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On strict and double insertion theorems
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In mathematics there are many results concerning the possibility of
inserting a function (or a pair of functions) between a given pair of
comparable real-valued functions. In this note we are mainly concerned
with strict and ultra-strict insertion (this is the terminology of Blatter
and Seever [1]).

Let us start by first recalling the insertion scheme. Let U, L and
C = U \ L be certain classes of real-valued functions on a set X.

The insertion scheme.

(I) Given u 2 U and l 2 L with u  l, there is f 2 C such that
u  f  l.

The prototype of this situation is the following theorem of Katětov [3]
and Tong [7] in which X is a topological space, and U, L, and C consist
of all upper semicontinuous, lower semicontinuous, and continuous real-
valued functions on X.
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Theorem 1 (Katětov-Tong). A space X is normal if and only if, when-
ever u, l : X ! R are such that u  l, u is upper semicontinuous and l
is lower semicontinuous, there exists a continuous f : X ! R such that
u  f  l.

We have also the dual result ([4]):

Theorem 2 (Lane). A space X is extremaly disconnected if and only
if, whenever l, u : X ! R are such that l  u, l is lower semicontinuous
and u is upper semicontinuous, there exists a continuous f : X ! R
such that l  f  u.

For insertion of strict type we have the following two schemes:

The strict insertion scheme.

(SI) Given u 2 U and l 2 L with u < l, there is f 2 C such that
u < f < l [here and elsewhere u < l means u(x) < l(x) for all x 2 X].

The ultra-strict insertion scheme.

(USI) Given u 2 U and l 2 L with u  l, there is f 2 C such that
u  f  l and u(x) < f(x) < l(x) whenever u(x) < l(x).

Classical illustrations of schemes (SI) and (USI) are provided by the
following two theorems of Dowker [2] and Michael [6].

Theorem 3 (Dowker). A space X is normal and countably paracompact
if and only if, whenever u, l : X ! R are such that u < l, u is upper
semicontinuous and l is lower semicontinuous, there exists a continuous
f : X ! R such that u < f < l.

Theorem 4 (Michael). A space X is perfectly normal if and only if,
whenever u, l : X ! R are such that u  l, u is upper semicontinuous
and l is lower semicontinuous, there exists a continuous f : X ! R such
that u  f  l and u(x) < f(x) < l(x) whenever u(x) < l(x).

It is now evident that it is countable paracompactness (in Theorem 3)
and perfectness (in Theorem 4) which are responsible for the strictness
and ultra-strictness of the insertion.

It is therefore of interest to know how insertion theorems for countably
paracompact spaces or perfect spaces (without normality) may look like.
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The case of countable paracompactness was treated already in 1970
by Mack [5] who proved the following.

Theorem 5 (Mack). A space X is countably paracompact if and only
if, given a lower semicontinuous function l : X ! (0,+1) there exist
l
1

, u : X ! (0,1) with l
1

lower semicontinuous and u upper semicon-
tinuous such that 0 < l

1

 u < l.

In fact, Mack has 0 < l
1

 u  l. It has been observed very recently
by Xie and Yan [8, Theorem 2.3] that Mack’s result continues to hold if
one requires 0 < l

1

 u < l.
In the class of normal spaces, paracompactness is equivalent to meta-

compactness, and in this respect there is another result in [8], viz.:

Theorem 6 (Xie-Yan). A space X is countably metacompact if and only
if, given a lower semicontinuous function l : X ! (0,+1) there exists
an upper semicontinuous u : X ! (0,1) such that 0 < u < l.

The case of perfectness has recently been treated by Yan and Yang [9]
who proved the following (we recall that a space X is perfectly normal
if it is normal and perfect, i.e. closed sets are G�-sets or open sets are
F�-sets).

Theorem 7 (Yan-Yang). A space X is perfect if and only if, given
a lower semicontinuous function l : X ! [0,+1) there exist an upper
semicontinuous u : X ! [0,1) such that 0  u  l and 0 < u(x) < l(x)
whenever l(x) > 0.

In Theorems 6 and 7, u is inserted between the constant function with
value 0 and the function l. As it will be seen this restriction is unnec-
essary. Moreover, it is possible to strengthen the insertion conditions of
Theorem 5 and 6 according to the following schemes:

The strict double insertion scheme.

(SDI) Given u 2 U and l 2 L with u < l, there are l
1

2 L and u
1

2 U
such that u < u

1

 l
1

< l.

The ultra-strict double insertion scheme.

(USDI) Given u 2 U and l 2 L with u  l, there are u
1

2 U and l
1

2 L
such that u  u

1

 l
1

 l and u(x) < u
1

(x) and l
1

(x) < l(x) whenever
u(x) < l(x).
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It is now obvious to check that we have the following implications:

(SDI)+ (I) =) (SI)

(USDI)+ (I) =) (USI)

In our talk we will explain how these schemes can be used to provide
simpler proofs of some well-known results and also to obtain new results.

For example, in the particular case when X is a topological space, and
U, L, and C consist of all upper semicontinuous, lower semicontinuous,
and continuous real-valued functions onX, we have the following results:

Theorem 8. A space X is countably metacompact if and only if, when-
ever u, l : X ! R are such that u < l, u is upper semicontinuous and l
is lower semicontinuous, there exist u

1

, l
1

: X ! R with u
1

upper semi-
continuous and l

1

lower semicontinuous such that u < u
1

 l
1

< l.

Theorem 9. A space X is perfect if and only if, whenever u, l : X ! R
are such that u  l, u is upper semicontinuous and l is lower semicon-
tinuous, there exist u

1

, l
1

: X ! R with u
1

upper semicontinuous and l
1

lower semicontinuous such that u  u
1

 l
1

 l and u(x) < u
1

(x) and
l
1

(x) < l(x) whenever u(x) < l(x).

The results of Dowker (Theorem 3) and Michael (Theorem 4) follow
immediately from Theorems 8 and 9 and Theorem 1.

On the other hand, we can also use these insertion results to obtain
some extension results:

Corollary 10. A space X is perfect if and only if for every closed
A ⇢ X and every continuous f : A ! [0, 1] there exist two extensions
u, l : X ! [0, 1] of f such that u  l, u is upper semicontinuous, l is
lower semicontinuous and 0 < u(x) and l(x) < 1 whenever x 2 X \A.

Once again, we can combine Corollary 10 with Theorem 1 in order to
obtain the following Tietze-type theorem.

Corollary 11. A space X is perfectly normal if and only if for every
closed A ⇢ X and every continuous f : A ! [0, 1] there exists a extension
F : X ! [0, 1] of f such that u  l, u is upper semicontinuous, l is lower
semicontinuous and 0 < F (x) < 1 whenever x 2 X \A.



On strict and double insertion theorems 91

Among the new results we will present we have the dual versions of
Theorems 8 and 9. We first note that the dual notions of perfectness
and countably metacompactness are the following:

A topological space X is called almost discrete if every open set is
clopen. X is called cocountably metacompact if for every non-decreasing
sequence {Gn}n2N of closed subsets satisfying

S

n2NGn = X there is a
non-decreasing sequence {Wn}n2N of open sets such that Wn ⇢ Gn for
each n 2 N and

S

n2NWn = X.

Theorem 12. A space X is cocountably metacompact if and only if,
whenever l, u : X ! R are such that l < u, l is lower semicontinuous
and u is upper semicontinuous, there exist l

1

, u
1

: X ! R with l
1

lower
semicontinuous and u

1

upper semicontinuous such that l < l
1

 u
1

< u.

Theorem 13. A space X is almost discrete if and only if, whenever
l, u : X ! R are such that l  u, l is lower semicontinuous and u is upper
semicontinuous, there exist l

1

, u
1

: X ! R with l
1

lower semicontinuous
and u

1

upper semicontinuous such that l  u
1

 u
1

 u and l(x) < l
1

(x)
and u

1

(x) < u(x) whenever l(x) < u(x).

Corollary 14. A space X is extremally disconnected and cocountably
metacompact if and only, whenever l, u : X ! R are such that l < u, l
is lower semicontinuous and u is upper semicontinuous, there exists a
continuous f : X ! R such that l < f < u.

Corollary 15. A space X is almost discrete if and only if, whenever
l, u : X ! R are such that l  u, l is lower semicontinuous and u is
upper semicontinuous, there exists a continuous f : X ! R such that
l  f  u and l(x) < f(x) < u(x) whenever l(x) < u(x).
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