

Development of innovative analytical methodologies to catalogue the composition and evaluate the environmental impacts on mortars and concretes from Punta Begoña Galleries (Getxo, Basque Country)

Cristina García- Florentino1*, Maite Maguregui2, Juan Manuel Madariaga1

¹ Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU)

²Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), *email: cristina.garciaf@ehu.eus

Aim of the PhD Thesis

Acknowledgments: This work has been financially supported by DISILICA-1930 project (ref. BIA2014-59124/p). Cristina is grateful to the University of the Basque Country (UPV/EHU) who funded her pre-doctoral fellowship.

2.63

N.D

N.D

2.38

2.70

0.08

0.07

at higher concentrations .

Alternative to other analytical techniques (e.g. ICP)

2.37

0.07

0.44

Mr

Cu

N.Q

N.Q

N.Q

2.00

In situ methodology to catalogue and classify different kind of mortars

Semi-quantitative data given by the HH-ED-XRF instrument compared against a previously optimized WD-XRF method

Quantitative and qualitative data Principal Component Analysis (PCA)

Biofilms acting as bioindicators of atmospheric heavy metal pollution

Elemental Composition comparisons between the biofilm area and unaffected building material using HH-ED-XRF methodology

