only if every two separated sets can be
separated by neighbourhoods.

A completely T4 space, or Ts space is a completely normal Hausdorff topological space X; equivalently, every subspace of X
must be a T4 space.
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What is monotone normality? some observations

e The first definition is not what one would guess if asked to define “normal in
a monotone way". Where does it come from?

e Monotone normality is defined under the assumption of the T; axiom while
normality is usually defined in the absence of the T; axiom. Why?

e Monotone normality (with Ty axiom) is hereditary, while normality is only
hereditary for closed subspaces. Why?

e Metrizable spaces are monotonically normal (and T;). What about
quasi-metrizable spaces?

e Normality is a well-stablished topic in Pointfree Topology. What about
monotone normality?
Certainly this must be done avoiding the T; axiom, a “very point-dependent
axiom”.
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What is monotone normality?

metric spaces

N)
?



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open

set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open

set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open
set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...
since X \ U is closed and x ¢ X \ Uwe have that d(x, X\ U) > 0...

S d(x, X\ U)



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open
set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...
since X \ U is closed and x ¢ X \ Uwe have that d(x, X\ U) > 0...

we take pq(x, U) = B (X,M). .

Ld (x, U)

SN d(x, X\ U)



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open
set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...
since X \ U is closed and x ¢ X \ Uwe have that d(x, X\ U) > 0...

we take pq(x, U) = B (x, M) .
and then x € g (x, U) C pg (x,U) C B (x, M) C B(x,d(x,X\ U)) CU.

pa (x;, U)

S d(x, X\ U)
B(x,d(x; X\ U))



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open
set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...
since X \ U is closed and x ¢ X \ Uwe have that d(x, X\ U) > 0...

we take pq(x, U) = B (x, w> .
and then x € g (x, U) C pg (x,U) C B (x, M) C B(x,d(x,X\ U)) CU.

v Note that if x € U C V then. ..

Hd (Xv U)

S dx, X\ U)



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open
set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...
since X \ U is closed and x ¢ X \ Uwe have that d(x, X\ U) > 0...

we take pq(x, U) = B (x, w> .
and then x € g (x, U) C pg (x,U) C B (x, M) C B(x,d(x,X\ U)) CU.

v Note that if x € U C V then. ..

d(x, X\ U) < d(x, X\ V)...
Hd (Xv U)
R dx X\ U)

d(x, X\ V)



What is monotone normality? metric spaces

Metrics spaces are regular

(A space is regular if for each open set U and each x € U there exists an open
set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...
since X \ U is closed and x ¢ X \ Uwe have that d(x, X\ U) > 0...

we take pq(x, U) = B (x, w> .
and then x € g (x, U) C pg (x,U) C B (x, M) C B(x,d(x,X\ U)) CU.

v Note that if x € U C V then. ..
d(x, X \ U) < d(x, X \ V)...
fei) and 50 j1q (x, U) € pa (x, V).
3 dix, X\ U
\( 9 \ )

ta (X, V)" d(x, X \ V)



What is monotone normality? metric spaces

Metrics spaces are regular in a “monotone way”
y

(A space is regular if for each open set U and each x € U there exists an open
set 1 (x, U) such that x € pu(x,U) C pu(x,U) C U.)

Given a metric space (X, d) and open set U C X and x € U...
since X \ U is closed and x ¢ X \ Uwe have that d(x, X\ U) > 0...

we take pq(x, U) = B (x, M) .
and then x € g (x, U) C pg (x,U) C B (x, M) C B(x,d(x,X\ U)) CU.

v Note that if x € U C V then. ..
d(x, X \ U) < d(x, X \ V)...
fei) and 50 j1q (x, U) € pa (x, V).
3 dix, X\ U
\( 9 \ )

ta (X, V)" d(x, X \ V)



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.

We say that p is a monotone regularity operator.



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.

We say that p is a monotone regularity operator.

e Metrizable spaces are monotonically regular. . .



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x,U) C pu(x,U) CU.

We say that p is a monotone regularity operator.

e Metrizable spaces are monotonically regular. . .

e but there are non-metrizable spaces which are
monotonically regular. ..



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),

Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.

We say that p is a monotone regularity operator.

e Metrizable spaces are monotonically regular. . .

e but there are non-metrizable spaces which are _— e —
monotonically regular. ..
the Sorgenfrey line. ..



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.

We say that p is a monotone regularity operator.

e Metrizable spaces are monotonically regular. . .
x X+eu

e but there are non-metrizable spaces which are
monotonically regular. .. wu(x, U) =[x, x +eu)
the Sorgenfrey line. ..

R

where €y is the biggest ¢
such that [x,x +¢) C U



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.

We say that p is a monotone regularity operator.

e Metrizable spaces are monotonically regular. . .

e but there are non-metrizable spaces which are
monotonically regular. ..
the Sorgenfrey line. ..
the Sorgenfrey plane. ..



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.

We say that p is a monotone regularity operator.

e Metrizable spaces are monotonically regular. . .

e but there are non-metrizable spaces which are
monotonically regular. .. x
the Sorgenfrey line. ..
the Sorgenfrey plane. ..



What is monotone normality? monotone regularity

Let X be a topological space with topology o(X),
Rx ={(x,U) € X x o(X) | x € U} and < the partial order on Rx given by:

(x,U) < (x,V) < UCV,

X is said to be monotonically regular if there exists and monotone map
e Rx — o(X) such that

x € u(x, U) C u(x, V) C U.

We say that p is a monotone regularity operator.

e Metrizable spaces are monotonically regular. . .

e but there are non-metrizable spaces which are
monotonically regular. .. x
the Sorgenfrey line. ..
the Sorgenfrey plane. ..



What is monotone normality? monotone regularity

A topological space X is said to be monotonically regular if there exists a

monotone map p: Rx — o(X) such that x € u(x, U) C u(x, U) C U.



What is monotone normality? monotone regularity

A topological space X is said to be monotonically regular if there exists a
monotone map p: Rx — o(X) such that x € u(x, U) C u(x, U) C U.

If (X,d) is a metric space and puq (x,U) =B (x, w> then ugy additionally
satisfies the following property:




What is monotone normality? monotone regularity

A topological space X is said to be monotonically regular if there exists a
monotone map p: Rx — o(X) such that x € u(x, U) C u(x, U) C U.

If (X,d) is a metric space and puq (x,U) =B (x, w> then ugy additionally
satisfies the following property:

ifxeU\Vandy e V\U then

o<
o



What is monotone normality? monotone regularity

A topological space X is said to be monotonically regular if there exists a
monotone map p: Rx — o(X) such that x € u(x, U) C u(x, U) C U.

If (X,d) is a metric space and puq (x,U) =B (x, w> then ugy additionally
satisfies the following property:

ifxeU\Vandye V\U then puq(x,U)

o<
o X



What is monotone normality? monotone regularity

A topological space X is said to be monotonically regular if there exists a
monotone map p: Rx — o(X) such that x € u(x, U) C u(x, U) C U.

If (X,d) is a metric space and puq (x,U) =B (x, w> then ugy additionally
satisfies the following property:

ifxeU\Vandy e V\U then pug(x,U) pq(y,V)



What is monotone normality? monotone regularity

A topological space X is said to be monotonically regular if there exists a
monotone map p: Rx — o(X) such that x € u(x, U) C u(x, U) C U.

If (X,d) is a metric space and puq (x,U) =B (x, w> then ugy additionally
satisfies the following property:

ifxeU\Vandye V\U then pug(x,U)Npug(y,V)=2.



What is monotone normality? monotone regularity

A topological space X is said to be monotonically regular if there exists a
monotone map p: Rx — o(X) such that x € u(x, U) C u(x, U) C U.

If (X,d) is a metric space and puq (x,U) =B (x, W) then ugy additionally
satisfies the following property:

ifxeU\Vandye V\U then pug(x,U)Npug(y,V)=2.

Equivalently,

if ug(x,U)Npg(y,V)#@ thenxeVoryel



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.




What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically
regular. ..



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically
regular. ..

e but there are non-metrizable spaces which are
strongly monotonically regular. ..



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically
regular. ..

e but there are non-metrizable spaces which are
strongly monotonically regular. ..
the Sorgenfrey line. ..



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically
regular. ..

e but there are non-metrizable spaces which are
strongly monotonically regular. ..
the Sorgenfrey line. ..

e However, the Sorgenfrey plane NO!



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically
regular. ..

e but there are non-metrizable spaces which are (1,-1)=xe
strongly monotonically regular. ..
the Sorgenfrey line. ..

e However, the Sorgenfrey plane NO!



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically u(x,U)
regular. ..

e but there are non-metrizable spaces which are (1,-1)=xe
strongly monotonically regular. ..
the Sorgenfrey line. ..

e However, the Sorgenfrey plane NO!



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically "o u(x,U)
regular. .. A

e but there are non-metrizable spaces which are (1, —1)=xe_
strongly monotonically regular. .. (V2,=v2)=y'
the Sorgenfrey line. .. .

e However, the Sorgenfrey plane NO! >,

V={(x1,x2)|x1+x2>0 or xy=—x €I}



What is monotone normality? strong monotone regularity

Let (X, 0(X)), Rx = {(x,U) € X x o(X) | x € U} and < the partial order on
Rx given by:

(x,U)<(x,V) < UCV.
X is said to be strongly monotonically regular if there exists a monotone map
w: Rx — o(X) such that
(1) x € p(x,U) C p(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xe VoryelU.

Note that this is the precisely the definition of monotone normality from
Wikipedia! .

e Metrizable spaces are strongly monotonically N w(x,U)
regular. .. A

e but there are non-metrizable spaces which are L-D=x vy
strongly monotonically regular. .. (V2,=v2)=y'
the Sorgenfrey line. .. .

e However, the Sorgenfrey plane NO! >,

V={(x1,x2)|x1+x2>0 or xy=—x €I}



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.




What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U) =



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U) =



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U) =
U
w(x,U)
X ___F
ene !



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U) =

w(x,U)
b



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U) = U pl(x, U).
xeF
U
w(x,U)

b

A(F, V)



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U) = U pulx, V).
xeF
Then:

(MN1) F C G and U C V implies that



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U)= U wp(x, U).

xeF
Then:
(MN1) F C G and U C V implies that
A(F,U)= U u(x,V) € U ul(x, V)
xeF T xeF

ucv



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U)= U ulx, V).

xeF
Then:
(MN1) F C G and U C V implies that
A(F,U)= U u(x,V) € U ulx,U) € U ux,V)=A(G,V).
xeF T xeF T xe6
ucv FCG



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U)= U ulx, V).

xeF
Then:
(MN1) F C G and U C V implies that
A(F,U)= U u(x,V) € U ulx,U) € U ux,V)=A(G,V).
xeF g‘/XEF Fgc x€G

(MN2) F C A(F,U) C A(F, U)
T

1)



What is monotone normality? strong monotone regularity = monotone normality

Assume that X is strongly monotonically regular, i.e., there exists a monotone
map p: Rx — o(X) such that

(1) x € p(x,U) C u(x,U) C U and
2) ifp(x,U)Nu(y,V)# o then xec VoryelU.
1 is called a Borges operator operator.

Given a closed F and an open U such that F C U define

A(F,U)= U wp(x, U).

xeF
Then:
(MN1) F C G and U C V implies that
A(F,U)= U u(x,V) € U pulx,U) € U ulx,V)=A(G,V).
xeF T xeF T xe6
ucv FCG

(MN2) FCA(F,U)CA(F,U)CU.
& (2
X is monotonically normal and A is called a monotone normality operator.
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Properties of monotonically normal T; spaces

Metrizable spaces are monotonically normal.
Linearly ordered topological spaces are monotonically normal.

Monotone normality is hereditary.
(The proof is based on the Borges operator. Hence this is only valid for Ty
spaces.)

Monotone version of Tietze's theorem:

Suppose A is a closed subspace of a monotonically normal space X. Then
there is a function ®4: C(A,[0,1]) — C(X,[0,1]) such that:

(1) foreach f € C(A,[0,1]), ®a(f) extends f.

(2) iff,g € C(A,[0,1]) and f < g in A, then ®a(f) < da(g) in X.

(The proof is based on the Borges operator. Hence this is only valid for T;
spaces.)
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Why monotone normality without 77 axiom?

e Monotone normality (with Ty axiom) is hereditary, while normality is only
hereditary for closed subspaces. What about monotone normality without Ty
axiom?

It is not hereditary!!

Example

Let (X, o(X)) be an a rbitrary space and Y = X U {oo} with co ¢ X the
one-point extension of X with topology o(Y) = o(X)U{Y}.

e (Y,0(Y)) is trivially monotonically normal (but not 7).
e The subspace topology on X is o(X).

If (X, 0(X)) fails to be monotonically normal we have the desired counterexample.

v
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e Heritability.

e The Tietze-Urysohn theorem for normal spaces provides a characterization of
normal spaces for arbitrary (not necessarily T;) spaces.

What about the monotonically normal analogue of the Tietze-Urysohn

theorem?
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Why monotone normality without 77 axiom?

e Heritability.
o Tietze-Urysohn theorem.

e Since metrizable spaces are monotonically normal (and T;) spaces, it is
natural to think that quasi-metrizable spaces could also be monotonically
normal (but not necessarily Ty).

A first example of a quasi-metrizable (but not metrizable) space is the
Sorgenfrey line, and it is indeed monotonically normal.

However, the Sorgenfrey plane is also quasi-metrizable but not even normal.

Hence it is natural to try to study which quasi-metrizable spaces are
monotonically normal.
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Why monotone normality without 77 axiom?

e Heritability.
o Tietze-Urysohn theorem.

e Since metrizable spaces are monotonically normal (and T;) spaces, it is
natural to think that quasi-metrizable spaces could also be monotonically
normal (but not necessarily Ty).

e Normality is a well-stablished topic in Pointfree Topology. What about
monotone normality? Certainly this must be done avoiding the T; axiom, a
“very point-dependent axiom”.

If time permits | will present some ideas at the end of the talk. ..
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Monotone normality without 77 axiom

Every topological space X induces, in a natural way, a partial order < on X
(called the specialization order) defined by y < x <= y € {x}.

For each x € X we shall also denote |x = {y € X | y < x} = {x}.

Theorem (Characterization of MN without T7)

Let X be a topological space. The following are equivalent:
(1) X is monotonically normal;
(2) There is an assignment of an open set u(x, U) to each pair (x, U) such that
U is an open neighborhood of |x, in such a way that
(i) 4x € p(x, U) € p(x,U) C U;
(ii) ifx <y and U C V, then p(x, U) C u(y, V).
(iil) if p(x, U)yNp(y, V) # @ then either x € V ory € U.

v

Q J.G.G., |. Mardones-Pérez and M.A. de Prada Vicente, Monotone normality free of
T axiom, Acta Math. Hungar. (2009).
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Monotone normality without 77 axiom Consequences: Heritability

As a corollary of the previous characterization, and in connection with hereditary
monotone normality we have the following:

(1) Monotone normality is a weakly hereditary property (any closed subspace of a
monotonically normal space is monotonically normal), but not hereditary.

(2) Monotone normality is hereditary under the assumption of the T; axiom.

(3) A space X is hereditarily monotonically normal if and only if every open
subspace of X is monotonically normal.
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As a second corollary of the characterization, we can conclude that the monotone
version of the Tietze's result is still valid for monotone normality in the T;-free
context. We first recall the following result of T. Kubiak:

Theorem

Given a space X we denote UL(X) = {(f,g) € USC(X) x LSC(X,L) | f < g}.

A space X is monotonically normal if and only if there exists an order-preserving
function A: UL(X) — C(X) such that f < \(f,g) < g for any (f, g) € UL(X).

& T. Kubiak, Monotone insertion of continuous functions, Q & A in General
Topology (1995).

It must be emphasized here that T. Kubiak was the first in studying monotone
normality for non T7 spaces. The result previous result is valid for non T; spaces!



Monotone normality without 77 axiom Consequences: Tietze-type theorem

As a second corollary of the characterization, we can conclude that the monotone
version of the Tietze's result is still valid for monotone normality in the T;-free
context. We first recall the following result of T. Kubiak:

Theorem

Given a space X we denote UL(X) = {(f,g) € USC(X) x LSC(X,L) | f < g}.

A space X is monotonically normal if and only if there exists an order-preserving
function A: UL(X) — C(X) such that f < \(f,g) < g for any (f, g) € UL(X).

Combining this theorem with the previous result we obtain the following:

Theorem

A space X is monotonically normal if and only if for each closed A C X there exists a
function ®,4: C(A,[0,1]) — C(X,[0,1]) such that:

(1) for each f € C(A,[0,1]), ®a(f) extends f;

(2) iff,g € C(A[0,1]) and f < g in A, then ®4(f) < ®a(g) in X;

(3) If Ay C A; are closed and f;: C(A;, [0,1]) are such that f4, > i and f(x) =1 for
any x € A \ Ai, then ¢A2(f2) > (DAl(fl)-

(4) If Ay C Ay are closed and f;: C(A;, [0,1]) are such that fa, < fi and f(x) =0 for
any x € A \ A1, then ¢A2(f2) < ¢A1(f1).
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Let X be a non-empty set. A map d: X x X — [0,+00) is a quasi-metric if the
following two conditions hold for all x,y,z € X:

(QM1) d(x,y) =d(y,x) =0 if and only if x = y;
(QM2) d(x,y) < d(x,z) +d(z,y).



Quasi-metrizable spaces

Let X be a non-empty set. A map d: X x X — [0,+00) is a quasi-metric if the
following two conditions hold for all x,y,z € X:

(QM1) d(x,y) =d(y,x) =0 if and only if x = y;
(QM2) d(x,y) < d(x,2) +d(z,y)-

Every quasi-metric d generates a T topology 74 which has as a base the family
of d-balls {B4(x,¢) | x € X,e > 0}, where

Ba(x,e) ={y € X | d(x,y) < e}

A topological space (X, 7) is said to be quasi-metrizable if there exists a
quasi-metric d on X such that 7 = 74.



Quasi-metrizable spaces

Let X be a non-empty set. A map d: X x X — [0,+00) is a quasi-metric if the
following two conditions hold for all x,y,z € X:

(QM1) d(x,y) =d(y,x) =0 if and only if x = y;
(QM2) d(x,y) < d(x,2) + d(z,y).

Every quasi-metric d generates a T topology 74 which has as a base the family
of d-balls {B4(x,¢) | x € X,e > 0}, where

Ba(x,e) ={y € X | d(x,y) < e}

A topological space (X, 7) is said to be quasi-metrizable if there exists a
quasi-metric d on X such that 7 = 74.

A quasi-metric space (X, d) is Ty iff the following is satisfied:

dx,y)=0 = x=y (T1)



Quasi-metrizable spaces

Let X be a non-empty set. A map d: X x X — [0,+00) is a quasi-metric if the
following two conditions hold for all x,y,z € X:

(QM1) d(x,y) =d(y,x) =0 if and only if x = y;
(QM2) d(x,y) < d(x,2) + d(z,y).

Every quasi-metric d generates a T topology 74 which has as a base the family
of d-balls {B4(x,¢) | x € X,e > 0}, where

Ba(x,e) ={y € X | d(x,y) < e}

A topological space (X, 7) is said to be quasi-metrizable if there exists a
quasi-metric d on X such that 7 = 74.

A quasi-metric space (X, d) is Ty iff the following is satisfied:
dx,y)=0 = x=y (T1)
The specialization order <, on X is given by

y<gx <= d(y,x)=0 <= yc {x}.
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Quasi-metrizable spaces normality

As we have already mentioned, metrizable spaces are monotonically normal and,
of course, satisfy the Ti-axiom.

However, it is not so easy to establish whether a quasi-metrizable space is normal
or not. It is well known that not all quasi-metrizable spaces are normal, a typical
example being the Sorgenfrey plane.

1

o sup{yr1 — xi,yo —x} AL, if xg <y;and x < yo;
X,y) =
otherwise.

)

F={(9,—9) | g€ Q} and G ={(q,—q) | g € Q} are closed and cannot be
separated by pen subsets.
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However, it is not so easy to establish whether a quasi-metrizable space is normal
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It is natural to study which quasi-metrizable spaces are normal.
In this sense it could be mentioned, citing from:

Q P.M. Gartside, Cardinal invariants of monotonically normal spaces, Topology Appl.
(1997).

“Whenever a space can be explicitly and constructively shown to be
normal, then it is probably monotonically normal.”



Quasi-metrizable spaces normality

As we have already mentioned, metrizable spaces are monotonically normal and,
of course, satisfy the Ti-axiom.

However, it is not so easy to establish whether a quasi-metrizable space is normal
or not. It is well known that not all quasi-metrizable spaces are normal, a typical
example being the Sorgenfrey plane.

It is natural to study which quasi-metrizable spaces are normal.
In this sense it could be mentioned, citing from:

& P.M. Gartside, Cardinal invariants of monotonically normal spaces, Topology Appl.
(1997).

“Whenever a space can be explicitly and constructively shown to be
normal, then it is probably monotonically normal.”

So we will study instead which quasi-metrizable spaces are monotonically normal.
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If the quasi-metric space is T; we have the following characterization:
Theorem
Let (X, d) be a Ty quasi-metric space. The following are equivalent:
(1) (X,74) is monotonically normal;
(2) There exists a map h: X x (0, +00) — (0, +00) such that:

(hl) 0 < h(x,e) <e

(h2) ife1 < &2, then h(x,e1) < h(x,e2);

(h3) if x # y, then By(x, h(x,d(x,y))) N Ba(y, h(y,d(y,x))) = 2.
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Quasi-metrizable spaces characterization for T; spaces

If the quasi-metric space is T; we have the following characterization:
Theorem

Let (X, d) be a Ty quasi-metric space. The following are equivalent:
(1) (X,74) is monotonically normal;
(2) There exists a map h: X x (0, +00) — (0, +00) such that:

(hl) 0 < h(x,e) <e

(h2) ifer < ea, then h(x,e1) < h(x,e2);

(h3) if x # y, then By(x, h(x,d(x,y))) N Ba(y, h(y,d(y,x))) = @.

Corollary

Let (X, d) be a Ty quasi-metric space and k € (0, 1] such that:

x#y = Balx,k-d(x,y)) N Ba(y, k-d(y,x)) = 2. (%)
Then (X, 74) is monotonically normal.

‘ J.G.G., S. Romaguera and J.M. Sanchez-Alvarez, Quasi-metrics and monotone
normality, Topology Appl. (2011).
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Let (X, d) be a Ty quasi-metric space and k € (0, 1] such that:

x#y = By(x,k-d(x,y)) N By(y,k-d(y,x)) = 2.

Then (X, 7¢) is monotonically normal.

Examples

e If d is a metric, then condition (%) is satisfied with k =

NI

o X
o<



Quasi-metrizable spaces

examples (T7)
Let (X, d) be a Ty quasi-metric space and k € (0, 1] such that:

x#y = By(x,k-d(x,y)) N By(y,k-d(y,x)) =0
Then (X, 74) is monotonically normal.
Examples

e If d is a metric, then condition (%) is satisfied with k =

N|=

]

Bi(y,3-d(y.x))
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Let (X, d) be a Ty quasi-metric space and k € (0, 1] such that:
X#y = Bd(X7kd(XaY))de(yakd(an)):g (*)
Then (X, 74) is monotonically normal.

Examples

o If d is a metric, then condition () is satisfied with k = 1.

e If d is the Sorgenfrey quasi-metric on R (d(x,y) = min{y —x,1} if x <y
and d(x,y) = 1 otherwise), then condition (x) is satisfied with k = 1.
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Let (X, d) be a Ty quasi-metric space and k € (0, 1] such that:
X#y = Bd(X7kd(XaY))de(yakd(an)):g (*)
Then (X, 74) is monotonically normal.

Examples

o If d is a metric, then condition () is satisfied with k = 1.

e If d is the Sorgenfrey quasi-metric on R (d(x,y) = min{y —x,1} if x <y
and d(x,y) = 1 otherwise), then condition (x) is satisfied with k = 1.

Bd(yl)
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Let (X, d) be a Ty quasi-metric space and k € (0, 1] such that:
x#y = By(x,k-d(x,y)) N By(y, k-d(y,x)) = @. (%)
Then (X, 74) is monotonically normal.

Examples

o If d is a metric, then condition () is satisfied with k = 1.
e If d is the Sorgenfrey quasi-metric on R (d(x,y) = min{y —x,1} if x <y
and d(x,y) = 1 otherwise), then condition (x) is satisfied with k = 1.
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and du(x,y) = 1 otherwise), then condition (x) is satisfied with k = 3.
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Quasi-metrizable spaces examples (T7)

Let (X, d) be a Ty quasi-metric space and k € (0, 1] such that:
x#y = By(x,k-d(x,y)) N By(y, k-d(y,x)) = @. (%)
Then (X, 74) is monotonically normal.

Examples

o If d is a metric, then condition () is satisfied with k = 1.

e If d is the Sorgenfrey quasi-metric on R (d(x,y) = min{y —x,1} if x <y
and d(x,y) = 1 otherwise), then condition (x) is satisfied with k = 1.

e The Michael line. (du(x,y)=|x—y|ifx€Q, du(x,y)=0ifx=y ¢ M
and du(x,y) = 1 otherwise), then condition (x) is satisfied with k = 3.

Note that in the case of the Sorgenfrey plane, - mm iy By(x,K)
for each k € (0,1] one can choose x = (0,0) t
and y = (fg, %) then d(x,y) =1 and so ) '

Ba(x, k- d(x,y)) N Ba(y, k- d(y,x)) # @. x=(0;0) * Ba(x,k)
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Quasi-metrizable spaces sufficient condition

Finally, in the general case, we can also provide a sufficient condition for a
quasi-metric space to be monotonically normal:

Theorem
Let (X, d) be a quasi-metric space satisfying:
mﬂm: g = Bd(x/7 d(XT,’y)) N Bd(y/7 d(yT/’X)) =g W <x,y <y. ()

Then (X, 74) is monotonically normal.

Note that if d is indeed a metric, the condition (x) above is obviously satisfied. In
fact, this is precisely the Hausdorff condition.

In this case the previous proposition is, once again, nothing but the well known
fact that metrizable spaces are monotonically normal.
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Examples

e The reals with the right-order topology (Kolmogorov line).
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Then (X, 74) is monotonically normal.

Examples

e The reals with the right-order topology (Kolmogorov line).

e The set of (closed) formal balls BX of a metric space endowed with the
Scott topology.




Quasi-metrizable spaces examples (non T7)

Let (X, d) be a quasi-metric space satisfying:

GINDT =92 = By(x, L) nBy(y, ) =g wx' < x,y <y. (%)
Then (X, 74) is monotonically normal.

Examples

e The reals with the right-order topology (Kolmogorov line).

e The set of (closed) formal balls BX of a metric space endowed with the
Scott topology.

e The domain of words >°°.




Quasi-metrizable spaces examples (non T7)
Let (X, d) be a quasi-metric space satisfying:
WINDI = — Balx, L2) Byl 2520) =5 WX < xy/ <y. (1)

Then (X, 74) is monotonically normal.

Examples

e The reals with the right-order topology (Kolmogorov line).

The set of (closed) formal balls BX of a metric space endowed with the
Scott topology.

The domain of words >~°°.

e The interval domain /([0, 1]).




Quasi-metrizable spaces examples (non T7)
Let (X, d) be a quasi-metric space satisfying:
WINDI = — Balx, L2) Byl 2520) =5 WX < xy/ <y. (1)

Then (X, 74) is monotonically normal.

Examples

e The reals with the right-order topology (Kolmogorov line).

The set of (closed) formal balls BX of a metric space endowed with the
Scott topology.

The domain of words X*°.
e The interval domain /([0, 1]).
The complexity (quasi-metric) space (C, dc).




Monotone normality in Pointfree Topology

A space X is said to be:
o subfit if for each U € o(X) and x € U there exists y € {x} with {y} C U.
o weakly regular if for each U € o(X) and x € U, {x} C U.

Lemma

Let X be a Ty normal space. Then:

Xis T, < X is Ty < X is weakly regular <= X is subfit.

Proposition

Let X be a subfit topological space. The following are equivalent:
(1) X is monotonically normal.

(2) X has a Borges operator.

¥ J.G.G., J. Picado and M.A. de Prada Vicente, Monotone normality and
stratifiability from a pointfree point of view, Topology Appl. (2014).



Monotone normality in Pointfree Topology

A space X is subfit if and only if

given U,V € o(X) s.t. U Z V there exists W with UUW =X # VvV W.



Thank you!



