El investigador Alain Ulazia ha utilizado datos del viento y oleaje de un emplazamiento muy energético en la costa de Irlanda entre 1920 y 2010 para analizar la evolución de las condiciones del mar y generar un modelo de cálculo de la fatiga mecánica que esas condiciones pueden provocar en las turbinas eólicas flotantes. Este método matemático-estadístico permite calcular el tiempo de vida de las turbinas en función de la meteorología de un emplazamiento concreto.
Nuevo método para determinar la idoneidad de los emplazamientos de las turbinas eólicas marinas
El grupo EOLO de la UPV/EHU ha presentado un nuevo método para analizar la fatiga mecánica a largo plazo de los aerogeneradores marinos flotantes
Fecha de primera publicación: 06/06/2024
En un estudio realizado por el grupo de investigación EOLO de la Universidad del País Vasco/Euskal Herriko Unibertsitatea, se ha desarrollado un método matemático-estadístico que permite conocer “la conveniencia de instalar parques eólicos flotantes en un emplazamiento concreto. Por ejemplo, si existe una elevada probabilidad de que los aerogeneradores sufran fatiga mecánica o unas condiciones marinas extremas a pesar de ser un lugar muy energético”, explica Alain Ulazia, profesor de la Escuela de Ingeniería de Gipuzkoa (Eibar).
Según el investigador, la pregunta más frecuente en la generación de energía eólica marina es “qué cambios (subidas o bajadas) se sucederán en la producción de energía en función de las condiciones climáticas”; es decir, lo que se mira es cuánta energía se puede producir en función de la climatología. Sin embargo, la investigación dirigida por Ulazia ha ido un paso más allá y se ha centrado en la fatiga mecánica de las turbinas eólicas marinas, es decir, la rotura en última instancia como consecuencia de los choques y las tensiones repetitivas que no son capaces de romper el material individualmente: “Las condiciones del mar (viento y oleaje) pueden influir en la reducción del tiempo de vida de las turbinas flotantes. De hecho, es posible que afecten más a la duración de algunas piezas de las turbinas que a la producción industrial de energía, y que en vez de durar 20 años duren 15 años. Esto puede influir decisivamente en los costes y en la inversión de un proyecto”.
Condiciones marinas en un emplazamiento
El grupo de investigación EOLO lleva años trabajando en proyectos relacionados con la meteorología, el clima y el medio ambiente. “Hemos realizado numerosos estudios sobre la relación a largo plazo entre el cambio climático y la generación de energías renovables. Teniendo en cuenta los cambios producidos a lo largo de varias décadas, hacemos estudios históricos y proyecciones para el futuro”, explica Ulazia.
En este estudio se ha seleccionado un lugar muy energético de Irlanda: a partir de los datos relativos al viento y al oleaje registrados entre 1920 y 2010 en la bahía de Galway, en la costa oeste de Irlanda, han determinado los cambios históricos ocurridos a lo largo de esas décadas mediante la utilización de modelos meteorológicos avanzados, en colaboración con los miembros del Centre for Ocean Energy Research de la Universidad de Maynooth (Irlanda). Estos datos históricos han servido para determinar la evolución de las condiciones marinas y crear un modelo que represente la fatiga a largo plazo que estas provocarán en los aerogeneradores. Este modelo podrá ser utilizado para realizar proyecciones futuras.
Simulación de la danza de las turbinas eólicas flotantes
Utilizando simulaciones, los investigadores han calculado la energía que producirían algunas turbinas flotantes de referencia en las ocho situaciones marinas más probables en la bahía de Galway y, por otro lado, han visto la fatiga mecánica que provocarían en algunos elementos de las turbinas. “Hemos utilizado un simulador que nos ofrece en unos segundos la danza que hace la turbina debido a las olas y el viento, y hemos desarrollado un método matemático-estadístico para implementar cambios en los estados marinos a largo plazo y, en consecuencia, poder determinar la evolución de la fatiga que soportaría la máquina, teniendo en cuenta estos cambios históricos”, explica el investigador del grupo EOLO.
A pesar de que el método ha sido aplicado en esa ubicación irlandesa, “este método es universal. Podemos hacer el análisis en cualquier parte del mundo”, ha señalado. La energía eólica marina es muy apropiada porque “no es turbulenta, como la de las montañas. Sin embargo, hay que invertir mucho más en el mar. Este es el principal problema para la implantación de la energía eólica marina”, explica Ulazia. El cambio climático está provocando acontecimientos extremos, cada vez más, y los inversores se muestran precavidos ante el riesgo de este tipo de proyectos: “Aunque el emplazamiento sea muy energético, ¿merece la pena poner el parque eólico allí si en algún momento puede verse afectado por un fenómeno climatológico o si los elementos de la turbina van a sufrir graves problemas de fatiga?”, afirma. El método desarrollado por el grupo de investigación EOLO de la Universidad del País Vasco ha dado luz a esta cuestión.
Información complementaria
Alain Ulazia es profesor de la Escuela de Ingeniería de Gipuzkoa (Eibar) de la UPV/EHU; imparte clases en el Grado en Ingeniería de Energías Renovables y en el Máster Erasmus Mundus en Energías Renovables en el Medio Marino (REM PLUS). Este estudio, liderado por Ulazia, ha contado con la participación de dos estudiantes de doctorado graduados en Ingeniería de Energías Renovables en la Escuela de Ingeniería de Gipuzkoa (Eibar). El centro universitario mantiene una estrecha relación con el Centre for Ocean Energy Research, centro irlandés colaborador en la investigación.
Referencia bibliográfica
- Historical trends of floating wind turbine fatigue loads (Ireland 1920–2010)
- Ocean Engineering
- DOI: 10.1016/j.oceaneng.2024.117424