Gaia

XSLaren edukia

Ingurumen genomika

Gaiari buruzko datu orokorrak

Modalitatea
Ikasgelakoa
Hizkuntza
Ingelesa

Irakasleak

IzenaErakundeaKategoriaDoktoreaIrakaskuntza-profilaArloaHelbide elektronikoa
BILBAO CASTELLANOS, EIDEREuskal Herriko UnibertsitateaIrakaslego Atxikia (Laguntzaile Doktorea)DoktoreaElebidunaZelulen Biologiaeider.bilbao@ehu.eus
CANCIO URIARTE, IBONEuskal Herriko UnibertsitateaIrakaslego OsoaDoktoreaElebidunaZelulen Biologiaibon.cancio@ehu.eus
DIAZ DE CERIO ARRUABARRENA, OIHANEEuskal Herriko UnibertsitateaIrakaslego Atxikia (Laguntzaile Doktorea)DoktoreaElebidunaZelulen Biologiaoihane.diazdecerio@ehu.eus

Irakaskuntza motak

MotaIkasgelako orduakIkasgelaz kanpoko orduakOrduak guztira
Magistrala244064
Mintegia01212
Laborategiko p.224
Ordenagailuko p.8412
Tailerra404
Tailer Ind.224

Irakaskuntza motak

IzenaOrduakIkasgelako orduen ehunekoa
Aplikazio-tailerrak4.050 %
Azalpenezko eskolak64.037 %
Informazio-azalpena12.00 %
Lana sarean12.060 %
Oinarrizko trebetasun instrumentalak eskuratzea4.050 %
Talde-lana4.0100 %

Ebaluazio-sistemak

IzenaGutxieneko ponderazioaGehieneko ponderazioa
Assistance is compulsory. Proactive participation in the activities, practical and oral sessions, will be considered..0.0 % 50.0 %
Garatu beharreko galderak0.0 % 100.0 %
Lan praktikoak0.0 % 100.0 %

Irakasgai-zerrenda

Sinopsis (Lectures)

1. Environmental genomics and gene sources in the seas, soils, rivers, inside metazoa (a sea of genes!!).

2. Environmental metagenomics and gene discovery

3. Genomic services for aquaculture, fisheries research, study of fish stock dynamics, agriculture, food supply, comparative physiology...

4. Genomics and environmental model organisms.

5. Marine genomics and patents.

6. Basic concepts in toxicogenomics: ecotoxicogenomics, functional genomics, transcriptomics, proteomics, metabolomics, analysis of gene expression, gene ontology.

7. Molecular mechanisms in cell toxicity: effects on gene transcription levels. Gene families with predictive capacity in toxicology: inflammation, peroxisome proliferation, mutagenesis, carcinogenesis, teratogenesis, agonists of AhR and other nuclear receptors, metal scavengers, detoxification metabolism, cytotoxicity, apoptosis, immunosuppression¿

8. How to address the lack of basic gene sequence information about the species of interest. Cloning, ¿expressed sequence tags¿ (ESTs). ¿Suppression subtractive hybridisation-PCR¿. Gene sequencing, Genome vs transcriptome sequencing. Massively parallel sequencing techniques. Sequence/Gene annotation (Gene ontology).

9. Basic techniques for the qualitative and quantitative study of differential gene expression (effects of chemical compounds). Toxicological fingerprinting. RT-PCR, Q-RT-PCR. Northern-blot, dot-blot, in situ hybridisation. Differential display PCR. Suppression subtractive hybridisation-PCR. Microarrays (microchips) and transcriptomics

10. Toxicogenomics vs proteomics vs metabolomics. Systems biology.

11. Knock-down and transgenic technology and the gene dissection of relevant molecular pathways.



Practicals: Navigating through the web in search of gene/genome/metagenome data bases. Gene sequence repositories, Genome sequence repositories (NCBI, ENSEMBL, GOLD). Gene expression repositories (GEO, Arrayexpress). Pathway analysis based on Gene ontology (GoFact, KEGG pathways). Microarray data interpretation and analysis tools.





Bibliografia

Oinarrizko bibliografia



Aleström P, Holter JL, Nourizadeh-Lillabadi R. (2006). Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol. 24: 15-21.

Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D (2006). Toxicogenomics in regulatory ecotoxicology. Environ. Sci. Technol. 40, 4055-4065.

Boutet I; Tanguy A; Moraga D (2004). Response of the Pacific oyster Crassostrea gigas to hydrocarbon contamination under experimental conditions. Gene 329: 147-157.

Cossins AR, Crawford DL (2005). Fish as models for environmental genomics. Nat. Rev. Genet. 6, 324-333.

Cossins A, Fraser J, Hughes M, Gracey A (2006). Post-genomic approaches to understanding the mechanisms of environmentally induced phenotypic plasticity. J. Exp. Biol. 209, 2328-2336.

Denslow ND, Garcia-Reyero N, Barber DS (2007). Fish 'n' chips: the use of microarrays for aquatic toxicology. Mol. Biosyst. 3, 172-177.

Diatchencko et al. (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025-6030.

Neumann NF, Galvez F (2002) DNA microarrays and toxicogenomics: applications for ecotoxicology? Biotech. Advan. 20: 391-419.

Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D. (2009). Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol. 18: 3128-3150.

Pennie WD, Woodyatt NJ; Aldridge TC; Orphanides G (2001) Application of genomics to the definition of the molecular basis for toxicity. Toxicol. Lett. 120: 353-358.

Roest Crollius H, Weissenbach J. (2005). Fish genomics and biology. Genome Res. 15: 1675-1682.

Rusch DB, Halpern AL, Sutton G et al. (2007). The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5(3):e77.

Snape JS, Maund SJ; Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol. 67:143-154.

Thomas et al., (2001) Identification of toxicologically predictive gene sets using cDNA microarrays. Mol. Pharmacol. 60: 1189-1194.

Yooseph S, Sutton G, Rusch DB, (2007). The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 5(3):e16.

XSLaren edukia