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Abstract

The purpose of this talk is to identify those mathematical features of the order
of the real numbers that are essential when dealing with real–valued functions;
abstract and axiomatize these features, and show how lattice theory (domain
theory) can provide an appropriate framework for general constructions in the
theory of lattice-valued functions. Our attention will be focussed on the gener-
ation, insertion and extension of functions satisfying some type of continuity.
As an application, some well-known classes of topological spaces will be iden-
tified.

1. Introduction

Starting with real-valued functions, we will go to lattice-valued functions in a general-
ization which pretends to keep many interesting results and applications, mainly in what
concerns to generation, insertion and extension of such functions.

All the results presented here are part of a joint research with Tomasz Kubiak and
Javier Gutiérrez Garćıa and have already been published (cf. [6, 7, 8]).

Among the related questions we are going to deal with, are those order and topological
aspects which provide conditions for generating, inserting and extending lattice-valued
functions. On the way, some restrictions will be imposed, if necessary, either on the
functions themselves or on their domains.

Our model will be real-valued functions together with the known results about the
above mentioned topics: generation, insertion and extension. Capturing the essence of the
model will serve us to select a class of lattices as codomain that will provide the expected
results.

A first look to real-valued functions led M.H. Stone in 1949 ([12]) to realise that they
are completely determined by the collection of sets {[f ≺ t] := {x ∈ X : f(x) ≺ t} : t ∈ R}
where ≺∈ {≤, ≥, <, >}. Indeed, given f : X → R, we have

f(x) = inf{t ∈ R : x ∈ [f < t]} = inf{t ∈ R : x ∈ [f ≤ t]}

= sup{t ∈ R : x ∈ [f > t]} = sup{t ∈ R : x ∈ [f ≥ t]}.

The index set R can be substituted by any dense subset (particular interest will have
the countable dense subset Q).
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Stone called the previous collection the spectral family of the function, because of the
resemblance with the spectral family for a self-adjoint operator in Hilbert spaces.

It is natural to try to isolate those properties needed to determine the function or the
aspects of topological/order nature. Once we abstract those properties, if well done, we
should be able to recover functions as well as their order and topological-type properties.

This is what Stone did in [12], developing a method which substituted successfully
real-valued functions for real-indexed (or yet rational-indexed) families of subsets of the
domain. Simple properties of functions are reflected by simple properties of their spec-
tral families, and when the domain is a topological space there are connections between
topological properties of the function and topological properties of its spectral family.

2. Lattices

The power of Stone’s method relies in elementary, but deep, properties of the usual
order of the reals, such as interpolation (strict in the case of the strictly less than relation)
and approximation (both

∨
-approximation and

∧
-approximation). In fact, most of the

proofs in which real valued functions are involved depend on these two properties.
So, our objective will be to introduce in a complete lattice L new relations stronger

than the lattice order, and select the lattices which have with respect to those relations,
the two properties (interpolation and approximation) needed for most of the interesting
results for real-valued functions. Let us mention two well know classes of lattices satisfying
the above conditions: continuous lattices with the way-below relation and completely
distributive lattices with the wedge-below relation (or well inside relation). An advantage
of the second ones is their self-duality, advantage not shared by continuous lattices.

Definition 1. Given a complete lattice L and a, b ∈ L, we write

(1) a & b (a way-below b) if for directed subsets D ⊂ L the relation b ≤
∨

D implies the
existence of d ∈ D with a ≤ d.

(2) a ! b (a wedge-below b) if for arbitrary subsets C ⊂ L the relation b ≤
∨

C implies
the existence of c ∈ C with a ≤ c.

(3) a " b (wedge-above) if for arbitrary subsets C ⊂ L the relation
∧

C ≤ a implies the
existence of c ∈ C with c ≤ b.

The elements a ∈ L satisfying a ! a (resp. a " a) are called completely join-irreducible
(resp. completely meet-irreducible); they are called coprimes (resp. primes) if C is as-
sumed to be finite in (2) (resp. (3)).

As mentioned above, we have the following characterization:

Lemma 2. A lattice L is completely distributive if and only if a =
∨
{b ∈ L : b ! a}

(equivalently, a =
∧
{b ∈ L : a " b}) for each a ∈ L. A lattice L is continuous if and only

if a =
∨
{b ∈ L : b & a} for every a ∈ L.

The next step is to determine which kind of elements should be selected to play the role
of the countable set of rationals in the reals. It turns out that the right kind of sets are
countable join-dense subsets free of completely join-irreducible elements, where a subset
D ⊂ L is called join-dense (or a base) if a =

∨
{d ∈ D : d ≤ a} for each a ∈ L.

Completely distributive lattices which have a countable join-dense subset free of com-
pletely join-irreducible elements will be called !-separable lattices. This kind of lattices
will play the role of the range space for the functions in next subsection 2.2.

An example of completely distributive !-separable lattice is, of course, L = [0, 1]. More
examples come from the fact that the class of !-separable completely distributive lattices
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is closed under countable products with componentwise ordering. In particular, the Hilbert
cube L(ω) = [0, 1]ω with the componentwise order is a !-separable completely distributive
lattice. Its coordinate axes form a poset denoted by J(ω) (a hedgehog with ω spines) which
is a join-dense subset.

Even if J(ω) is no longer a lattice, the insertion theorem of subsection 2.2 yields an
insertion theorem for J(ω)-valued functions as a corollary [7] (which is independent of that
of Blair and Swardson [2]). Throughout this section L denotes a (complete) completely
distributive lattice. This assumption may occasionally be repeated.

2.1. Generating lattice-valued functions. We will follow Stone’s ideas and methods.
They were later on modified and simplified giving rise to the notion of “scale”(see [12]
and [3]). Our next objective is to look at the essence of that notion with “lattice-eyes”
and develop a method which allows to substitute lattice-valued functions by L-indexed (or
yet D-indexed) families of subsets of the domain (here L denotes the whole lattice and D
some dense-like subset in L).

For X a set and L a complete lattice, LX denotes the complete lattice of all maps from X
into L under pointwise ordering. Given f ∈ LX and a ∈ L, we write: ↑↑a = {b ∈ L : a & b},
↓ a = {b ∈ L : b ≤ a} and [f ≺ a] = {x ∈ X : a ≺ f(x)}, where ≺∈ {#,",≤,≥,&}.

The following lemma recovers for lattice-valued functions what is essential in the notion
of the spectral family of a real valued function.

Lemma 3. For a subset D ⊂ L and a family E = {Ed ⊂ X : d ∈ D} the following are
equivalent:

(1) Ed1 ⊃ Ed2 whenever d1 ! d2. [We shall say that E is !-antitone.]
(2) There exists f : X → L such that [f # d] ⊂ Ed ⊂ [f ≥ d], for every d ∈ D.

We are now in a position to define the crucial concept in this research.

Definition 4. Let D ⊂ L. A !-antitone family E = {Ed ⊂ X : d ∈ D} is called a scale
in X. The function f ∈ LX defined by f(x) =

∨
{d ∈ D : x ∈ Ed} is said to be generated

by the scale E .

Given f ∈ LX , both {[f ≥ a] : a ∈ L} and {[f # a] : a ∈ L} are scales that generate
the function f .

A parallel study can be done starting with a "-isotone family E = {Ed ⊂ X : d ∈ D}.
In this case, the function f ∈ LX will be defined by f(x) =

∧
{d ∈ D : x ∈ Ed} and said

to be generated by the scale E . Since complete distributivity is a self-dual property, all
the results obtained here hold also for this kind of scales.

Moreover, we have lattice-valued analogous of Stone’s real-valued results.

Lemma 5. Let D ⊂ L be join-dense. Let f, g ∈ LX be generated by the scales {Fd}d∈D

and {Gd}d∈D, respectively. Then f ≤ g if and only if Fd1 ⊂ Gd2 whenever d2 ! d1.

Lemma 6. Let D ⊂ L be join-dense and {Fd}d∈D a scale in X. Then there exists a
unique f ∈ LX such that [f # d] ⊂ Fd ⊂ [f ≥ d], for any d ∈ D. Moreover, for every
a ∈ L one has [f ≥ a] =

⋂
d!a Fd and [f # a] =

⋃
a!d Fd.

2.2. Katětov-Tong-type insertion theorem. Now we will adapt the techniques intro-
duced by Katětov in [9]. These techniques allow to give conditions for the insertion of
real-valued functions.

Let X be a topological space and L be a lattice. Let G, H and F be families of maps
from X into L consisting of continuous functions with respect to appropriately chosen
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topologies on L. Assume g ∈ G, h ∈ H, and g ≤ h. An insertion-type statement reads as
follows: there exists an f ∈ F such that g ≤ f ≤ h.

To extend Katětov-Tong theorem to lattice-valued functions, we first need to choose
appropriate definitions of semicontinuity for this kind of functions.

Among the different definitions of semicontinuities for real-valued functions, let us select
the ones defined in terms of the order. It is well known that, given a topological space X,
a function f : X → R is lower [upper]semicontinuous if and only if f = f∗ [f = f∗] where
f∗ is the lower limit function of f and is defined by f∗(x) =

∨
{
∧

f(U) : U is an open nbhd
of x} and f∗ is the upper limit function of f , which is defined dually. Notice that they
are a “logic” generalization of the interior and the closure of a set in a topological space.
Indeed (1A)∗ = 1Int A and (1A)∗ = 1A, where 1A is the characteristic function of A ⊂ X.

We observe that no topology in the codomain is used. Therefore the definitions of lower
and upper limit functions go unchanged to the case of lattice-valued functions.

Definition 7. Let X be a topological space. A function f : X → L is said to be lower
(resp. upper) semicontinuous if and only if f(x) =

∨
{
∧

f(U) : U is an open nbhd of x}
(resp. f(x) =

∧
{
∨

f(U) : U is an open nbhd of x}) for any x ∈ X.

We denote by LSC(X,L) and USC(X,L) the collections of all lower and upper semi-
continuous functions of LX . Members of C(X,L) = LSC(X,L) ∩ USC(X,L) are called
continuous.

Let us consider the following topologies on a lattice L:

(1) The Scott topology σ(L) which has {↑↑a : a ∈ L} as a base,

(2) the lower topology ω (L) which is generated from the subbase {L \ ↑ a : a ∈ L},

(3) the upper topology ν(L) which is generated from the subbase {L \ ↓ a : a ∈ L},

(4) the Lawson topology λ(L) being the supremum of σ(L) and ω(L).

We write ΣL = (L,σ(L)), ΩL = (L,ω(L)) and ΛL = (L,λ(L)). Also, given a topological
space X, let C(X,ΣL) denote the collection of all continuous functions from X to ΣL,
and similarly for the remaining topologies on L. In particular, C(X,ΛL) = C(X,ΣL) ∩
C(X,ΩL).

Next result shows that lower and upper semicontinuity are nothing but continuity when
the range space is endowed with certain well-know topologies.

Proposition 8. Let X be a topological space and f ∈ LX . Then

(1) f ∈ USC(X,L) iff [f ≥ a] is closed for each a ∈ L iff [f " a] is open for each a ∈ L.
(2) f ∈ LSC(X,L) iff [f ≤ a] is closed for each a ∈ L iff [f # a] is open for each a ∈ L.

Besides, we have a description of these notions in terms of scales.

Proposition 9. Let X be a topological space, D a join-dense subset of L and f ∈ LX a
map generated by the scale {Ed : d ∈ D}. The following hold:

(1) f is upper semicontinuous if and only if Ed1 ⊂ Ed2 whenever d2 ! d1;
(2) f is lower semicontinuous if and only if Ed1 ⊂ IntEd2 whenever d2 ! d1;
(3) f is continuous if and only if Ed1 ⊂ IntEd2 whenever d2 ! d1.

All the previous definitions and results highlight the necessity of establishing condi-
tions under which there exist distinguished collections of subsets in the domain which are
comparable in a precise way (cf. Proposition 9).
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Definition 10. Let L be a complete lattice. A binary relation % on L is a Katětov relation
if and only if for all a, b, c, d ∈ L the following hold:

• % is an idempotent relation (transitive with interpolation property),
• a % b ⇒ a ≤ b,
• {a ∈ L : a % b} is an ideal,
• {b ∈ L : a % b} is a filter.

Lemma 11. Let % be a Katětov relation on a complete lattice L. Let A,B ⊂ L be two
countable subsets such that

(∨
A

)
% b and a %

(∧
B

)

for all a ∈ A and b ∈ B, then there is a c ∈ L such that a % c % b for all a ∈ A and b ∈ B.

We generalize the original Katětov Lemma as follows:

Lemma 12. Let % be a Katětov relation on a complete lattice L. Let D be an arbitrary
countable set and let ≺ be a transitive and irreflexive relation on D. Let {ad}d∈D and
{bd}d∈D be two countable subsets of L such that

d ≺ d′ implies ad′ ≤ ad, bd′ ≤ bd and ad′ % bd.

Then there is a countable subset {cd}d∈D of L such that

d ≺ d′ implies (ad′ ∨ cd′) % (cd ∧ bd).

Given a topological space X, a Katětov relation $ in 2X is said to be strong, if A $ B
implies A ⊂ B and A ⊂ IntB. In particular, the relation A $ B, defined by A ⊂ IntB, is
strong if and only if X is normal.

We give now a sufficient condition for insertion which is an analogue of the classical
insertion theorem of Lane [10].

Theorem 13. Let X be a topological space. Let L be a !-separable completely distributive
lattice (with D ⊂ L being a countable join-dense subset without supercompact elements).
Let {Fd}d∈D and {Gd}d∈D be scales generating f, g : X → L, respectively. If there exists
a strong Katětov relation $ such that Fd2 $ Gd1 whenever d1 ! d2, then there exists a
continuous function h : X → L such that f ≤ h ≤ g.

The following provides a fairly general extension of the classical insertion theorem of
Katětov [9] and Tong [13] to functions with values in a !-separable completely distributive
lattice (see also [8]).

Theorem 14. For X a topological space and L a !-separable completely distributive
lattice, the following are equivalent:

(1) X is normal;
(2) [Katětov-Tong theorem] If f : X → L is upper semicontinuous, g : X → L is lower

semicontinuous, and f ≤ g, then there exists a continuous function h : X → L such
that f ≤ h ≤ g;

(3) If f : X → L is upper semicontinuous, g : X → L is lower semicontinuous, and f ≤ g,
then there exists a lower semicontinuous function h : X → L such that f ≤ h ≤ h∗ ≤ g;

(4) [Urysohn’s lemma] If K ⊂ X is closed, U ⊂ X is open, and K ⊂ U , then there exists
a continuous function h : X → L such that h(K) = {1} and h(X\U ) = {0};

(5) [Tietze’s theorem] Let Y be a closed subspace of X. Then each continuous h : Y → L
has a continuous extension to the whole X.
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Notice that there are L-analogue results concerning characterizations of some other
normality-like axioms.

Also, an interesting specialization is the one with L(ω) = [0, 1]ω being the Hilbert cube
, having the hedgehog J(ω) with the Lawson topology as join dense subset (the compact
hedgehog J(ω)).

2.3. Insertion of a pair of semicontinuous functions. The possibility of inserting a
pair of semicontinuous L-valued functions gives new characterizations of some classes of
topological spaces. The following is an iff criterion for a double insertion theorem.

Proposition 15. Let X be a topological space. Let L be a completely distributive lattice
and let f, g : X → L be two arbitrary functions. If f ≤ g and there exist two families
{ln}n∈N ⊂ LSC(X,L) and {un}n∈N ⊂ USC(X,L) such that

f ≤
∨

n∈N

ln ≤
∨

n∈N

(ln)∗ ≤ g and f ≤
∧

n∈N

(un)∗ ≤
∧

n∈N

un ≤ g,

then there exist a function h ∈ LSC(X,L) such that f ≤ h ≤ h∗ ≤ g.

Recall that a space X is hereditarily normal if and only if, whenever A ⊂ B and
A ⊂ Int B in X, then A ⊂ U ⊂ U ⊂ B for some open U ⊂ X. A space is extremally
disconnected iff every two disjoint open sets have disjoint closures.

Proposition 16. Let L be a lattice such that both L and Lop have countable join-dense
subsets. For X a topological space, the following are equivalent:

(1) X is hereditarily normal;
(2) If f, g : X → L with f∗ ≤ g and f ≤ g∗, then there exists an h ∈ LSC(L) such that

f ≤ h ≤ h∗ ≤ g.

Proposition 17. Let X be a topological space and L a lattice which has a countable
join-dense subset. Then the following are equivalent:

(1) X is extremally disconnected;
(2) If f ∈ LSC(X,L), g ∈ USC(X,L), and f ≤ g, then there exists an h ∈ C(X,L) such

that f ≤ h ≤ g;
(3) If f ∈ LSC(X,L), g ∈ USC(X,L), and f ≤ g, then there exists an h ∈ USC(X,L)

such that f ≤ h ≤ h∗ ≤ g.

Proposition 18. Let L be a lattice such that both L and Lop have countable join-dense
subsets. For X a topological space, the following are equivalent:

(1) X is extremally disconnected and hereditarily normal;
(2) If f, g : X → L with f∗ ≤ g and f ≤ g∗, then there exists an h ∈ C(X,L) such that

f ≤ h ≤ g.

As well as extension of continuous real-valued functions depends on the complete sep-
aration of certain subsets (cf. [5]), insertion depends on the complete separation of the
Lebesgue sets of the comparable functions (see [1]).

We have an analogous of the classical insertion theorem of Blair [1] for L-valued func-
tions, where L is a !-separable completely distributive lattice.

Theorem 19. Let D ⊂ L be countable join-dense in L, and let C ⊂ L be countable join-
dense in Lop. For X a topological space and f, g : X → L such that f ≤ g, the following
are equivalent:

(1) f ≤ h ≤ h∗ ≤ g for some h ∈ LSC(X,L);
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(2) For every d ∈ D the sets [f # d] and [g ! d] have disjoint open neighborhoods, and
for every c ∈ C the sets [g " c] and [f " c] have disjoint open neighborhoods.

3. Bounded complete domains

Up to now, we have been working with lattices in which all the sups (equivalently all the
infs) existed. The concepts of scale and lower an upper limits depend on such existence
(remember we have started with a characterization of semicontinuity of a function with
values in the extended real line).

What happens if such existence is not guaranteed? This is the case of the real line,
which is only Dedekind complete or conditionally complete.

The class of lattices we are going to consider in this section share this property with
the real line. We focus on functions having values in bounded complete domains.

Before embarking on the task of developing a theory which serves for this class of
lattices, we need a few definitions.

Definition 20. A poset L is called a bounded complete domain if it has the following
properties:

(1) each directed subset of L has a sup,
(2) L satisfies the axiom of approximation with respect to &, i.e.,

a =
∨

{b ∈ L : b & a} for all a ∈ L

(3) each subset of L that is bounded above has a sup (i.e., L is conditionally complete; in
particular, each bounded complete domain has a bottom element 0).

We introduce the concept of a &-basis for L, which is weaker than that of [4]. The
reason of changing the original definition of a basis in the sense of [4] is that our range
spaces for inserting functions will, among others, include several hedgehog-like structures
which have &-bases which fail to be bases in the sense of [4].

Definition 21. Let L be a bounded complete domain. A subset D ⊂ L is called a &-basis
of L if and only if for all a ∈ L the following hold:

(1) a =
∨

(D ∩ ↓↓a),
(2) If a ∈ L and d1 & a with d1 ∈ D, then there exists a d2 ∈ D such that d1 & d2 & a.

3.1. Generating domain-valued maps. In this subsection we shall discuss the proce-
dure of generating L-valued functions by monotone families of subsets in the context of
a bounded complete domain L. We first develop a theory of generating such functions
from certain scales or prescales of subsets. The situation is much different from that in
a completely distributive lattice, due to the fact that a bounded complete domain needs
not have the top element.

Definition 22. Let X be a nonempty set and let D be an arbitrary nonempty subset of
a bounded complete domain L. A family F = {Fd ⊂ X : d ∈ D} is called a prescale if

(1) {d ∈ D : x ∈ Fd} is bounded in L for all x ∈ X.

If one additionally assumes that:

(2) for any nonempty subset C ⊂ D for which
∨

C does exist, one has
⋂

c∈C Fc ⊂ Fd

whenever d &
∨

C,

then F is called a scale.
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Without loss of generality the set C can be assumed to be finite. It follows immediately
(with C being a singleton) that each scale is &-antitone, i.e., Fd1 ⊃ Fd2 whenever d1 &
d2.

The following shows how to generate an L-valued function from a (pre)scale.

Lemma 23. Let X be a set, L a bounded complete domain, D a nonempty subset of L,
and let F = {Fd ⊂ X : d ∈ D}.

(1) If F is a prescale, then f : X → L, with f(x) =
∨
{d ∈ D : x ∈ Fd} for all x ∈ X, is

a well-defined function.
(2) F is a scale if and only if there exists a function f : X → L such that for every d ∈ D:

[f / d] ⊂ Fd ⊂ [f ≥ d].

(3) If D is a &-basis consisting of coprime elements and F is a prescale, then F is a scale
if and only if it is &-antitone.

Definition 24. Let L be a bounded complete domain, let D ⊂ L and let F = {Fd ⊂ X :
d ∈ D} be a (pre)scale. The function f ∈ LX defined by f(x) =

∨
{d ∈ D : x ∈ Fd} is

said to be generated by the (pre)scale F .

We notice that for every f ∈ LX , both {[f ≥ a] : a ∈ L and {[f / a] : a ∈ L} are scales
that generate f .

Now, we can recover for bounded complete domain Lemmas 5 and 6 in section 2.

Lemma 25. Let L be a bounded complete domain and let D ⊂ L be a &-basis in L. Let
f, g ∈ LX be generated by the scales {Fd}d∈D and {Gd}d∈D. Then the following hold:

f ≤ g iff Fd1 ⊂ Gd2 whenever d2 & d1.

Lemma 26. Let L be a bounded complete domain and let D ⊂ L be a &-basis in L. Let
{Fd}d∈D be a scale. Then there exists a unique f ∈ LX such that [f / d] ⊂ Fd ⊂ [f ≥ d],
for any d ∈ D. Moreover, one has [f ≥ a] =

⋂
d$a Fd whenever a ∈ L, and [f / d1] =⋃

d1$d Fd whenever d1 ∈ D.

3.2. Katětov-Tong-type insertion theorem. Now we introduce the lower and upper
limits of bounded complete domain valued functions. Again, things become more complex
than in the case of lattice-valued maps. This is particularly noticeable in the case of an
upper limit function (lower limit functions can be defined as previously), which generally
may fail to exist. We characterize the limit functions in terms of the (pre)scales generating
the original ones.

Since the most flexible versions of semicontinuity for lattice-valued functions on a topo-
logical space seem to be the continuities with respect to the upper topology ν(L) and the
lower topology ω(L), the following characterization of members of C(X,ΩL) suggests a
possible definition.

Proposition 27. Let X be a topological space and let L be a bounded complete domain.
Then f ∈ C(X,ΩL) if and only if f(x) =

∨
{
∧

U∈Nx
f(ϕ(U)) : ϕ ∈

∏
U∈Nx

U} for all
x ∈ X.

Definition 28. Let L be a bounded complete domain. We define for each f ∈ LX and
x ∈ X (assuming the sup exists):

f∗(x) =
∨

{
∧

U∈Nx

f(ϕ(U)) : ϕ ∈
∏

U∈Nx

U

}

.
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We shall refer to the element f∗(x) as to the upper limit of f at x. If it exists for all x
in X, we have a new function f∗ ∈ LX called the upper limit function of f .

We have the following results:

Proposition 29. Let X be a topological space and let L be a bounded complete domain
with a &-basis D. Let f ∈ LX be generated by the scale F = {Fd ⊂ X : d ∈ D}. Then:

(1) IntF := {Int F : F ∈ F} is a scale.
(2) IntF generates f∗.
(3) f has the upper limit at x ∈ X iff {d ∈ D : x ∈ Fd} is bounded.
(4) If f has the upper limit function f∗, then f∗ is generated by the prescale {F : F ∈ F}.

Corollary 30. Let X be a topological space, L a bounded complete domain with a &-basis
D. If f ∈ LX is generated by the scale F = {Fd : d ∈ D}, then the following hold:

(1) f ∈ C(X,ΣL) iff Fd1 ⊂ Int Fd2 whenever d2 & d1;
(2) f ∈ C(X,ΩL) iff Fd1 ⊂ Fd2 whenever d2 & d1;
(3) f ∈ C(X,ΛL) iff Fd1 ⊂ Int Fd2 whenever d2 & d1.

Definition 31. A bounded complete domain L will be called &-separable if it has a
countable &-basis D ⊂ L consisting of noncompact coprimes (an element a ∈ L is called
compact iff a & a).

An example of a bounded complete domain with a countable base is the hedgehog J(ω).

Next, we give a sufficient condition for inserting a Lawson continuous function between
two comparable L-valued functions.

Theorem 32. Let X be a topological space. Let L be a &-separable bounded complete
domain with a &-basis D. Let f, g : X → L be such that f ≤ g. Let F = {Fd}d∈D and
G = {Gd}d∈D be scales generating f and g. If there exists a strong Katětov relation $ on
P(X) such that Fd2 $ Gd1 whenever d1 & d2, then there exists a continuous function
h : X → ΛL such that g ≤ h ≤ f .

As in section 2, we have a general extension of the classical insertion theorem of Katětov
[9] and Tong [13].

Theorem 33. For X a topological space and L a &-separable bounded complete domain,
the following are equivalent:

(1) X is normal;
(2) [Katětov-Tong theorem] If f ∈ C(X,ΩL), g ∈ C(X,ΣL) and f ≤ g, then there exists

an h ∈ C(X,ΛL) such that f ≤ h ≤ g;
(3) [Urysohn’s lemma] If K ⊂ X is closed, U ⊂ X is open and K ⊂ U, then, for any

a ∈ L \ {0}, there exists ha ∈ C(X,ΛL) such that ha(K) = {a} and ha(X \U) = {0}.

It is a heuristic principle, for real-valued functions, that insertion theorems usually have
Tietze-type extension theorems as corollaries too. We got such a Tietze-type extension
theorem in section 2, for !-separable completely distributive lattices.

However, a procedure similar to the usual one to get extension from insertion is no longer
valid for an arbitrary &-separable bounded complete domain, as the following example
shows:

Example 34. Let X = R be endowed with the usual topology, Y = [−1, 1] and J(2)
the hedgehog with 2 spines. Let F : Y → J(2) be defined as F (x) = (x, i1) if x ∈ [0, 1]
and F (x) = (−x, i2) if x ∈ [−1, 0]. Then F ∈ C(X,ΛL). Mimicking the usual procedure
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of extending a continuous [0, 1]-valued function to the whole space, led to consider two
maps g, h : X → J(2), the first one being upper semicontinuous and the second one lower
semicontinuous in such a way that the continuous map in-between extends the given F to
the whole X. The first map is usually defined as g = F on Y and g = 0 on X \ Y and
the second one as h = F on Y and the top element on X \ Y . In the case of bounded
complete domains, since there is no top element but there are maximal elements, one could
think on defining h equal to any of these maximal elements on X \ Y . However, the map
h : R → J(2) defined by h = F on Y and h = (1, i1) on X \ Y is not lower semicontinuous.
Analogously if we consider h = F on Y and h = (1, i2) on X \ Y .

The techniques developed up to now do not allow to prove the Tietze theorem nor to
disprove it for an arbitrary &-separable bounded complete domain. We have a partial
result in this direction:

Theorem 35. A topological space X is normal iff for every closed A in X and each
continuous f : A → J(ω) there exists a continuous extension to the whole X.

Nevertheless the proof of this statement requires techniques which go beyond the scope
of this talk. They have been published in [8].
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