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Pointfree topology the category of frames Frm

• The objects in Frm are frames, i.e.

∗ complete lattices L

in which

∗ a ∧
∨

i∈I ai =
∨
{a ∧ ai : i ∈ I} for all a ∈ L and {ai : i ∈ I} ⊆ L.

• Morphisms, called frame homomorphisms, are those maps
between frames that preserve arbitrary joins and finite meets.

• O : Top→ Frm is a contravariant functor with X 7−→ OX and

X f→ Y 7−→ OY f −1

−→ OX .
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Pointfree topology the dual category Loc=Frmop

• The objects in Loc are frames, from now on, also called locales.

• Morphisms, called localic maps, are of course, just frame
homomorphisms taken backwards.

• O : Top→ Loc is now a covariant functor with X 7−→ OX and

X f→ Y 7−→ OX f −1

−→ OY .

Advantage: Loc can be thought of as a natural extension of (sober)
spaces.

Disadvantage: Morphisms thought in this way may obscure the
intuition.
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Pointfree Topology, Pointless Topology,
Frame Theory, Locale Theory. . .

“Locales not only “capture” or “model” the lattice theoretical behaviour
of topological spaces, more importantly when we work in a universe
where choice principles are not allowed, it is locales, not spaces,
which provide the right context in which to do topology.”

“As an illustration, we look at the topological and the localic versions
of Stone’s representation theorem for distributive lattices.
. . .
Hence, in absence of Prime Ideal Theorem, we can prove Stone’s
representation theorem in the context of locales, but no longer in the
context of spaces. ”

P.T. Johnstone, The point of pointless topology, Bull. Amer. Math. Soc. 8
(1983) 41-53.

D. Zhang, Y. Liu, L-fuzzy version of Stone’s representation theorem for
distributive lattices, Fuzzy Sets and Systems 76 (1995) 259-270.
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Pointfree topology spatial frames and sober spaces

Apart from the functor O : Top→ Frm, there is a functor in the
opposite direction, the spectrum functor

Spec : Frm→ Top

An element p ∈ L \ {1} is called prime if for each α, β ∈ L with

α ∧ β ≤ p =⇒ α ≤ p or β ≤ p.

We denote by Spec L the spectrum of L, i.e. the set of all prime
elements of L.

The functor Spec assigns to each frame L its spectrum Spec L,
endowed with the hull-kernel topology whose open sets are

∆L(α) = {p ∈ Spec L : α 6≤ p} = Spec L \ ↑α for α ∈ L.
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Pointfree topology spatial frames and sober spaces

We have an adjoint situation:

Top
O // Frm

Spec
oo

Recall that a topological space X is sober if the only prime opens are
those of the form X \ {x} for some x ∈ X and a frame L is spatial if L
is generated by its prime elements, i.e. if

α =
∧
{p ∈ Spec L : α ≤ p} =

∧
(↑α ∩ Spec L) for all α ∈ L,

The categories Sob of sober topological spaces and SpatFrm of
spatial frames are dual under the restrictions of the functors O and
Spec.

Sob ∼ SpatFrm
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L-valued topology the category L-Top

With L a complete lattice and X a set, LX is the complete lattice of all
maps from X to L, called L-sets, in which

a ≤ b in LX iff a(x) ≤ b(x) for all x ∈ X .

If α ∈ L, the associated constant map is denoted α.

If f : X → Y and b ∈ LY we let f−1(b) = b ◦ f ∈ LX .

An L-valued topological space (shortly, an L-topological space) is a
pair (X , τ) consisting of a set X and a subset τ of LX (the L-valued
topology or L-topology on the set X ) closed under finite meets and
arbitrary joins.

Given two L-topological spaces (X , τ), (Y , σ) a map f : X → Y is an
L-continuous map if the correspondence f−1(b) maps σ into τ . The
resulting category will be denoted by L-Top.
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“It is a natural and interesting question whether or not it is possible to
establish a category to play the same role with respect to a given
notion of fuzzy topology as that locales play for topological spaces.”

D. Zhang, Y. Liu, L-fuzzy version of Stone’s representation theorem for
distributive lattices, Fuzzy Sets and Systems 76 (1995) 259-270.
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Previous approaches

• Rodabaugh’s approach

• Liu and Zang’s approach
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L-valued frames previous approaches (I)

Of course, in order to answer this question, from now on the complete
lattice L will be additionally assume to be a frame.

If L is a frame then:

• Each L-topology on X , being a subframe of the frame LX , is a
frame as well.

• If f : (X , τ)→ (Y , σ) is an L-continuous map, then f−1 : σ → τ is
a frame homomorphism.

Hence we can construct the functor LO : L-Top→ Frm

LO(X , τ) = τ

LO
(
f : (X , τ)→ (Y , σ)

)
= f−1 : σ → τ.
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Rodabaugh’s approach
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L-valued frames previous approaches (I)

LO has a right adjoint called the L-spectrum functor LSpec.

This is defined by introducing the notion of L-point of a frame A, which
are defined to be frame homomorphisms from A to L.

We have an adjoint situation:

L-Top
OL // Frm
LSpec

oo

with right unit ΨL and left unit ΦL.

S.E. Rodabaugh, Point set lattice theoretic topology, Fuzzy Sets and
Systems 40 (1991) 296–345.
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L-valued frames previous approaches (I)

Let us denote by L-SpatFrm the full subcategory of L-spatial frames
(frames for which ΦL is injective) and L-Sob the full subcategory of
L-sober spaces (L-topological spaces for which ΨL is bijective).

The categories Sob and L-SpatFrm are dual under the restrictions of
the functors LO and LSpec.

L-Sob ∼ L-SpatFrm

The approach is not completely satisfactory. . .
For example the fuzzy real line fails to be L-sober.

S.E. Rodabaugh, Point set lattice theoretic topology, Fuzzy Sets and
Systems 40 (1991) 296–345.

On lattice-valued frames



L-valued frames previous approaches (I)

Let us denote by L-SpatFrm the full subcategory of L-spatial frames
(frames for which ΦL is injective) and L-Sob the full subcategory of
L-sober spaces (L-topological spaces for which ΨL is bijective).

The categories Sob and L-SpatFrm are dual under the restrictions of
the functors LO and LSpec.

L-Sob ∼ L-SpatFrm

The approach is not completely satisfactory. . .
For example the fuzzy real line fails to be L-sober.

S.E. Rodabaugh, Point set lattice theoretic topology, Fuzzy Sets and
Systems 40 (1991) 296–345.

On lattice-valued frames



L-valued frames previous approaches (I)

Let us denote by L-SpatFrm the full subcategory of L-spatial frames
(frames for which ΦL is injective) and L-Sob the full subcategory of
L-sober spaces (L-topological spaces for which ΨL is bijective).

The categories Sob and L-SpatFrm are dual under the restrictions of
the functors LO and LSpec.

L-Sob ∼ L-SpatFrm

The approach is not completely satisfactory. . .
For example the fuzzy real line fails to be L-sober.

S.E. Rodabaugh, Point set lattice theoretic topology, Fuzzy Sets and
Systems 40 (1991) 296–345.

On lattice-valued frames



Liu and Zhang’s approach
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L-valued frames previous approaches (II)

Let L be a frame and (X , τ) a stratified L-topological space.

Then L can be embedded in a natural way into τ :

iX : L→ τ , iX (α) = α for each α ∈ L.

iX is a frame embedding.

If f : (X , τ)→ (Y , σ) is an L-continuous map between two stratified
L-topological spaces, then f−1 : σ → τ is a frame homomorphism
such that

iY = f−1 ◦ iX .

D. Zhan, Y. Liu, A localic L-fuzzy modification of topologoical spaces,
Fuzzy Sets and Systems 56 (1993) 215-227.

D. Zhan, Y. Liu, L-fuzzy version of Stone’s representation theorem for
distributive lattices, Fuzzy Sets and Systems 76 (1995) 259-270.
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L-valued frames previous approaches (II)
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L-valued frames previous approaches (II)

An L-fuzzy locale is defined to be a pair (A, iA), where A is a frame
and iA : L→ A is a frame homomorphism.

A continuous map between two L-fuzzy locales f : (A, iA)→ (B, iB) is
a frame homomorphism f : B → A such that

iB = f ◦ iA.

The category consisting of L-fuzzy locales as objects and continuous
maps as morphism is called the category of L-fuzzy locales, which is
easily checked to be the comma category Loc ↓ L.

D. Zhan, Y. Liu, L-fuzzy version of Stone’s representation theorem for
distributive lattices, Fuzzy Sets and Systems 76 (1995) 259-270.
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The ιL functor

The iota functor ιL was originally introduced by Lowen with L = [0,1]
and later on extended by Kubiak to an arbitrary complete lattice.

Let L be a complete lattice and X be a set. For a fixed α ∈ L \ {1} and
let a ∈ LX , we denote

[a 6≤ α] = {x ∈ X : a(x) 6≤ α}.

This defines a map ια : LX → 2X by ια(a) = [a 6≤ α].
Now, given an L-topology τ on X , we consider the topology

ιL(τ) = 〈{ια(τ) : α ∈ L}〉 = 〈{ια(a) : a ∈ τ, α ∈ L}〉.

This defines a functor ιL : L-Top→ Top by

ιL(X , τ) = (X , ιL(τ)), ιL(h) = h.
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The ιL functor chain valued frames

Let L be a complete chain. Then ια(a) = [a > α].

We can consider the system of frame homomorphisms(
ια : τ → ιL(τ) | α ∈ L \ {1}

)
.

The following are satisfied:

(F0) For each ∅ 6= S ⊆ L \ {1}, we have that

ι∧ S(a) = [a >
∧

S] =
⋃
α∈S

[a > α] =
⋃
α∈S

ια(a).

(F1) ιL(τ) = 〈
⋃
α∈L\{1} ια(τ)〉. (collectionwise extremally epimorphic)

(F2) If a 6= b in τ , then ια(a) 6= ια(b) for some α ∈ L \ {1}.
(collectionwise monomorphic)
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The ιL functor chain valued frames

Let L be a complete chain, A a frame and (X , T ) a topological space
and let (

ϕα : A→ T | α ∈ L \ {1}
)

be a system of frame homomorphisms satisfying (F0), (F1) and (F2).

Then there is a frame τ and an isomorphism κ : A→ τ such that:

1 (X , τ) is an L-space,

2 T = ιL(τ),

3 ια ◦ κ = ϕα for each α ∈ L \ {1}.

The above discussion means that A is, up to frame isomorphism, an
L-topology on X .
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Chain valued frames

“The notion of chain-valued frame, is introduced to be an abstraction
of the distinctive properties of the system of level mappings from an
L-topology τ into ιL(τ). These conditions, when L is a complete
chain, were taken as axioms (F0), (F1) and (F2) in order to define
L-frames and the associated category L-Frm.”

A. Pultr, S.E. Rodabaugh, Lattice-valued frames, functor categories, and
classes of sober spaces, in: Topological and Algebraic Structures in
Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of
Fuzzy Sets,
Kluwer Academic Publishers, 2003, pp. 153–187, (Chapter 6).

A. Pultr, S.E. Rodabaugh, Category theoretic aspects of chain-valued
frames: Part I: Categorical and presheaf theoretic foundations, Part II:
Applications to lattice-valued topology, Fuzzy Sets and Systems 159
(2008) 501–528 and 529–558.
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Chain valued frames

Let L be a complete chain. An L-frame A is a system(
ϕA
α : Au → Al α ∈ L \ {1}

)
of frame morphisms – Au is the upper frame and Al is the lower frame
– satisfying each of these conditions:

(F0) ϕA∧
S =

∨
α∈S ϕ

A
α for every ∅ 6= S ⊆ L \ {1}.

(F1) Al = 〈
⋃
α∈L\{1} ϕ

A
α(Au)〉. (collectionwise extremally epimorphic)

(F2) If a 6= b in Au, then ϕA
α(a) 6= ϕA

α(b) for some α ∈ L \ {1}.
(collectionwise monomorphic)

A. Pultr, S.E. Rodabaugh, Category theoretic aspects of chain-valued
frames: Part I: Categorical and presheaf theoretic foundations, Part II:
Applications to lattice-valued topology, Fuzzy Sets and Systems 159
(2008) 501–528 and 529–558.
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Chain valued frames

An L-frame morphism h : A→ B is an ordered pair of frame
homomorphisms

hu : Au → Bu and hl : Al → Bl

such that the following diagram is commutative for each α ∈ L \ {1}

Au

hu

��

ϕA
α // Al

hl

��
Bu

ϕB
α // Bl

The resulting category, with composition and identities
component-wise in Frm, is denoted by L-Frm.
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Chain valued frames

In the previous definitions L is assumed to be a complete chain,
which seems to be quite a restrictive assumption.

“During the preparation of the Volume, U. Höhle communicated to the
authors of Chapter 6 that a complete chain is really only needed for
its meet-irreducibles, and that for spatial L one also has
meet-irreducibles which suffice for the constructions of Chapter 6.”

U. Höhle and S.E. Rodabaugh, Weakening the requirement that L be a
complete chain, in: Topological and Algebraic Structures in Fuzzy Sets:
A Handbook of Recent Developments in the Mathematics of Fuzzy Sets,
Kluwer Academic Publishers, 2003, pp. 189–197, (Chapter 7).

On lattice-valued frames



Chain valued frames

In the previous definitions L is assumed to be a complete chain,
which seems to be quite a restrictive assumption.

“During the preparation of the Volume, U. Höhle communicated to the
authors of Chapter 6 that a complete chain is really only needed for
its meet-irreducibles, and that for spatial L one also has
meet-irreducibles which suffice for the constructions of Chapter 6.”

U. Höhle and S.E. Rodabaugh, Weakening the requirement that L be a
complete chain, in: Topological and Algebraic Structures in Fuzzy Sets:
A Handbook of Recent Developments in the Mathematics of Fuzzy Sets,
Kluwer Academic Publishers, 2003, pp. 189–197, (Chapter 7).

On lattice-valued frames



The completely distributive case

• Completely distributive lattices

• Lattice-valued frames for CD lattices
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Completely distributive lattices
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Completely distributive lattices

Given α, β ∈ L, we say that α is way below β, in symbols α� β, if
and only if

S ⊆ L and
β ≤

∨
S

}
=⇒ there exist γ1, . . . γn ∈ S such that α ≤ ∨n

i=1γi .

Recall that L is continuous if and only if the way-below relation is
approximating, i.e., if and only if

α =
∨
{β ∈ L : β � α} for each α ∈ L.

Let α, β, γ, δ ∈ L, then:
(1) α� β implies α ≤ β.
(2) α ≤ β � γ ≤ δ implies α� δ.
(3) If L is continuous, then α� β implies α� γ � β for some γ ∈ L
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Completely distributive lattices

We shall be particularly interested in the opposite relation of the
way-below relation in the lattice Lop, denoted by <<<<.

Namely, given α, β ∈ L we have α <<<< β if

S ⊆ L and∧
S ≤ α

}
=⇒ there exist γ1, . . . γn ∈ S such that ∧n

i=1 γi ≤ β.

For each α ∈ L we write ↑↑↑↑↑α = {β ∈ L : α <<<< β}.

Then we have that Lop is alertcontinuous if and only if it satisfies

α =
∧
{β ∈ L : α <<<< β} =

∧
↑↑↑↑↑α for all α ∈ L.

The following properties of the binary relation <<<< will be needed:
(1) α <<<< β implies α ≤ β.
(2) α ≤ β <<<< γ ≤ δ implies α <<<< δ.
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Completely distributive lattices

A lattice is called completely distributive iff it is complete and for any
familiy {xj,k : j ∈ J, k ∈ K (j)} in L the identity∧

j∈J

∨
k∈K (j)

xj,k =
∨

f∈M

∧
j∈J

xj,f (j) (CD)

holds, where M is the set of choice functions defined on J with values
f (j) ∈ K (j).

We recall now the following result:

Let L be a complete lattice. Then the following are equivalent:
(1) L is completely distributive.
(2) L is a spatial frame and Lop is continuous.
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Completely distributive lattices

Let L be a complete lattice. Then the following are equivalent:

(1) L is completely distributive.

(2) L satisfies the following two properties:

(i) L is a spatial frame,

i.e.

α =
∧

(↑α ∩ Spec L) for each α ∈ L,

(ii) Lop is continuous.
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Completely distributive lattices

Let L be a complete lattice. Then the following are equivalent:

(1) L is completely distributive.

(2) L satisfies the following two properties:

(i) L is a spatial frame, i.e.

α =
∧

(↑α ∩ Spec L) for each α ∈ L,

(ii) p =
∧(
↑↑↑↑↑p ∩ Spec L

)
for each p ∈ Spec L.
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Lattice-valued frames for CD lattices
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The ιL functor completely distributive lattices

Let L be a completely distributive lattice. The mapping ιp : τ → ιL(τ)
is a frame morphism for each p ∈ Spec L (this is not true in general if p
fails to be prime). Consider the system of frame morphisms(

ιp : τ → ιL(τ) | p ∈ Spec L
)
.
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Let L be a completely distributive lattice. The mapping ιp : τ → ιL(τ)
is a frame morphism for each p ∈ Spec L (this is not true in general if p
fails to be prime). Consider the system of frame morphisms(

ιp : τ → ιL(τ) | p ∈ Spec L
)
.

(F0)’ Since p =
∧(
↑↑↑↑↑p ∩ Spec L

)
for each p ∈ Spec L, we have that

[f 6≤ p] =
⋃

q∈↑↑↑↑↑p∩Spec L
[f 6≤ q] for each p ∈ Spec L and f ∈ LX .

Consequently, for each p ∈ Spec L,

ιp =
∨

q∈↑↑↑↑↑p∩Spec L
ιq .
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Let L be a completely distributive lattice. The mapping ιp : τ → ιL(τ)
is a frame morphism for each p ∈ Spec L (this is not true in general if p
fails to be prime). Consider the system of frame morphisms(

ιp : τ → ιL(τ) | p ∈ Spec L
)
.

(F1) Since L is a spatial frame then {ιp(f ) : f ∈ τ,p ∈ Spec L} is a
subbase of ιL(τ). Indeed, for each α ∈ L we have
α =

∧
(↑α ∩ Spec L) and so

ια(f ) = [f 6≤ α] =
⋃

p∈↑α∩Spec L
[f 6≤ p] =

⋃
p∈↑α∩Spec L

ιp(f ).

Hence,
ιL(τ) =

〈 ⋃
p∈Spec L

ιp(τ)
〉
.
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The ιL functor completely distributive lattices

Let L be a completely distributive lattice. The mapping ιp : τ → ιL(τ)
is a frame morphism for each p ∈ Spec L (this is not true in general if p
fails to be prime). Consider the system of frame morphisms(

ιp : τ → ιL(τ) | p ∈ Spec L
)
.

(F2) Since L is a spatial frame, for each distinct a,b ∈ τ there exists
x ∈ X such that a(x) 6= b(x), hence there exists p ∈ Spec L such
that either f (x) ≤ p and g(x) 6≤ p or a(x) 6≤ p and b(x) ≤ p and
so [a 6≤ p] 6= [b 6≤ p]. It follows that

if a 6= b ∈ τ then ιp(a) 6= ιp(b) for some p ∈ Spec L.
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The ιL functor completely distributive lattices

Let L be a completely distributive lattice. The mapping ιp : τ → ιL(τ)
is a frame morphism for each p ∈ Spec L (this is not true in general if p
fails to be prime). Consider the system of frame morphisms(

ιp : τ → ιL(τ) | p ∈ Spec L
)
.

(F0)’ ιp =
∨

q∈↑↑↑↑↑p∩Spec L ιq for each p ∈ Spec L.

(F1) ιL(τ) =
〈⋃

p∈Spec L ιp(τ)
〉

. (collectionwise extremally epimorphic)

(F2) If a 6= b in τ then ιp(a) 6= ιp(b) for some p ∈ Spec L.
(collectionwise monomorphic)
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The ιL functor completely distributive lattices

Let L be a completely distributive lattice, A a frame and (X , T ) a
topological space and let(

ϕp : A→ OX | p ∈ Spec L
)

be a system of frame homomorphisms satisfying (F0)’, (F1) and (F2).

Then there is a frame τ and an isomorphism κ : A→ τ such that:

1 (X , τ) is an L-space,

2 T = ιL(τ),

3 ιp ◦ κ = ϕp for each p ∈ Spec L.

The above discussion means that A is, up to frame isomorphism, an
L-topology on X .
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The ιL functor completely distributive lattices

A subset S of a complete lattice is downdirected if it is non-empty and
for any α, β ∈ S there is some γ ∈ S such that γ ≤ α ∧ β.

In a complete chain L any non-empty subset is downdirected and
Spec L = L \ {1} and hence

(
ϕA

p : Au → Al | p ∈ Spec L
)

is a system of
frame morphisms, then axiom (F0) can be equivalently stated as:

(F0) ϕA∧
S =

∨
s∈S

ϕA
s for each downdirected ∅ 6= S ⊆ Spec L.

For a completely distributive lattice L the following are equivalent

(F0) ϕA∧
S =

∨
s∈S ϕ

A
s for each downdirected ∅ 6= S ⊆ Spec L.

(F0)’ ϕA
p =

∨
q∈↑↑↑↑↑p∩Spec L ϕ

A
q for each p ∈ Spec L.
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L-valued frames

Let L be a completely distributive lattice. An L-frame A is a system(
ϕA

p : Au → Al p ∈ Spec L
)

of frame morphisms – Au is the upper frame and Al is the lower frame
– satisfying each of these conditions:

(F0) ϕA
p =

∨
q∈↑↑↑↑↑p∩Spec L ϕ

A
q for every p ∈ Spec L.

(F1) Al = 〈
⋃

p∈Spec L ϕ
A
p (Au)〉. (collectionwise extremally epimorphic)

(F2) If a 6= b in Au then ϕA
p (a) 6= ϕA

p (b) for some p ∈ Spec L.
(collectionwise monomorphic)

J.G.G., U. Höhle, M.A. de Prada Vicente, On lattice-valued frames: the
completely distributive case, Fuzzy Sets and Systems 159 (2010)
1022–1030.
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L-valued frames

An L-frame morphism h : A→ B is an ordered pair of frame
homomorphisms

hu : Au → Bu and hl : Al → Bl

such that the following diagram is commutative for each p ∈ Spec L

Au

hu

��

ϕA
p // Al

hl

��
Bu

ϕB
p // Bl

The resulting category, with composition and identities
component-wise in Frm, is denoted by L-Frm.
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L-valued frames

• The new notion coincides with that of Pultr and Rodabaugh when
L is a complete chain.

• All the results proved by Pultr and Rodabaugh regarding the
category L-Frm for a complete chain can now be extended to this
new setting.

In particular if we denote by F0 and F1 the categories in which the
objects are frame morphisms for which only (F0) (resp. (F0) and (F1))
is (resp. are) satisfied.Then

• F0 is complete and cocomplete and each of the forgetful functors
Uu,U l : F0 → Frm preserves all limits and colimits.

• F1 is complete and cocomplete.

• L-Frm is complete and cocomplete.
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L-valued frames possible extensions

Our work was motivated by the question stated in the papers of Pultr
and Rodabaugh, when the authors suggest that relaxing the condition
of a complete chain is a significant question.

We have already specified an answer by proving that the condition of
a complete chain can be relaxed to a completely distributive lattice
and that the completeness and cocompleteness of F0, F1 and L-Frm
are still satisfied.

In this context the natural question arises whether weakening of
complete distributivity is still possible. As an answer to this question
we show that complete distributivity is necessary for the property that
for every L-topological space (X , τ) the system(

ιp : τ → ιL(τ) | p ∈ Spec L
)

of frame homomorphisms ιp satisfies (F0) and (F2).
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L-valued frames possible extensions

Let L be a frame, (X , τ) an L-topological space and(
ιp : τ → ιL(τ) | p ∈ Spec L

)
the system of frame morphisms determined by the ι-functor. Then:

• If (ιp)p∈Spec L satisfies axiom (F0) for each (X , τ), then

p =
∧(
↑↑↑↑↑p ∩ Spec L

)
for each p ∈ Spec L.

• If (ιp)p∈Spec L satisfies axiom (F2) for each (X , τ), then L is spatial.

• If (ιp)p∈Spec L is an L-frame for each (X , τ), then L is a completely
distributive lattice.
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Eskerrik asko!

¡Muchas gracias!
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