Materia

Contenido de XSL

Computación en Ciencia e Ingeniería

Datos generales de la materia

Modalidad
Presencial
Idioma
Castellano

Descripción y contextualización de la asignatura

La simulación numérica de sistemas modelados por medio de ecuaciones diferenciales (tanto ordinarias como en derivadas parciales) es una herramienta sumamente útil en multitud de áreas de la ciencia y la ingeniería.



Cuando la experimentación directa con prototipos reales resulta demasiado cara o incluso imposible de realizar, la simulación numérica suele ser habitualmente la única alternativa. Para poder llevar a cabo tales simulaciones, es necesario hacer uso de algoritmos de resolución numérica de los problemas matemáticos que surge del modelizado de cada problema real, ya sea implementando dichos algoritmos o haciendo uso de software matemático-numérico que facilite la realización de los cálculos necesarios así como la visualización gráfica de los resultados.

Profesorado

NombreInstituciónCategoríaDoctor/aPerfil docenteÁreaEmail
ANTOÑANA OTAÑO, MIKELUniversidad del País Vasco/Euskal Herriko UnibertsitateaProfesorado Ayudante DoctorDoctorBilingüeCiencia de la Computación e Inteligencia Artificialmikel.antonana@ehu.eus
MURUA URIA, ANDERUniversidad del País Vasco/Euskal Herriko UnibertsitateaProfesorado PlenoDoctorBilingüeCiencia de la Computación e Inteligencia Artificialander.murua@ehu.eus

Competencias

DenominaciónPeso
Ser capaz de plantear nuevos modelos matemáticos de evolución de sistemas continuos, y de elegir algoritmos adecuados para su tratamiento numérico, así como interpretar correctamente los resultados.25.0 %
Saber aplicar los conceptos matemáticos y las técnicas de computación científica para aplicar y adaptar software existente o desarrollar software específico.25.0 %
Ser capaz de aplicar diferentes conceptos y técnicas para conseguir la eficiencia del software generado en la implementación de métodos numéricos.25.0 %
Estar capacitado para hacer frente a los nuevos problemas de computación para la ciencia, tanto desde el punto de vista del conocimiento matemático y computacional básico como, de forma más general, para mantener una actitud creativa y constructiva ante los nuevos problemas.25.0 %

Tipos de docencia

TipoHoras presencialesHoras no presencialesHoras totales
Magistral15015
P. Ordenador154560

Actividades formativas

DenominaciónHorasPorcentaje de presencialidad
Clases magistrales15.0100 %
Prácticas de ordenador30.050 %
Trabajo en grupo30.00 %

Sistemas de evaluación

DenominaciónPonderación mínimaPonderación máxima
Evaluación continua a través de la asistencia a clase0.0 % 10.0 %
Examen practico50.0 % 100.0 %
Prácticas de ordenador0.0 % 50.0 %

Resultados del aprendizaje de la asignatura

El objetivo principal de esta asignatura es la adquisición de conceptos y herramientas básicas necesarias para el desarrollo de proyectos de computación para la ciencia, para lo cual trataremos con métodos computacionales para modelos matemáticos de evolución temporal de sistemas. Los principales resultados de aprendizaje de esta materia son:



- Estar capacitado para hacer frente a los nuevos problemas de computación para la ciencia, tanto desde el punto de vista del conocimiento matemático y computacional básico como, de forma más general, para mantener una actitud creativa y constructiva ante los nuevos problemas.



- Capacidad para implementar métodos numéricos mediante software adecuado e interpretar los resultados desde el punto de vista computacional.



- Habilidad para aplicar diferentes conceptos y técnicas para conseguir la eficiencia del software generado en la implementación de métodos numéricos.

Temario

Tema 1 Algunos ejemplos de problemas de valor inicial modelados por ecuaciones diferenciales y métodos elementales de resolución numérica

Tema 2 Resolución numérica de problemas de valor inicial de sistemas de ecuaciones diferenciales ordinarias

Tema 3 Ecuaciones variacionales y ajuste paramétrico

Bibliografía

Materiales de uso obligatorio

El material obligatorio para la asignatura se ubicará en la plataforma egela de docencia virtual que nos ofrece la Universidad: tutoriales, transparencias, enunciadosde ejercicios, resolución de ejercicios, enlaces, etc.

BIBLIOGRAFÍA BÁSICA

- L. N. Trefethen, A. Birkisson, T.A. Driscoll, Exploring ODEs, SIAM 2018 (https://people.maths.ox.ac.uk/trefethen/ExplODE/)

BIBLIOGRAFÍA DE PROFUNDIZACIÓN

- U. M. Ascher, Numerical Methods for Evolutionary Differential Equations (Computational Science and Engeenering), SIAM 2008.

- M. A. McKibben, Discovering Evolution Equations with Applications: Volume 1-Deterministic Equatiations, Chapman & Hall/CRC Applied Mathematics & Nonlinear, 2010.

- E. Hairer, S. P. Nørset, G. Wanner: Solving ordinary di¿erential equations I. Non-sti¿ problems, Second Edition, Springer-Verlag (1993).

- E. Hairer, G. Wanner, Solving ordinary di¿erential equations II. Sti¿ and di¿erential-algebraic problems, Second Edition, Springer-Verlag (1996).

- J. D. Lambert, Numerical Methods for Ordinary Di¿erential Systems. The Initial Value Problem, John Wilaey & Sons, 1991.

Revistas

https://julialang.org/

Contenido de XSL

Sugerencias y solicitudes