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Probabilistic metrics

A Menger probabilistic metric space is a set X and a mapping
F from X × X to the set of all nonnegative probability
distribution functions with the following properties (we shall
denote F(x , y) = Fxy ): (for all x , y , z ∈ X and r , s ≥ 0)
(PM1) Fxy (r) = 1 for all r > 0 if and only if x = y ;
(PM2) Fxy = Fyx ;
(PM3) Fxz(r + s) ≥ Fxy (r) ∗ Fyz(s).
where ∗ : [0, 1]× [0, 1] → [0, 1] is a t-norm.



Strong uniformity and strong-topology (I)

The strong uniformity is defined through the uniform basis

U =
{

U(ε) : ε > 0
}
,

where U(ε) =
{
(x , y) ∈ X × X : Fx ,y (ε) > 1− ε

}
.

The strong topology or (ε, λ)-topology is the topology induced
by the strong uniformity, i.e. it is defined through the following
neighbourhood base:

Nx =
{

Nx(ε, λ) : ε > 0, λ ∈ (0, 1]
}
,

where Nx(ε, λ) =
{

y ∈ X : Fx ,y (ε) > 1− λ
}

.



Strong uniformity and strong topology (II)
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There are two properties essential to obtain a topological space
derived from a probabilistic metric space:

(i) Fx ,y (t) > r =⇒ ∃t ′ < t such that Fx ,y (t ′) > r
(it follows from left-continuity of the distribution function);

(ii) ∀r ∈ [0, 1) ∃t < 1 such that t ∗ t ≥ r
(it follows from sup

t<1
t ∗ t = 1;

a consequence of ∗ being left- continuous).



Fuzzy (quasi-)metric (I)

In the nineties, George and Veeramani introduced a notion of
fuzzy metric as follows:

Given a continuous t-norm ∗, a fuzzy metric M on a set X is
a fuzzy set in X × X × (0,+∞) satisfying the following
conditions: (for x , y , z ∈ X and all r , s > 0)
(FM1) M(x , y , r) > 0;
(FM2) M(x , y , r) = 1 for all r > 0 if and only if x = y ;
(FM3) M(x , y , r) = M(y , x , r);
(FM4) M(x , z, r + s) ≥ M(x , y , r) ∗M(y , z, s);
(FM5) M(x , y , ·) is continuous.

By dropping axiom (FM3), Gregori and Romaguera defined
and studied the notion of a fuzzy quasi-metric space.



Fuzzy (quasi-)metric (II)

This notion is proved to be closely related to that of probabilistic
metric spaces. The technical support for this relation is the
exponential law, which allows to consider a function
M : X × X × (0,+∞) → [0, 1] as a function
F : X × X → [0, 1](0,+∞), defined by
F(x , y)(t) = Fxy (t) = M(x , y , t).

It deserves to be mentioned here that the difference between
fuzzy metric spaces and probabilistic metric spaces is that Fxy
is strictly positive in (0,∞) and continuous (not only
left-continuous) and the condition lim

t→∞
Fxy (t) = 1 is not

necessarily satisfied.



t-norms

Let us recall that a binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is
a (left-)continuous t-norm provided that it satisfies the following
conditions:

(i) ∗ is associative and commutative;
(ii) ∗ is (left-)continuous;

(iii) a ∗ 1 = a for every a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d .

Note that left-continuity of ∗ implies that ∗ is distributive over
arbitrary sups, i.e. for α ∈ [0, 1] and {βi}i∈J ⊂ [0, 1]

α ∗
(
∨

i∈J
βi

)
= ∨

i∈J
(α ∗ βi) .



Strictly two-sided, commutative quantales

A strictly two-sided, commutative quantale (or a an integral,
commutative cl-monoid) is a triple (L,≤, ∗) such that:

(L,≤) is a complete lattice.
(L, ∗) is a commutative monoid such that the universal
upper (resp. lower) bound > (resp. ⊥) acts as unit (resp.
zero) element.
∗ is distributive over arbitrary joins in (L,≤), i.e.

α ∗
(
∨

i∈J
βi

)
= ∨

i∈J
(α ∗ βi) for all α ∈ L and {βi}i∈J ⊂ L,

where J stands for any index set.



Residuation

Every commutative quantale (L,≤, ∗) is residuated - i.e. there
exist a binary operation → on L satisfying the following axiom

α ∗ γ ≤ β ⇐⇒ γ ≤ α
∗→ β

for α, β, γ ∈ L.

In particular the implication ∗→ is given by

α
∗→ β =

∨ {
γ ∈ L : α ∗ γ ≤ β

}
for all α, β ∈ L.



Fundamental t-norms

In the case of the fundamental continuous t-norms ∧, Prod
and Tm (defined as Tm(α, β) = max{α + β − 1, 0} for each
α, β ∈ L), the corresponding implications are defined,
respectively, as

α
∧−→ β =

{
β, if α > β;
1, if α ≤ β;

α
Prod−→ β =

{
β
α , if α > β;
1, if α ≤ β;

and

α
Tm−→ β =

{
β − α + 1, if α > β;
1, if α ≤ β;



Enlarging and arbitrary join-preserving maps from LX into LX

Let X be a set and (L,≤) a complete lattice. We denote by
HL(X ) the collection of all enlarging and arbitrary
join-preserving mappings from LX into LX , i.e. HL(X ) is that
subset (LX )LX

whose members W satisfy for each a ∈ LX and
{ai}i∈J ⊂ LX :
(W1) W (a) ≥ a (Enlarging)

(W2) W
(
∨

i∈J
ai

)
= ∨

i∈J
W (ai) (Join-preserving)

and W (1∅) = 1∅.

Note that if L = 2 =
{

0, 1
}

, HL(X ) can be identified with the
collection of all subsets of X × X containing the diagonal.



Hutton L-uniformities

Let (L,≤, ′) be a complete lattice. A Hutton L-quasi-uniformity
on X is a nonempty subset U of HL(X ) such that
(HU1) if U ∈ U , U ≤ V and V ∈ HL(X ) then V ∈ U ;
(HU2) if U, V ∈ U , there exists W ∈ U such that W ≤ U and

W ≤ V ;
(HU3) if U ∈ U , there exists V ∈ U such that V ◦ V ≤ U

(where ◦ denotes the usual composition of functions).

A Hutton L-quasi-uniformity is called a Hutton L-uniformity if it
additionally satisfies:
(HU4) if U ∈ U , then U−1 ∈ U .



Induced Hutton [0, 1](-quasi)-uniformity (I)

Construction: Let (X , M, ∗) be a fuzzy quasi-metric space,
ε ∈ (0, 1] and t > 0 and define W M

ε,t : [0, 1]X → [0, 1]X as

W M
ε,t(α ∗ 1{x})(y) = α ∗

(
(1− ε) → M(x , y , t)

)
for each x ∈ X and α ∈ (0, 1] and

W M
ε,t(a) = ∨

x∈X
W M
ε,t

(
a(x) ∗ 1{x}

)
for each a ∈ [0, 1]X .
(Where by α ∗ 1{x} ∈ [0, 1]X we denote the mapping defined as
α in x and 0 otherwise).



Induced Hutton [0, 1]-quasi-uniformity (II)

Result: The family BM =
{

W M
ε,t : ε ∈ (0, 1], t > 0

}
is a base for

a Hutton [0, 1]-quasi-uniformity on X .

We shall denote by UM the quasi-uniformity generated by BM
and call it the Hutton [0, 1]-quasi-uniformity induced by M.

Moreover, in the particular case ∗ = Tm, we have that(
W M
ε,t

)−1
= W M

ε,t for each ε ∈ (0, 1] and t > 0 and
consequently, if (X , M, Tm) is a fuzzy metric space, then UM is
a Hutton [0, 1]-uniformity



Lowen and Katsaras functors

The study of the relation between classical and fuzzy structures
of topological nature was initiated by Lowen. He introduced the
well-known adjoint functors

ω : TOP → [0, 1]-TOP and ι : [0, 1]-TOP → TOP.

In what respects to [0, 1]-(quasi-)uniform spaces (in the sense
of Hutton), it was Katsaras who explicit the relation between the
category (Q)UNIF of (quasi-)uniform spaces and that of Hutton
[0, 1]-(quasi-)uniform spaces, [0, 1]-(Q)UNIF. He defined the
adjoint functors

Φ : (Q)UNIF → [0, 1]-(Q)UNIF and Ψ : [0, 1]-(Q)UNIF → (Q)UNIF.



Commutativity with respect to Katsaras’ functor

Result: Given a fuzzy (quasi-)metric space (X , M, ∗), the
uniformity UM is precisely the image under Katsaras’ functor of
UM , i.e. we have the following commutative diagram:
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Commutativity with respect to Katsaras’ functor

Result: Given a fuzzy (quasi-)metric space (X , M, ∗), the
uniformity UM is precisely the image under Katsaras’ functor of
UM , i.e. we have the following commutative diagram:
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Commutativity with respect to Lowen’s functor

Result: Given a fuzzy (quasi-)metric space (X , M, ∗), the
topology τM is precisely the image under Lowen’s functor of
the [0, 1]-topology induced by UM , i.e. we have the following
commutative diagram:

(Quasi-)uniformity
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Topology
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Commutativity with respect to Lowen’s functor

Result: Given a fuzzy (quasi-)metric space (X , M, ∗), the
topology τM is precisely the image under Lowen’s functor of
the [0, 1]-topology induced by UM , i.e. we have the following
commutative diagram:
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Commutativity with Katsaras’ functor
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Commutativity with Lowen’s functor (I)
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Commutativity with Lowen’s functor (II)
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