

GENERACIÓN DE ADSORBENTES CARBONOSOS SOSTENIBLES Y SU POSIBLE APLICACIÓN EN DEPURACIÓN DE AGUAS

Autor: Yiluan Garitaonandia

Grado: Ingeniería Ambiental

Directores: Miren Martinez y Mikel Oregui

Contexto

Objetivos

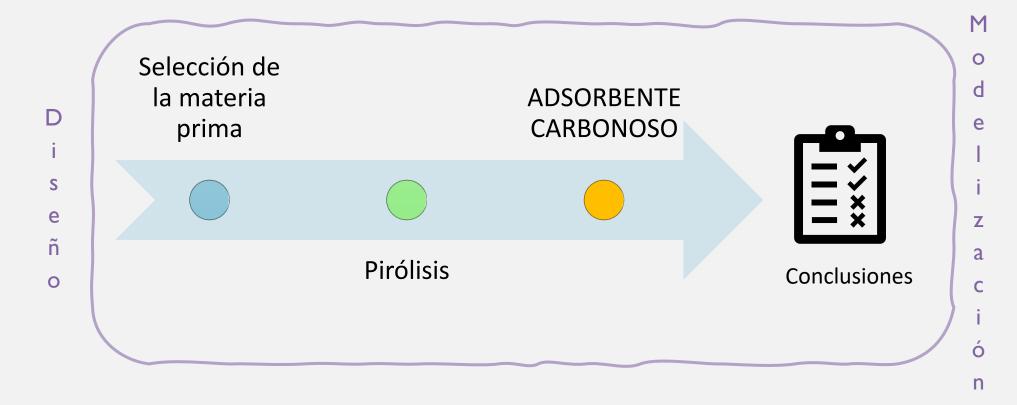
"Producción de adsorbentes carbonosos sostenibles a partir de residuos"

Selección y caracterización química de los residuos

Producción de adsorbentes carbonosos (pirólisis)

Caracterización de los productos generados durante el proceso de pirólisis

Diseño experimental, modelización e interpretación de los datos



Proceso

Resultados. Caracterización de los residuos

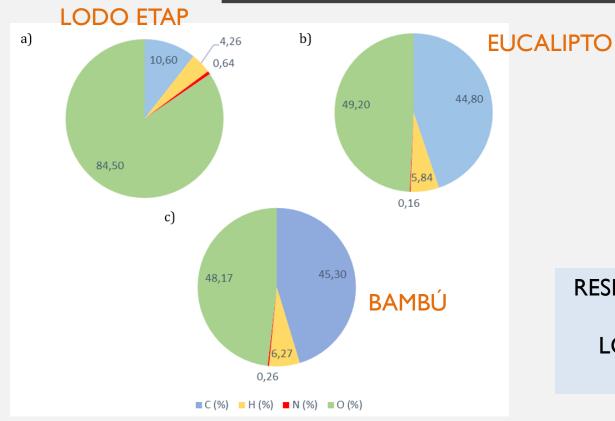


Figura 1. Análisis elemental (%) de los tres residuos a) lodo de ETAP, b) eucalipto y c) bambú

Tabla 1. Contenido en cenizas (%)

Muestra	Contenido en cenizas
Lodo	45,68
Eucalipto	2,41
Bambú	1,10

RESIDUOS PODAY JARDINERÍA (**RESIDUOS ORGÁNICOS**) VS.

LODO DE ESTACIÓN DEPURADORA DE AGUA POTABLE (RESIDUO INORGÁNICO)

Resultados. Pirólisis

- TEMPERATURA (500, 650 y 800 °C)
- TAMAÑO DE PARTÍCULA (0,75, 1,25 y 1,75 mm)
- TIEMPO DE ISOTERMA (30, 60 y 90 min)

15	Condiciones					
ID	Tamaño (mm)	Tª (°C)	Tiempo (min)			
1L	1,25	650	60			
1E	1,25	650	60			
1B	0,75	500	30			
2B	0,75	800	30			
3B	1,75	500	30			
4B	1,75	800	30			
5B	0,75	500	90			
6B	0,75	800	90			
7B	1,75	500	90			
8B	1,75	800	90			
9B-13B	1,25	650	60			

Tabla 2. Condiciones de pirólisis

Figura 2. Productos tras la pirólisis en el centro (%)

Resultados. Pirólisis

Tabla 3. Temperatura y sólidos

		*		
ID	Condición	Producto		
טו	Tª (°C)	Sólidos (g)		
1B	500	26,1		
2B	500	25,2		
3B	500	26,2		
4B	500	25,2		
5B	650	24,6		
6B	650	24,2		
7B	650	24,5		
8B	650	24,3		
9B	650	24,8		
10B	800	24,1		
11B	800	24,6		
12B	800	25,4		
13B	800	24,2		

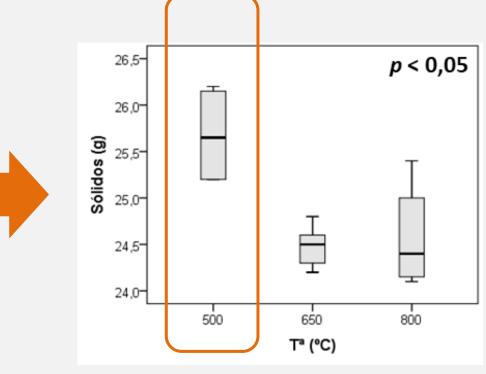


Figura 3. ANOVA contenido de sólidos respecto temperatura

Resultados. Gases

POSIBLE VALORIZACIÓN DEL BIOGAS

Tabla 4. Resultado de los gases

ID		Condiciones		Gases (%)				
	JID	Tamaño(mm)	Tª (°C)	Tiempo(min)	CO_2	CO	CH_4	Otros orgánicos
	1B	0,75	500	30	1,8	6,5	84,5	7,2
	2B	0,75	800	30	1,9	7,2	77,7	13,2
	3B	1,75	500	30	0,9	6,3	75,0	17,8
	4B	1,75	800	30	2,8	6,8	75,7	14,7
	5B	0,75	500	90	1,7	6,3	77,3	14,7
	6B	0,75	800	90	2,0	6,5	75,5	16,0
	7B	1,75	500	90	1,8	6,5	78,0	13,7
	8B	1,75	800	90	3,3	7,3	83,7	5,7
	11B	1,25	650	60	7,8	3,6	67,9	20,7
	12B	1,25	650	60	1,4	6,9	75,5	16,2
	13B	1,25	650	60	1,6	6,2	77,1	15,1

Resultados. Caracterización de los carbones

EXCELENTES PROPIEDADES FISICOQUÍMICAS

- □ Altos % C (88 93%) y bajos ratios H/C (0,004 0,025) y O/C (0,05 0,10) confirman una buena carbonización de los residuos.
- Los carbones obtenidos presentas áreas superficiales entre $33 633 \text{ m}^2/\text{g}$, aunque la gran mayoría presentan un área próxima a $350 \text{ m}^2/\text{g}$.
- \square Son materiales microporosos, cuyo volumen total de poros es de 0,10 cm³/g.

Conclusiones

- Se han obtenido **adsorbentes carbonosos sostenibles** de buena calidad a partir de residuos orgánicos (poda y jardinería) e inorgánicos (lodos de ETAP).
- La **temperatura** ha sido el factor decisivo en la producción de adsorbentes carbonosos de calidad mediante tratamiento térmico (pirólisis).
- \square Los gases (CH₄ y CO₂) obtenidos durante la pirólisis son valorizables, pudiéndose obtener energía. SOSTENIBILIDAD DEL PROCESO.

Conclusiones

□ Se han obtenido adsorbentes con **áreas superficiales** y **volúmenes de poro** relativamente altos, lo que va a favorecer la adsorción y eliminación de antibióticos de las aguas residuales.

CONCLUSIÓN GENERAL:
SE HAN OBTENIDO ADSORBENTES
CARBONOSOS SOSTENIBLES DE ALTA
CALIDAD A PARTIR DE RESIDUOS

Perspectivas futuras

- ☐ Mezcla de distintos tipos de residuos para obtener adsorbentes con distintas propiedades.
- Activación de los adsorbentes con tratamientos físicos y químicos para mejorar su capacidad de adsorción.
- Regenerar los adsorbentes tras su uso, prolongando su vida útil.

Colaboraciones con otros Grupos

CREACIÓN DE ADSORBENTES CARBONOSOS SOSTENIBLES

DPTO. INGENIERÍA QUÍMICA Y DEL MEDIO AMBIENTE (ESCUELA DE INGENIERÍA DE BILBAO)

TFG I (Yiluan Garitaonandia)

ENSAYOS DE ADSORCIÓN DE ANTIBIÓTICOS

DPTO. QUÍMICA ANALÍTICA (FACULTAD DE CIENCIA Y TECNOLOGÍA)

TFG 2 (Itxaso Elicegui)

¡GRACIAS POR SU ATENCIÓN! ESKERRIK ASKO ZUEN ARRETAGATIK!

