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Motivation

Superconducting circuits are a promising quantum technology for the implementation of quantum information protocols. In particular, digital quantum 
simulations are an efficient method for reproducing quantum dynamics that are not produced naturally in available quantum platforms. We propose a 
method for simulating efficiently the dynamics of prototypical spin and fermionic models in circuit quantum electrodynamics architectures with  either 
qubit-qubit pairwise interactions, or resonators acting as quantum buses. We show how to implement Ising and Heisenberg spin models, and the Fermi-
Hubbard model, making use of the Jordan-Wigner mapping and Mølmer-Sørensen gates. Furthermore, we propose digitized adiabatic quantum computing 
protocols for spin Hamiltonians where the generality of the adiabatic algorithm and the universality of the digital approach are combined.
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Unconventional approaches to DQS

An Algorithmic Quantum Simulator (AlQS) is a classical algorithm on 
top of which, we can make use of a Analog Quantum Simulator (AnQS). 
This increases the flexibility of the AnQS, allowing to solve many 
different problems. We have employed a Markovian AnQS to solve a 
large variety of memory (Non-Markovian) effects, and even use it as a 
solver of integro-differential equations.

Digital methods allow one to reproduce dynamics that do not appear 
naturally in controllable quantum technologies and are unfeasible in analog 
quantum simulations. Superconducting circuits have turned into one of the 
most advanced quantum technologies in the last decades due to its high 
controllability. Spin and fermionic system dynamics represent interesting 
problems in the fields of condensed matter and quantum information, and 
optimization problems can be encoded in adiabatic quantum evolutions.
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Encoding fermionic interactions in quantum bits with non-local operations
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FIG. 1. Spin chain problem and device. (a) We implement one-
dimensional spin problems with variable local fields and couplings
between adjacent spins. Shown is an example of a stoquastic prob-
lem Hamiltonian with local X and Z fields, indicated by the gold ar-
rows in the spheres, and �

z

�
z

couplings, whose strength is indicated
by the radius of the links. Red denotes a ferromagnetic and blue an
antiferromagnetic link. Problem is for the instance in Fig. 5c. (b) Op-
tical picture of the superconducting quantum device with nine Xmon
qubits Q0 - Q8 (false-coloured cross-shaped structures), made from
Al (light) on a sapphire substrate (dark). Connections to readout res-
onators are at the top, and control wiring is at the bottom. Scale bar
is 200 µm.

is recovered when B
x

= J
xx

= 0. We initialize the system
with Hamiltonian H

I

whose ground state is trivial to prepare
(for B

x,I

= 2 the ground state is |+i⌦N ) and vary the system
Hamiltonian to the final problem Hamiltonian: H = sH

P

+
(1� s)H

I

, with s going from 0 to 1. An example problem is
shown in Fig. 1a.

The spin system is formed by a superconducting circuit
with nine qubits. The qubits are the cross-shaped structures
[23], patterned out of an Al layer on top of a sapphire sub-
strate, and arranged in a linear chain, see Fig. 1b. Each
qubit is capacitively coupled to its nearest neighbours, and
can be individually controlled and measured; for details see
Ref. [24]. Crucially, by tuning the frequencies of the qubits
we can implement a tunable controlled-phase entangling gate,
which together with the single qubit gates forms our digitized
approach. We use the Trotter expansion to digitize [25], the
evolution is divided into many steps in time, each of which is
implemented using a construction of quantum gates, see Sup-
plementary Information.

For quantifying digitized adiabatic evolutions there are four
sets of data: I) The ideal continuous time evolution, for infi-
nite time, which is free of error and provides the perfect so-
lution; we refer to this as “target state”. II) The ideal con-
tinuous time evolution for a finite time T , which is sensitive
to non-adiabatic errors. We call these results: “ideal contin-
uous evolution”. III) The “ideal digital evolution”, where the
finite ideal continuous evolution is digitized, and therefore in-
cludes digital error as well as non-adiabatic errors. And IV)
the experimental results, which include a contribution from
gate errors as well.

We start with a ferromagnetic chain problem with N = 4
spins, and equal coupling strength J

zz

= 2. The qubits are
initialized in the |+i⌦N state, and we use five steps to evolve
the system to the problem Hamiltonian, performing quantum

state tomography after each step. We linearly decrease the
B

x

term to zero, starting at B
x

= 2, and simultaneously
increase the coupling strength from 0 to 2, ending the evo-
lution at a scaled time of |J |T = 6. The density matri-
ces are shown in Fig. 2a. With each step the quantum state
evolves and matrix elements in the middle vanish while the
elements at the four corners grow to form the density ma-
trix ⇢ of the Greenberger-Horne-Zeilinger (GHZ) state with
a fidelity Tr(⇢target�state⇢) of 0.55. The density matrix is
constrained to be physical [26]. The ideal digital evolution
is plotted in Fig. 2b, reaching a fidelity of 0.85. The Hamilto-
nian during evolution, construction of the algorithm, and pulse
sequence are shown in Figs. 2c-e. In each Trotter step, we
perform a �

z

�
z

operation on each pair, to implement the fer-
romagnetic �

z
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z

coupling, followed by single qubit rotations
around the X axis to simulate the transversal magnetic field.
In the pulse sequence, the rectangular-like frequency detun-
ing pulses indicate where �

z

�
z

interaction is implemented by
bringing qubits near resonance (highlighted for s = 0.2). The
wave-like pulses are microwave gates; the decrease in B

x

with
Trotter steps is reflected by the reduction in amplitude of the
corresponding microwave pulses (highlighted for s = 0.4 and
s = 1.0). Additional microwave echo pulses decrease cou-
pling to other qubits and the environment. We find mean phase
errors from neighbouring parasitic interactions to be around
0.05 rad, equivalent to an error contribution below 10�3 (see
Supplementary Information).

The experiment in Fig. 2 shows that digital synthesis of adi-
abatic evolutions can successfully be implemented in a solid
state quantum platform. Using five Trotter steps, 15 entan-
gling gates and 144 single-qubit microwave gates, the system
forms diagonal as well as off-diagonal terms which are close
to the ideal, finding a genuinely entangled GHZ state, the ex-
act solution to the ferromagnetic problem. It shows that com-
plex pulse sequences are possible, and that the errors make
sense: The fidelity of the experimental data with respect to
the ideal digital evolution is 0.64. The fidelity of the ideal
digital evolution with respect to the ideal continuous time evo-
lution (equivalent to an infinite number of Trotter steps) has a
fidelity 0.93, and the overlap of the continuous evolution with
the GHZ state (see Supplementary Information) is 0.88. The
product of the above three values (0.52) is close to the ex-
perimental fidelity of 0.55, and shows the experimental error
is a combination of non-adiabatic errors, digitization errors,
as well as gate errors. Adopting the entangling gate error of
7.4 · 10�3 and 8 · 10�4 as measured in Ref. [26], we expect an
accumulated gate error of 0.23 whereas we find an infidelity
of 0.36; we attribute the difference to errors in maintaining the
phases of the four qubit system for a duration of 2.1 µs.

An important feature of the errors is the prevalence of pop-
ulations and correlations of the |0001i, |0011i, and |0111i-
states and their bitwise inverse, see arrows in Fig. 2a. Their
elements are also present in the ideal digital results as well as
the ideal continuous evolutions (see Supplementary Informa-
tion). These are states that deviate by a single kink from the
target state, having a residual energy of 2|J |, indicating the
presence of non-adiabatic errors. These kink errors are con-
nected to the formation of defects during a phase transition, as
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