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Abstract

In this work, we study the possibility of inserting an increasing continuous
lattice-valued function between two comparable semicontinuous functions on
a preordered topological space. Depending on the monotonicity conditions
imposed on the semicontinuous functions, new characterizations of different
classes of preordered topological spaces are obtained. Among them are char-
acterizations of normally preordered and extremally preorder-disconnected
spaces. Conditions for the continuous and increasing extension of lattice-
valued maps of the same type are also investigated.

1. Introduction

The insertion of continuous real-valued functions between pairs of comparable functions
has been a useful tool to characterize separation and countability properties of topological
spaces, where different assumptions on the functions lead to characterizations of different
topological properties. Classical results are, for example, Katětov-Tong’s characterization
of normal spaces [7, 15], Dowker’s characterization [1] of normal and countably paracom-
pact spaces and Michael’s [9] characterization of perfectly normal spaces.

Soon after the work of Nachbin [10] on (pre)ordered topological spaces, Priestley [12]
studied Katětov-Tong type insertion theorems in this new context, and characterized nor-
mally ordered spaces in these terms. Recently, Edwards [4] investigated insertion prop-
erties of real-valued functions that surround extremally preorder-disconnected spaces.
All these results reduce to classical insertion theorems from general topology when the
(pre)order is trivial.

Clearly, every insertion theorem necessitates the range space to be endowed with a
partial order. Influenced in part by other areas of mathematics and also by computer
science, functions with values in a more general poset rather than in the real line have
deserved attention, such as, for example, functions with values in a partially ordered
vector lattice, a !-separable completely distributive lattice, a complete domain... Insertion
theorems for functions with values in a !-separable completely distributive lattice were
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studied, among others, by Gutiérrez Garćıa, Kubiak and de Prada Vicente in [6]. This
work deserves special mention because the techniques developed in that paper will be
crucial in our study.

The present work deals with lattice-valued insertion on preordered topological spaces.
We shall study the possibility of inserting a lattice-valued continuous increasing function
between comparable semicontinuous functions defined on preordered topological spaces.
The techniques established in [6] will allow us to give lattice-valued counterparts of some
results for real-valued functions on preordered topological spaces given in [12] and [4].
First, we shall investigate conditions under which the desired insertion takes place be-
tween a pair of comparable upper and lower semicontinuous functions. Depending on the
monotonicity conditions imposed on the initial semicontinuous functions, new different
characterizations (in terms of insertion) of normal-type preordered topological spaces will
be given, such as, for example, normally preordered spaces. Then, we shall undertake
the dual study, i.e., we shall investigate conditions which allow to insert a continuous and
increasing lattice-valued function between a pair of comparable lower and upper semicon-
tinuous functions. A new characterization of extremally preorder-disconnected spaces will
be given on the way. Finally, extension properties of lattice-valued functions on preordered
spaces will also be studied.

This presentation is a summary of the work, and therefore, only main results will be
stated, and their proofs omitted. The entire work will be published elsewhere.

2. Preliminaries

2.1. Lattices. In the sequel L denotes a completely distributive lattice (with bounds 0
and 1).

We shall not use here the equational characterization of complete distributivity. Alter-
natively, we shall use the description of complete distributivity in terms of an extra order
with the approximation property [11]:

Given a complete lattice L and a, b ∈ L, we write a ! b if and only if, whenever A ⊂
L and b ≤

∨
A, there is c ∈ A with a ≤ c. The lattice L is then completely distributive if

and only if ! has the approximation property, i.e., a =
∨
{b ∈ L : b ! a} for each a ∈ L.

We shall use the following properties of the extra order: (1) a ! b implies a ≤ b; (2)
c ≤ a ! b ≤ d implies c ! d; (3) a ! b implies a ! c ! b for some c ∈ L (Interpolation
Property).

We shall need yet another extra order in L defined as follows: if a, b ∈ L, then a " b if
and only if, whenever

∧
A ≤ a for some A ⊂ L, there exists a c ∈ A with c ≤ b. Clearly

enough, the extra order " has the dual properties (1), (2) and (3), and a lattice L is
completely distributive if and only if a =

∧
{b ∈ L : a " b} for every a ∈ L.

A subset D ⊂ L is called join-dense (or a base) if a =
∨
{d ∈ D : d ≤ a} for each

a ∈ L. An element a ∈ L is called supercompact if a ! a holds. As in [6], any completely
distributive lattice which has a countable join-dense subset free of supercompact elements
will be called !-separable.

2.2. Semicontinuous lattice-valued functions. Given a set X, LX denotes the com-
plete lattice of all maps from X into L ordered pointwisely, i.e., f ≤ g in LX if and only
if f(x) ≤ g(x) in L for each x ∈ X. Given f ∈ LX and a ∈ L, we write [f ≥ a] = {x ∈
X : a ≤ f(x)} and similarly for [f ≤ a], [f # a] and [f " a].
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For any topological space X and any f ∈ LX let

f∗(x) =
∨

U∈Nx

∧

y∈U

f(y) and f∗(x) =
∧

U∈Nx

∨

y∈U

f(y)

where Nx is the family of all open neighborhoods of x. It is said that f is lower [upper ]
semicontinuous if and only if f = f∗ [f = f∗] (cf. [6, 8, 14]).

The collections of all lower and upper semicontinuous functions of LX will be denoted by
LSC(X,L) and USC(X,L), respectively. Elements of C(X,L) = LSC(X,L)∩USC(X,L)
are called continuous.

We shall need the following characterizations of semicontinuity (cf. [6]):

(P3) f ∈ USC(X,L) iff [f ≥ a] is closed in X for each a ∈ L,
iff [f " a] is open for each a ∈ L.

(P4) f ∈ LSC(X,L) iff [f ≤ a] is closed for each a ∈ L,
iff [f # a] is open for each a ∈ L.

2.3. Preorders. Let X be a set. By a preorder on X we understand a reflexive and
transitive relation on X. If X is a preordered topological space, the preorder is called
closed if its graph is closed in X × X.

If (X,') is preordered, A ⊆ X is said to be increasing if x ' y together with x ∈ A
imply y ∈ A. Similarly, A is said to be decreasing if y ' x together with x ∈ A implies
y ∈ A. Note that A is increasing if and only if X − A is decreasing.

For any x ∈ X and A ⊆ X we standardly write ↑ x = {y ∈ X : x ' y}, ↓ x = {y ∈
X : y ' x}, ↑ A =

⋃
x∈A ↑ x and ↓ A =

⋃
x∈A ↓ x. Note that A ⊆ X is increasing (resp.

decreasing) if and only if ↑ A = A (resp. ↓ A = A) .
A map f ∈ LX is called increasing if f(x) ≤ f(y) whenever x ' y.

3. Separating upper and lower semicontinuous functions

The objective of this section is to characterize different kinds of normal-type ordered
topological spaces in terms of insertion properties of lattice-valued functions. Therefore,
the results in this section will extend the ones obtained by Priestley in [12] to lattice-valued
context.

We first recall some normality type axioms on preordered topological spaces which come
from [10] and [12].

A preordered topological space X is said to be normally preordered if for any disjoint
closed sets F1 and F2, decreasing and increasing, respectively, there exist two disjoint open
sets U1 and U2, decreasing and increasing, respectively, such that F1 ⊆ U1 and F2 ⊆ U2.

A preordered topological space X is said to be an Ni-space if for any disjoint closed
sets F1 and F2, such that F2 is increasing, there exist two disjoint open sets U1 and U2,
decreasing and increasing, respectively, such that F1 ⊆ U1 and F2 ⊆ U2.

A preordered topological space X is said to be an Nd-space if for any disjoint closed
sets F1 and F2, such that F1 is decreasing, there exist two disjoint open sets U1 and U2,
decreasing and increasing, respectively, such that F1 ⊆ U1 and F2 ⊆ U2.

Clearly, Ni-spaces and Nd-spaces are normally preordered.

A preordered topological space X is said to be an N -space if given any closed sets F1

and F2 such that x2 ! x1 for any x1 ∈ F1 and x2 ∈ F2, there exist disjoint open sets U1

113
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and U2, decreasing and increasing, respectively, such that F1 ⊆ U1 and F2 ⊆ U2. It was
shown by Priestley [12] that a preordered topological space X is an N -space iff it is both
an Ni-space and an Nd-space and the preorder is closed.

As we said before, the objective is to characterize, in terms of insertion, the preordered
topological spaces satisfying the normality type axioms stated in the beginning of the
section. This insertion is going to be made in between a comparable upper and lower
semicontinuous function. Depending on wether we assume that both/a fixed one/one/none
of the semicontinuous functions we wish to separate are/is increasing, the right kind of
spaces in which the insertion of an increasing continuous function takes place changes.
This becomes apparent in the following results.

Theorem 1. Let (X,') be a preordered topological space and L be a !-separable com-
pletely distributive lattice. The following statements are equivalent:

(1) X is normally preordered;
(2) For any f ∈ USC(X,L) and g ∈ LSC(X,L), both increasing, such that f ≤ g,

there exists an increasing h ∈ C(X,L) such that f ≤ h ≤ g.
(3) For any f ∈ USC(X,L) and g ∈ LSC(X,L), both increasing, such that f ≤ g,

there exist l ∈ LSC(X,L) and u ∈ USC(X,L), both increasing, such that f ≤ l ≤
u ≤ g.

Theorem 2. Let (X,') be a preordered topological space and L be a !-separable com-
pletely distributive lattice. The following statements are equivalent:

(1) X is an Ni-space;
(2) For any f ∈ USC(X,L) and g ∈ LSC(X,L) such that f ≤ g and f is increasing,

there exists an increasing h ∈ C(X,L) such that f ≤ h ≤ g.
(3) For any f ∈ USC(X,L) and g ∈ LSC(X,L) such that f ≤ g and f is increasing,

there exist h ∈ LSC(X,L) increasing such that f ≤ h ≤ h∗ ≤ g.

Theorem 3. Let (X,') be a preordered topological space and L be a !-separable com-
pletely distributive lattice. The following statements are equivalent:

(1) X is an Nd-space;
(2) For any f ∈ USC(X,L) and g ∈ LSC(X,L) such that f ≤ g and g is increasing,

there exists an increasing h ∈ C(X,L) such that f ≤ h ≤ g.
(3) For any f ∈ USC(X,L) and g ∈ LSC(X,L) such that f ≤ g and g is increasing,

there exist an increasing h ∈ USC(X,L) such that f ≤ h∗ ≤ h ≤ g.

Corollary 4. Let (X,') be a preordered topological space and L be a !-separable com-
pletely distributive lattice. If X is an N -space, then for any f ∈ USC(X,L) and g ∈
LSC(X,L) such that f ≤ g and f or g is increasing, there exists an increasing h ∈ C(X,L)
such that f ≤ h ≤ g.

Moreover, if ' is a closed preorder, the converse holds.

We now consider the situation in which none of the semicontinuous functions f , g is
assumed to be increasing. It is clear that if one wants to insert a continuous increasing
h in between, the minimun requirement that the maps f and g have to satisfy is that
f(x) ≤ g(y) whenever x ' y. We shall see that, as for the case of real-valued functions
[12], this minimum requirement is also sufficient when we have N -spaces.

Theorem 5. Let (X,') be an N -space and L be a !-separable completely distributive
lattice. Let f ∈ USC(X,L) and g ∈ LSC(X,L) be such that f(x) ≤ g(y) whenever x ' y.
Then, there exists an increasing h ∈ C(X,L) such that f ≤ h ≤ g.
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Remark 6. It is worth noting that the previous theorem also holds for normally preordered
spaces which satisfy the additional condition:

F closed ⇒ ↑ F and ↓ F are also closed. (!)

Note that any N -space is, in particular, a normally preordered space satisfying the previous
additional condition (!) (see [12]).

4. Separating lower and upper semicontinuous functions

We now turn to the dual situation and study in which kind of spaces it is possible to
insert a continuous and increasing function between a pair of comparable lower and an
upper semicontinuous functions.

We shall begin by imposing monotonicity conditions on both semicontinuous functions.
We shall see that, in this case, the insertion property characterizes the so called extremally
preorder-disconnected spaces.

A preordered topological space X is said to be extremally preorder-disconnected [4] if
it is preordered and for any increasing open set U and any decreasing open set V of X,

the sets U
↑

and V
↓

are also open (with U
↑
, resp. V

↓
, the smallest closed and increasing,

resp. decreasing, set containing U , resp. V ).

Remark 7. It is easy to show that extremally preorder-disconnected spaces are precisely
those spaces characterized by the following property: For any U open increasing and F
closed increasing with U ⊆ F there exist G closed increasing and V open increasing such
that U ⊆ G ⊆ V ⊆ F. This fact highlights, once again, the duality existing between
normal and extremally disconnected-type topological spaces.

Theorem 8. Let (X,') be a preordered topological space and L be a !-separable com-
pletely distributive lattice. The following statements are equivalent:

(1) X is extremally preorder-disconnected;
(2) For any f ∈ LSC(X,L) and g ∈ USC(X,L), both increasing, such that f ≤ g,

there exists an increasing h ∈ C(X,L) such that f ≤ h ≤ g.
(3) For any f ∈ LSC(X,L) and g ∈ USC(X,L), both increasing, such that f ≤ g,

there exist u ∈ USC(X,L) and l ∈ LSC(X,L), both increasing, such that f ≤ u ≤
l ≤ g.

Remark 9. As it happened for normal-type preordered topological spaces, if we only as-
sume that one of the semicontinuous functions is increasing, then characterizations of
a stronger type of extremally preorder-disconnected spaces are obtained. We shall not
include them here to avoid repetitions.

Let us finally consider the case in which none of the semicontinuous functions is assumed
to be increasing. For the case of real-valued functions, this study was done by Edwards
in [4].

The following theorem shows the type of spaces characterized by the insertion of a
continuous and increasing function in this last situation.

Theorem 10. Let (X,') be a preordered topological space and L be a completely distribu-
tive lattice. The following statements are equivalent:

(1) For each open subset U of X, ↑ U is open and increasing;
(2) For each g ∈ LSC(X,L) and f ∈ USC(X,L) such that g(x) ≤ f(y) whenever

x ' y, there exists an increasing h ∈ C(X,L) such that g ≤ h ≤ f .
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Remark 11. The previous theorem shows that, in this case, extremally preorder-disconnect-
ed spaces are not good enough to be characterized by the insertion property (2), since
condition (1) of Theorem 10 is stronger than the extremal preorder-disconnectedness.
However, as it happened in the previous section, if we add a certain topological conditions
on the preorder of an extremally preorder-disconnected space, the insertion property will
also be verified. This topological conditions on the preorder will once again be dual to
those imposed in the case of normality.

The preorder of a topological space X is said to be compliant ([2, 3, 13]) if for all open
U ⊆ X the sets ↑ U and ↓ U are open.

Theorem 12. Let (X,') be a preordered topological space and L be a completely distribu-
tive lattice. If X is extremally preorder-disconnected and its preorder is compliant, then
for each g ∈ LSC(X,L) and f ∈ USC(X,L) such that g(x) ≤ f(y) whenever x ' y, there
exists an increasing h ∈ C(X,L) such that g ≤ h ≤ f . $

5. Extending increasing continuous real-valued functions

From the separation theorems obtained in the previous sections, it is possible to deduce
easily the following Tietze-type extension theorems.

Theorem 13. Let (X,') be an N -space (or a normally preordered space satisfying con-
dition (!)) and L be a !-separable completely distributive lattice. If F is closed in X and
f ∈ C(F,L) is increasing, then there exists an increasing h ∈ C(X,L) such that h|F = f

Theorem 14. Let (X,') be a preordered topological space, L be a completely distributive
lattice and assume that any of the equivalent conditions in Theorem 10 is satisfied. Then,
if U is open in X and f ∈ C(U,L) is increasing, there exists an increasing h ∈ C(X,L)
such that h|U = f.

Remark 15. In particular, the previous extension property holds in extremally preorder-
disconnected spaces with a compliant preorder.
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