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Rules

Dear contestants, Welcome to PLANCKS 2021!

Here are some rules and information you must read before starting to
solve each problem:

10.

11.

12.

The language used in the competition is English. If you use
another language, it will not be considered.

The contest consists of 12 problems, each worth 100/1200
points. Subdivisions of points are indicated in the exercises.

All the exercises must be handed in separately and only one
PDF per problem. For this purpose, you have different
problem spaces in Moodle.

Please, when scanning your solution to a problem (you can
use for instance CamScanner - Phone PDF Creator), write
your team number on each page.

Make sure that your resolution is readable. Otherwise, the
marking team has the right to not consider and reject the
submission.

If you identify your team through other means that are not
your tfeam number, the submission will be rejected.

When a problem is unclear, a participant can ask, by tagging
a (@Supervisor - Problem X on Discord (where X is the
problem number) for a clarification. If the response is relevant
to all teams, the OC will provide this information to all.

You have 16 hours to submit this problem.

All the resolutions must be submitted before Saturday, May
8th, 12:00 (GMT+1).

Books and other sources can be consulted during the
competition.

The organisation has the right to disqualify teams for
misbehavior or breaking the rules. So please play fair,

because we will know if you have not.

In situations to which no rule applies, the OC decides.

Best of luck!
May the best physics team win!




PLANCKS 2021

Problem 1

Quantum Mechanics

Professor Fatima Mota and Professor Miguel Costa



Consider a charged particle of mass m and charge g placed in a 3-dimensional
isotropic harmonic potential of frequency w.

Question 1 [30 points]

Assume the particle is placed in a time dependent and spatially uniform magnetic field
B = Bysin(wt). Using first order perturbation theory indicate the allowed transitions
from the ground state, calculate the correspondent amplitude for transition probability
and show how you could calculate the transition probability (you don't have to carry out
this final calculation).

Question 2 [70 points]

Now consider a system of twenty non-interacting identical particles of mass m and spin
1/2, placed in such an harmonic potential.

a. [25 points] Determine the ground state energy of the system.
b. [45 points] Assume that a constant magnetic field B is applied. Show that
the diamagnetic susceptibility is constant.

Useful information

Remember:

minimal coupling procedurep - p — qA
the vector potential for an uniform magnetic field may be written as: 4 =
“BXR

You may use the following information for the eigenfunctions of the 3-dimensional
isotropic harmonic potential, in the {|n,,n,,n,)} basis:

[n,=0,n,=0,n,=0) =|k=0,1=0,m=0)

[n,=0n,=0mn,=1) =[k=0,l=1m=0)
Ine = 1L,n, =0,n, = 0) =%[|k=0,l=1,m=—l) —lk=01=1m=1)]
In, = 0,n, = 1,n, = 0) =J%[|k=0,l=1,m=—1) +lk=01=1m=1)]

Ine=1n,=1n,=0 =J—Ei[|k=0,l=2,m=2) +lk=01=2m=-2)]

e=1n,=0n,=1) =Z[k=0l=2m=1) - |k=0l=2m=-1)]

Ine=0,n, =1,n,=1 =¢%[|k=0,l=2,m=1) +lk=01=2m=-1)]

=—%|k=2,l=0,m=0) - %Ik=0,l=2,m=0)

+§|k=0,l=2,m=2) + §|k=o,l=2,m=—2)
Ine = 0,n, = 2,n, = 0) =—%|k=2,l=0,m=0) - %Ik=0,l=2,m=0)
—§|k=0,l=2,m=2) - §|k=o,l=2,m=—2)

)
)
)
)

|n, =2n,=0mn,=0

Ine = 0,n, = 0,n, = 2) =—%|k=2,l=0,m=0)+\Elk=2,l=2,m=0)




Solvutions

Question 1 [30 points]

The Hamiltonian of the particle in the magnetic field is:
A=—[p—qal+V(R)+
=5 q q¢
We can choose to work in the Coulomb gauge: V. A(r,t) = 0. In this gauge, the scalar
potential is zero. So we obtain:
oo P as @
A=—+V(R)—=P.A+-—A2
2m ( ) m 2m

The vector potential for the uniform magnetic field may be written as:

A—leR
2

And we can choose a frame where:
B(t) = B, sin(wt) &,
So we obtain (neglecting the coupling between orbital and spin magnetic moments):

2
By
m

—~ —~

q -~ 1
H=H,— ﬁBosin(a)t)LZ + 5

sin(wt)(X% + 72).

The ground state of the 3-dimensional isotropic harmonic potential has | = 0 and so
the term

q . ~
ﬁBosm(wt)Lz

does notinduce any transition from the ground state. Next we consider the perturbation
quadratic in the magnetic field. In the number representation we have:

X=c(al+a,) Y=c(@+a,)

where C is a constant, and so, in first order perturbation theory we just have to analyze
when the matrix element

(ooolalal + ala, + a.al + a,a, + alal + ala, + a,al + a,a,)|nmyn,)

is different from zero. We see that the allowed transitions are:

[(000) & (200)  (000) & (020)]

Now we evaluate the transition probability using time dependent perturbation theory.
The amplitude of probability, at first order, for a transition between an initial state |i)
and a final state |f) is given by:

_i o i ,
Ay = 7[ dt'Vs(t)e st
0



where
Ve (8 = (FI7()]i)
and

Ef — E;
wpi = fh !

The amplitudes of transition are equals in both cases, so we just consider the transition
(000) — (200). In terms of creation and destrution operators:

- h o " hoo
X2 = Tmin ——(al +a,)(al +8y); y2= Tmig —(a ++ay)(a +a,)
o)
q*B? JURN
Ve(t) = 000 S—m"sinz(wt')(x2 +72)[ 200
Zp2 h 2B2h
- 1 % sin?(wt’) - 1% sin(wt’)
8m \/Em(l)o 8\/77112(1)0
Consequently we can write:
—i q°B2h

t
A(l)() e_Eit/h f dtlsinZ(wt)eiwﬁt’
0

h 8\/_m2(1)0

We now do some calculations:

4D — —iﬂl o—Eit/h ftd t’(l—cos(Zwt’))eiwﬁt,
h 8vV2m2w, 2°
_ —i quofl (1)6_E t/h j dt’ [elwﬂ _el(wf1+2w)t l(wﬂ—Zw)t]
T 8\/_m2
q°Bgh e—Eit/fl{eiwfit [__l+ et n le_zmt] i iy + 4w’ }
16V2m2w, if Wpt20 wf—2w lf(wlf + 4a)2)

The transition probability is given by:

A(l)

lf_

Question 2 [70 points]

a. The energy of a particle in a 3-dimensional isotropic harmonic potential of
frequency w is given by:
3
E, = (7’1 + E) hw

and the degeneracy of each level is, accounting for a factor of 2 for fermions s = 1/2
each state can accommodate 2 particles. So we have:



gn=m+1n+2)
So:
(-) 2 particles in state n = 1; so a contribution 2 x 3/2(hw);
(-) 6 particles in state n = 2; so a contribution 6 X 5/2(hw);
(-) 12 particles in state n = 2; so a contribution 12 X 7/2(hw).

So the ground state energy is 60w

b. Asthe 20 particles occupy completely 3 shells, we have L = § = ] = 0 for each shell.
Since we have to calculate the correction to ground state energy of the 3-dimensional
isotropic harmonic potential, we have to construct the wave functions for each states
(atotalof 1 + 3+ 6 functions). Now since we are dealing with fermions, the total function
must be antisymmetric with respect to permutation of particles. Since the space
functions are symmetric, spins states must be antisymmetric and so only the state
|S = 0, M; = 0) need to be considered. For the pair of particles i and j:

T.l.> -
ij

Using the information we write for the space functions in the basis {|k,[,m)}. For
example, for the ground state and the first excited state of the unperturbed
Hamiltonian, we should obtain:

1
N

)

e for the ground level

1
1!)0) = [ﬁ(lk = 0,l = O,m = 0)1 +|k = 0,l = O,m = O)z)”S = O,MS = 0)12
« for the first excited level (using the same notation)

1
[¥11) =§[(|k =0,l=1m=-1);-k=0l=1m=1))k=0,l=1m=-1),—lk=0,l=1,m = 1),)]
|S =0,Ms = 0)34

-1
W) =—-[(k=0l=1m=-1)s +lk =0,l=1m=1)5)(k =0,l=1m=~1)s +|k = 0,1 = 1,m = 1)6)]
|S = O,MS = O)lS = O,MS = 0)56
1
V2

And analogously for the second excited state.

Pi3) = (Jk=0,l=1,m=0), +|k =0,l =1,m = 0)g)| S = 0,Ms = 0),5

The Hamiltonian of the particle in the magnetic field is (ignoring the couplings between
orbital and spin moments, which would in fact contribute to zero):



fi 1 20 20

! = _ q q

—+§mw2R12 _Zﬂsl.B_ZﬁLl'B +%A2
L 13

8

ﬁ - Z
Lu|2m
i=1

Now the correction due to term [i;. B gives zero as we show in the following.

Remember that, using the frame we chosen:

20
D B = (ST, + 55 + )8
i

Since the spins functions are antisymmetric in respect to permutations of particles:

(W X Bly. )=0

In same way we see that since the orbitals functions have the same coefficient for
symmetric values of m:

20
~ q ,—
ZﬁLLB :%(le +L22 +)B
i

And as subshells are complete:
(. 7k (G + Lo+ )B|w ) = 0

So the correction to energy is proportional to B?:
2 20
E=87h0+ (> (BxR)’
8m L '
l

and so the magnetization M is:

dE

M:—d—Bz

xB

and so the diamagnetic susceptibility is constant.




PLANCKS 2021

Problem 2

Tight-Binding modelsina
Magnetic Field

Professor Jodo Lopes dos Santos




Introduction

The problem of the spectrum of an electron gas in a magnetic field is addressed by the
minimal coupling prescription

v.’ qA 1
7_)7_% > @

where A is the vector potential and the magnetic field is B = V X A. It is not difficult to
show that in that an electron gas in two dimensions, for uniform B normal to the
electron gas, one has a discrete spectrum of Landau Levels,

1 eB
€En = <n + E) ha)c, W, = ; (2)

where w, is the classical angular frequency of electron orbits. Furthermore, each level
has a degeneracy (not counting spin) equal to the number of flux quanta in the sample,
i.e. equalto BA/¢p, where A is the area and ¢, = h/e the flux quantum.

In the presence of a lattice potential this problem becomes considerably more
complicated.

A tight binding (TB) model assumes a local basis, with one or more states |¢;) in each
lattice unit cell and is defined by two sets of parameters:

» local orbital energies: |¢p;)e;{d;];
* hopping amplitudes between local orbitals: |¢i)tij<¢j|;

The general state is defined by its amplitudes in this basis

)= clgd ()

4

and for a crystalline lattice, Bloch's theorem can be used to solve for the Hamiltonian
eigenstates.

The magnetic field is introduced by adding complex phases to the hopping amplitudes
(Peierls substitution)

ti; > ety (4)
with the only requirement that the sum of phases along a loop is proportional to the

magnetic flux in the area enclosed by the loop. The choice in Fig. 1 corresponds to a
flux in the square of Ba? = ¢.

10



& - & 3
t exp(=i 2n ¢/¢ )

Figure 1 — With ¢ real this choice of phase describes motion in a magnetic field perpendicular to the plane
with flux in the square of Ba? = ¢

1. The square lattice

Assume a square lattice with sites Ry, ,, 1 = a(méx + néy) with non-zero hopping amplitudes
—t (t > 0) only between nearest neighbors. Take 0 <m < N, —1and 0 < n < Ny, — 1 (NN,
unit cells). You may take the site energy to be zero (band center).

1.1.[20 points] You can make a choice of phases to represent a uniform magnetic field
affecting only bonds along x, (z,bm‘n|}[|1/)mi1,n). Go ahead and do so. Notice that you
break translational invariance only along y direction. Use Bloch's theorem along x to
reduce the Hamiltonian eigenvalue problem, for each Bloch wave vector k,, to a 1D
tight-binding chain with a on-site energy V, (k,) that varies along the chain and is
periodic. Determine V,(k,).

1.2.[15 points] In realistic situation, the flux per unit cell, Ba?, is much smaller that the flux
quantum. Confirm this by estimating for a ~ 1A the value of B such that Ba? = ¢,.
Show that the potential ,(k), for sensible values of B, has a wavelength much greater
than the lattice spacing, a. Obtain a continuum limit for your TB equation by assuming
that the tight binding amplitudes vary slowly with the index n and can be represented
by a continuous function of y computed at the site coordinate y,, = na, which can be
expanded in a power series. Show that for each k.., you obtain a Schroedinger equation
in 1D (along y) for a particle in a potential V(y, k).

1.3. [15points] Look for solution close to the minimum of the potential. Reduce the problem
to that of an harmonic oscillator and try to prove the following:

=  Thelow energy spectrum takes the form
1
€, = —4t + <r + E) hw, r=20,12..(5

= if the potential period Ma is larger than the width Ny,a of the
sample, each level has a degeneracy

p = NyN,/M;

= The form of the spectrum of Eq. 5 only holds for r <« M.

11



2. The Graphene Lattice

The case of the graphene lattice brings further complications. The honeycomb lattice is not
a Bravais lattice and has two carbon atoms per unit cell (see Fig. 2). The general state is

|1IJ) = Z Amn |¢1¢l,n> + bm,n|¢1€1,n>

Rm,n

where R,,,, = ma; + na, is a Bravais lattice site, and |¢;‘,‘Ln) and |¢,’$l_n) are the two local
orbitals in the unit cell at R, ,. In a minimal model the site energies of all local orbitals is
taken to be zero and a non-zero hopping amplitude, —t, (t = 3 eV) exists only between
nearest neighbors. The magnetic field can be infroduced with phases affecting only the
bonds connecting orbitals with the same n.

Figure 2- Graphene lattice with basic lattice translations

2.1.[20 points] Use Bloch's Theorem to reduce the eigenvalue problem to a 1D chain with
two types of atoms with a space dependent hopping t,, (k;).

In graphene, the interesting energies are close zero. To obtain these states consider the
following suggestions.

2.2.[20 points] Use a phase change of the local orbitals to reduce the TB
equation of the AB chain to the form

en(ky) = —t|2c0s (%5 —nm ) By (ky) = B (k)|

0

ebn(ky) =t [2c0s (4~ nm ) @ (ky) = s (k)|

0

12



2.3.[10 points] You can obtain low energy states |e| < t, with slowly varying
wavefunctions in an atomic scale, near values of n such that
kia
2cos (L — ﬁng) =1.
2 bo

Expand the cosine term about i, use a continuum aproximation for the amplitudes as
you did for the square lattice, and obtain equations in the form

At 4 a a
[A(ai, y) ! (aoy y)] [Zﬁbgg] - [Zﬁbgg]

were the commutator [A(d,,y),A1(d,,y)] is a c-number. Recall the commutation
relation of harmonic oscillator operators, [a, at] = 1, and try to figure out the low energy
spectrum from this.

13



Solvutions

1. The square lattice
Model

A square lattice, with lattice parameter a, of dimensions Nya along x with open
boundary conditions (BC) and N, a along y with periodic BC. Sites

Ryn:i= a(méx + néy)
m=,0,..,N, — 1n = 0,Ny, — 1. Notation ¢, , is amplitude of state in local orbital at Ry, ,.
Site energies €, , = 0;hopping —t between nearest neighbors.
Tight Binding Equations
€ECmn = _t[cm+1,n +Cn-1nt Cmp+1 + Cm,n—l]
With magnetic field with Peierls phases along horizontal bonds:

_t[e_izm(p/%cmﬂ,n + eZme/Poc, 0+ Cnir Cm,n—l]

ECmn
Over an elementary square run anti-clockwise
1_[ t;; =t*exp [iZnnﬁ —i2n(n+1) ﬂ] t*
L %o %o
>
= t*exp [—iZni
bo

Thus describing uniform field along 0z Ba? = ¢.
Bloch's theorem along Ox direction
Cmn = Cn(k)ikma

ecn(k) = —t[enp1 (k) + cpq (k) + (eika=2mne/do) 4 g=ilka=2mne/do))c (k)]
= —t[cp41(k) + cp_q (k) + 2cos(ka — 2mne/¢o)cy (k)]
€ (k) = Vo(K)cn(k) — t(cnya(k) + cnoq (K))

For each k this is a TB hamiltonian for a 1D chain with onsite energy V, (k) =
—2tcos(ka + 2mne/p,).

The continuum limit

Period of (k) in n

2nNe /Py = 21
or
N=2
%

soif p K ¢ or

14



h
Ba? « o= 4.2 x 10715 Tm?

Fora ~ 10719, B « 4 x 10° T the onsite potencial is slowly varying on an atomic scale:
wavelenght of potential > lattice parameter.

Look for solutions which are slowly varying of an atomic scale ¢, (k) = ¥(y, k) where
Y(y, k) is continuous in x

2
Cnil(k) = l/’()’n: k) i aaylp(y, k)|y=yn + %af]lp(y' k)|Y=Yn
ear1(B) + eng (K) = 200 k) + @259 )| _

or
y o _
—ta? 02y(y, k) — 2t [1 + cos (ka - 2”5%” Y, k) = ep(y, k)

Furthermore if N > N,, there is only one minimum inside ribbon for

_kago _ka
2w ¢ 2w
21 Ny,
0<k < 77
For states near minimum
y e
ka—2n=— =0
ago
_ bo
= 2=
vy (k) ka 20
Yo Y=y ¢ 1 0 \*(y —y)?
1+cos|k—2n=——-271 — zZ——4n2(—> -
( a gy a ¢o) 2 bo a?
SO
292 Am? (g \? = 2
~ta? ) — 4t +tp () (=YW 0.0 = ey, )
0
1 D harmonic oscillator
h?/2m* = ta®
. NEAY
-m w2 = 47'[2;(%)
v -l ()
m*a? \¢, h? bo

or

N 4t(q)> 4tzB 2mh?eB heB
w=4nt|— ) = 4nta* — = =
bo bo m*h m*

15



The characteristic length scale of harmonic oscillator wave functions

0 = h =<2ta2>(i¢o>:ia2@

h 4t ? 2m @

The expansion of the cosine, only works if

02 (9 \?
w2 (2) 1
naz ®o
or

2«1

bo

In that limit we find evenly spaced states of energy and only for states with energy
smaller than't

rhw K t

or

T<<@<<N
@

In this limit the spectrum is a series of evenly spaced states of energies
1
—4t + (n + E) hw

with a degeneracy correponding fo the k values

2n/a Ny, NN,
2n/Nja N~ N

2. The Graphene Lattice

Phases

We start by setting up the TB equations with Field

€EAmn = _t(bm,n + bm,n—l + bm—ln)

Ebm,n = _t(am,n + amne1 T am+1,n)

Next we choose gauge by adding phase along bonds between sites of same n

€amn = —t(e m™e/bop + by, 4+ e/ Pop )
ebm,n = _t(einn(p/qﬁoam'n + Amn+1 + e—inn(p/qho am+1,n)
Notice that
V3
P = 73612

Bloch theorem along a;:

16



Amn = an(k)eikma
bm,n = b, (k)eikma

and
ca (k) =—t (e‘i”n")/%bn (k) + by,_, (k) + e‘”‘“ei”"‘/’/"’Obn(k))
€bpn =—t (ei”"‘/’/‘l’oan(k) + a1 (k) + eikae_i”"‘/’/"’oan(k))
ean(k) = —t[(e'i""“’/‘l’o + e~ tkagimme/¢o)p, (k) + bn_l(k)]
eb,(k) = —t[(e™¥/Po + etkae=ime/Po)q, (k) + a4 (k)]

This has the form

ean(k) = [tn(k)by (k) — thy_q (k)]
by (k) = [ta(k)an(k) — tan,, (k)]

ta(k) = —t(e™me/Po 4 glkae=itne/bo) = _2telkd/2cos (E - nng)

2 bo
So
—ika E_
ea,(k) = —t[Ze e /2003(2 nn¢ )b (k) + b,,_ 1(k)]
) ka
— _ ika/ _ 2
eb,(k) = t[Zek 2003(2 nn¢0>an(k)+an+1(k)]
If we define
lpb (k: yn) = (_1)ne_ikna/2bn(k)
ka
- _ - . nl(n )a/ n— l(n Ja/
ca (k) = t[Zcos(Z nn¢0>( Dreikm-Da/2y, (k) 4 (—1)-Teikm=Da/zy, (k)
k
= —t(=1)"e 0072 | 2c08 (-~ nr )5, ) = -1 )
and

Yok, y) = (—1)re~k=Das2g, (k)
Kk
eb,, (k) = —t(—1)"eikna/2q_ () [2cos (;—nn 0 )wa(k V) — ok, y + a)]

and the equations reduce to

Yalky) = —t[2cos (5~ nr )y (k) ~ (ks y - )]

2 bo
ka
sk y) =t |2c08 (G nm ) (k) —alhy + a)|
These equations have slowly varying solutions of low energy near
ka 1)
2cos (— - nn—) =1
2 bo

17



Expanding about that point

2cos(k—a—zn£> =2cos<k_a_2ﬂ£_y—?ﬂ£>
2 a ¢ 2 a ¢ a ®o
. y—yk)_ @
=1+sin(r/3)——=2n—
a bo

3y -y _ ¢

— 2T —

1+ > a T[¢O

We can write the eigenvalue equations as

el y) =—ta[(ay¢b(k,y>)+ e L gk y)]

fl.bb(kJ’) = —ta [_ aywa(k:}’) +”\/§%7¢a(k'30]

Or
[ 0 A(y' Y)] lpba _ [lpa]
AT(y,ay) 0
0y »y-—y
At(y,a,) =—ta[ “+n \/_q50 p ]
Jy py-—y
A(y,ay) ——ta[l—+ \/_¢0 72 ]
[A, A*]—zntzx/_(p
bo
a=1| L %
t [2mV/3 @
[a,aT]=1
and

i e A R A

This prompts the solution

[a+ 0’a a()’(') y)] Pn- 1] _l_\/—[(Pn 1]
(v.95)

1
€, = Fta 2n\/§£n = Fhvyp—V2n
bo lp

To connect with results as presented in the literature, we note that the area of the
elementary hexagon isv3a?/2, and

And the spectrum is

18



@ 3 _ Ba? +/3a?

27‘[—=— T—=——
bo bo 2 13
with
2
t Zn\/_ﬂn =t \/_£a—2
2 1y
a—— 2n

or, since vy = \/3ta/2h

1
€n = $hvpgv2n

19



PLANCKS 2021

Problem 3

The evolution of accretion disks

Professor Jorge Gameiro




Introduction

The stars form through the gravitational collapse of dense molecular clouds. The specific
angular momentum of gas in the molecular cloud typically matches the specific angular
momentum of the gas in a circumstellar disk. In many cases the disk is confined so closely
to the disk mid-plane that to a first approximation, one can assume the disk as a two-
dimensional gas flow, the so-called thin disk approximation, where the thickness of the disk,
H(r) <.

e —— LAY

— r Disk mid-plane

Question 1 [20 points]

Assume for simplicity that the disk is optically thick and vertically isothermal, with a
constant sound speed, ¢,, and pressure given by P(r,z) = p(r,z)c2(r). If the gas is in
hydrostatic equilibrium in the vertical z-direction (no mass motion in this direction),
show that the vertical density profile, p(z), is a gaussian profile. In this exercise one can
consider the mass of the disk negligible when compared with the mass of the star, so
the gravitational force is mainly due to the star.

Question 2 [30 points]

The evolution of a flat and geometrically thin disk follows from the equations of mass
and angular momentum conservations. Consider a thin disk characterized by a
surface density X(r,t) (the mass per unit surface area of the disk, X(r,t) = p(r,t) X
H(r)), radial velocity V,.(r, t) and angular velocity 2(r).

The angular momentum conservation is given by the equation
d d 106G
— 202 +=—00.1r2V) =——(1
rat(r )+6r(r rZv) 2n6r()
v is the kinematic viscosity, G is the viscous torque exerted by the outer
ring on the inner ring and has the form G = 2xr. erZ—f.r‘

Get the mass conservation equation in cylindrical co-ordinates and
together with equation 1 obtain the equation that represents the disk
evolution (assume the angular velocity is keplerian),

Z—f = ;% rl/Z%(erl/z)] )

21



Question 3 [30 points]

In general, equation 2 is a nonlinear diffusion equation, because the kinematic viscosity
v may be a function of X, r and time. If we assume a constant viscosity v in the full disk,
the equation is linear.

Show that for a constant viscosity disk, the equation is a pure diffusion equation,
0 92
o _p9f
ot OR?
and determine the typical timescale of the disk evolution (also called the viscous

timescale). [Hint: Consider R = 2r'/?2 and f = (3/2)2R]

In your opinion, how could the disk evolution timescale be obtained from observations?

Question 4 [20 points]

In the previous questions we have assumed that the mass of the disk is negligible when
compared with the mass of the star. Here, we want to discuss the validity of this
assumption. As the disk is very large, for simplicity we approximate the disk by an
infinite sheet with constant surface density X and thickness H. Show that the mass of
the disk is not negligible when

Mgisk
M,

s 0s()
"~ \Ryisk

[Hint: Determine the gravitational acceleration above the sheet due to the mass of the
disk and compare this acceleration with the vertical component of the stellar gravity at
z=H]

22



Solvutions

Question 1 [20 points]

Consider the vertical hydrostatic equilibrium

dP

- =r9, (O
We ignore any conftribution to the gravitational force from the disk. In this case, the
vertical component of gravity is given by g_ = G;;I Z.

For athin disk z « r, the previous equation becomes

dp 1GM,
—=-5— (2)

p ¢ r

which integrates to give

p(r,2) = p(r,0)e /@D (3)

GM,
T3

with H = ¢,/Qg and 0% =

Question 2 [30 points]
Angular momentum conservation equation

190G
r—(rZ.QZ) +—(r2.(2 rXV.) = = (€))

and G = Zm‘.vZ'rd—ﬂ.r
dr

The mass conservation equation in cylindrical coordinates is

ax+a(w)_0 (5)
"ot Tor e T

The angular momentum equation can be written as

1 0G
2 or

1 0G
rVZ)+rE— Q)+rZQ— V)+rZVr—(rZQ)———
2T or

(the second term is zero because r2Q) does not depend on time) and so

ax
r—rZ.Q + rE— rn) + rZ.Q— rZV,) + rZV — (rzﬂ)

. 106G
T'ZV —(T .Q) = %E (6)

We can rewrite the mass conservation equation 5 using the equation 6 and obtain

0z o[ 1 G
" at  orl2n(r2n)’ ar]

By developing this equation we obtain
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c_ 122 2
" ot orlrnor (3/2vE0r7)

Taking the angular velocity as keplerian, 2 = (GM, /r3)'/?, we finally obtain the result

az_a[za ]

0y 30 0
T |2 21/2] 7
ot ror " ar(v ) (7)

Question 3 [30 points]

With the change of variables R =2r%/? and f = 3/2ZR, the partial derivative in
equation 7 can be written as

d OROO d 290
_— = —— = —_— ——
Jdr O0roR dr ROR
and we get
6(32)3x426_[R26< R>]
at Rz RoR _|2RarR\"*2

and so the evolution equation takes the form of a diffusion equation
aof  9%f
A D_Z
ot OR
with the diffusion coefficient D = 12v/R?. The diffusion time scale across a scale 4R is

AR?/D. If we convert this scale on the surface density spread on a radial scale Ar we get
t Ar?
dif ~ r /V.

Question 4 [20 points]

We have calculated in question 1 the vertical component of the gravity due to the star

GM,
g,(star) = —-z
r

The gravitational acceleration above the sheet due to the disk is given by the expression

g,(disk) = 2nGx

which is independent of height (we assume that the disk is large enough that we can
take it as infinite). There are several form to determine the above result, for example
using Gauss's theorem.

By calculating the ratio of gravitational acceleration caused by star and disk one gets

g,(disk) 2mGZ s
= r
g,(star)  GM,z

We are looking for the case when g _(disk) > g _(star).The disk mass at
adistance ris roughly M ;.. (1) = nr* and z~H, so the condition is

M ;; H
disk > 05 (_)
M r
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Problem 4

Fluids and Fourier Transform applied
to Solid State Physics

Professor José Manuel Moreira



1. An empty sphere inside a fluid

A spherical hole of radius R, (see Fig. 1) suddenly forms in a perfect incompressible fluid
(specific mass p; weight negligible). The radius of the hole is small compared to the
dimension of surrounding fluid.

Figure 1- Spherical hole forming in a perfect incompressible fluid

1.1.[32.5 points] Prove that the time it takes for the fluid to completely fill the hole is

T = 3_pr°—dT 1)
2p0Jo J(Ry/T)P -1

with py corresponding to the pressure at "infinity".

1.2.[17.5 points] In order to calculate this time, we need to evaluate the integral:

Ro dr
— (2
J0 \/(Ro/r)3_1( )

Your taskis to find the value of this integral in terms of beta or gamma functions. After
that, choose your favorite numerical integration method and find the numerical value
for this same integral and compare both. Hint: use the normalization x = r/R,.

You can do the numerical iterations by hand or you can put your
computer to do them for you, using a programming language
like Python or a similar one.
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2. Polarization field

Polarization is the vector field that expresses the density (C/m?) of permanent or
induced electric dipole moments in a dielectric material. When we apply an external
electric field, the molecules of the material will acquire an additional electric dipole
moment and the medium is said to be polarized. In a first approximation, the second
order differential equation that relates the polarization of a material to the applied
electric field can be written, in the time domain:

d*p dp 5 5 5
W + )/E + wiP — vaP = an)pE(t)(3)
2 2
where w3 =——, y = 1, wp = X and N the number of charges per unit volume. In
4mEegMRy T €gm

metals v = 0 and for an isofropic non-polar dielectric v is theoretically 1/3.

As we know, Fourier transforms, direct and inverse, and convolution integrals are one
of the most valuable theoretical tools of physicists and engineers. They give us a clear
correspondence between time and frequency domains. One can choose a domain to
solve a problem (time or frequency domain) allowing us to do the math in the easier
one. The equation 3 can be written in the frequency domain as:

P(@)=R(wE ()

where R (w) is the transfer function (susceptibility) of the medium. In the general case,
susceptibility is a tensor but in this exercise we consider it a scalar quantity.

2.1.[20 points] In the limit of y = 0, find expressions for the real and imaginary parts of
R(w) =7 () = xr(0) +iyi(w).

2.2.[7.5 points] In this limit, find the response of the system to an applied electric field
that is zero for t < 0 and E, for t > 0 (Heaviside function). Plot P(t) and comment
physically the result.

2.3.[22.5 points] If y # 0, with wL & 1, comment on the amplitude of the resultant
0

oscillation, its energy and corresponding oscillation frequency. Sketch the graphs
for different values of increasing y (always obeying the condition y < w,). What is
the value of P whent — o? Neglect irradiated electromagnetic energy and all other
decay modes due to inferactions with other particles.
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Solutions
1.1 [32.5 points]
v =v(r),vg =4 =0
The Euler equation in spherical coordinates:

av Jv_ 10p

at * ”E ~ por
From V- ¥ = 0 (continuity equation) in spherical coordinates:
riv = f(t)
From the above we get

1df dv _ 10dp

2a Ve oar

Integrating this equation between R(t) [R(t) < R,] and infinity leads to

af (* 1 0 1 (Po
—dr+f vdv=——| dp

dt R(t)’"2 V(R) PJo
_ldf 1, _Po
Rdt 2

where V = i—lz is the temporal rate of the radius of the hole; the velocity v() is zero and the

pressure on the surface of the hole is obviously zero as well. For points on the surface of the
hole, we have:

f(®) = R*()V(D)
Plugging this equation into the former we get:

3 1 _dv? p,
——VZ—-—-R -2
2 2 dR  p

Integrating this equation with the initial values V = 0 for R = R,, one obtains:

dR 2 R?
V = —= — _p() _0 — 1
dt 3p \R3

where the minus signal ensures the filling of the hole.

Therefore, the total time spent will be:

3p [Ro 1
S e —
! \/jpofo JR/RE —1 .

1.2 [17.5 points] The calculation of the definite integral I = fOR° E 1)3
_0 _1
R

dR can be

. . . R .
performed numerically. Performing the variable change x = = results in:
0
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1
X
)y Ve X T Folo

One of the most frequently used numerical methods of definite integrals is Simpson's
method. However, in this case the calculation is inappropriate due to the discontinuity in the
upper boundary. To overcome this difficulty we decomposed the integral into two additive
intervals [0; 0.99] and [0.99; 1]. In the first one, Simpson's rule was applied and in the second
one, where the discontinuity exists, the extended midpoint rule was applied (the
computational code was described in python language). The results found are:

099  ,3/2 1 43/2
dx = 0.632 and dx = 0.116
o V1—2x3 099V1 —x3

sol, =0.748 i.e.

3 p P
T= |=x0.748 X R, |— = 0.916R, |—
2 Po Po

Note, however, that the integral I, has its own mathematical expression expressed in
special functions (beta functions or gamma functions). These functions appear in the
theoretical solution of many physics problems:

1 x3/2
I =f dx
0 0 Vl—x3

s 1T(9) ()
3 (2’6) 3 F(%)
_ %r B)r(3) =077

2.1.[20 points] Using the differential equation given and the relation between Fourier
transforms and its derivatives we get:

(—iw)?P(w) — iywP(w) + (w5 —vw3)P(w) = &wiE(w)

and with R(w) = % it follows that

2
€9 W}

(W) = R(w) = —5——— >
w5 — w? — iyw — vw?

where 7(w) is the medium susceptibility.

Using elementary algebra, we get:

T(w) _ 50‘*’5
1+ @ w§ — w? —iyw
0

and using the dielectric constant definition K = 1 + /¢,

K—-1 w?

1+v(§—1)=w§—(u2—iyw
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The effective resonance frequency can be written as fa)(z, —vw}. The imaginary and real

parts of K forv = 0 are:

w5 (w§ — w?)
(0§ — ?)? + (Yyw)?

K, =1+

3 WhYW
(0§ — w2)? + (Yw)?

i

Ify = 0, we get
2
w
K, —1=—-"
" wé — w?
and
w2yw
K; = lim b
i ¥-0 [(wg _ w2)2 + ]/20)2]
w? w? wi —w?\ wn
=—Llim Y 5 =—p7r6(07>=—p—6(w0—w)
W y=0] (2 — 2 5 w w 2
(#5%) +r

when w > 0. K; # 0 describes the energy dissipation of the system.

2
Using the last two equations and y, for x|,-0 = S‘::;":
0

m m%(s( )
Xom W — Wo

- . Xo .
X(@) = xr () + ix;(w) = T o/l tis

2.2.[7.5 points] The response function R(t) is the inverse Fourier transform of 7(w).
Since R(t) is real, the transform may be expressed as an integral over positive frequencies
only:

2 [oe]
R(t") = \/;f [xr(w) cos(wt") + y;(w) sin(wt”)]dw
0
Both terms integrate to give the same result:

\/%fow xi(w)sinwt"dw = \Exowo sinwg t”’

And finally:

P(t) = XOU)OJ E(t —t")sinwyt"dt"
0

to get

P(t) = XoEo(l - cos(wot))
fort > 0, because the field is zero when t < 0.

The plot of the previous equation can be seen in figure 2 .
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Figure 2-Polarization, a time function

2.3.[22.5 points] Ify # 0, with-~ « 1, the general solution would be
wWo

yt
P(t) = xoEpe™ 2 (1 — cos(wot))

and it can be shown by different methods (eigenvalues, or time domain) that

In figure 3 one can see the plot for different values of y for a wy = 1.

It is necessary to note:
e the different time stretches due to the factor w’,
e the different damping due to the e 7*/2 factor

e the first peak amplitude
e the asymptotic value fort — o

2voEo \

Xo ko

gamma=0.2
gamma=0.5
gamma=1.0
gamma=1.5

00 25 50 75 100 125 150 175 200 t

Figure 3-Polarization fory # 0. (10 points)
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Problem $

Exoplanets

Professor Nuno Santos



Intfroduction

The 2019 Nobel Prize discovery of the planet orbiting a solar-like star marked, in 1995,
the onset of a whole new area of modern astrophysics. Today, more than 4000
exoplanets have been detected orbiting other “suns”. The results show that planets are
ubiquitous in our Galaxy, but also that rocky planets are likely the most common
among these. Complementary studies are allowing to characterize the planetsin great
detail. The measurement of accurate masses and radii (and thus mean densities) is
setting strong constraints about their internal structure and composition. The detection
of exoplanet atmospheres provides important clues about their nature and formation
processes. The prospects of detecting and characterizing another Earth are now one
of the main drivers for the development of new instruments and space missions by the
main international agencies (ESO, ESA, NASA).

The following questions focus on some aspects of planet detfection and
characterization, but also on some interesting problems and challenges raised by
planet formation models. All questions are independent and can be solved in any
order.

Question 1 [25 points]

One of the main exoplanet detection and characterization methods (the so called
Radial-Velocity method) is based on the measurement of the Doppler velocity of the
star as it wobbles around the center of mass of the star-planet system.

Assume that you have a planet similar to Jupiter, with ~1073 solar masses, orbiting a
Sun-mass star in a circular orbit. Assume that the orbital period is 12 years, and the
orbital radius of the planet is 5.2 AU (Astronomical Units; 1 AU = 150x106km). Using
simple principles, derive an expression that relates the Mass ratio (Mga,/Mpianet) With
the orbital velocity ratio (Vsear /Vpianet) ©f the two bodies around the common center-of-
mass.

Compute the expected orbital velocity of the star (in units of km/s).

Question 2 [25 points]

Assuming that the planet is in thermal equilibrium with the star, and that the energy
received by the planet is rapidly distributed on its surface (i.e., that the planet has
uniform temperature), show that the temperature of the planet is proportional to

T.+/R./D, where T,, R,, and D are the temperature of the star, its radius, and the
distance between the star and the planet, respectively.

Comment on the physical nature of the proportionality factor.

Question 3 [25 points]

A significant fraction of the known exoplanets are giants, similar
to Jupiter, but orbiting their host stars at very short distances.
This raises several questions about planet formation and
evolution, but also about the very existence of these worlds.
Assume that the giant planet mentioned above is actually at
0.05 AU from a star similar to the Sun, such that its temperature
is 1250K.
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Using simple principles, discuss if the atmosphere of this planet can survive against
evaporation. For simplicity, assume that: 1) the atmosphere of a Jupiter-like planet is
composed of hydrogen, 2) the planet has half the mass of Jupiter but the same
average density (Data for Jupiter: M=1.898x102%7 kg, R=70 000 km).

Question 4 [25 points]

Planets are formed in disks of gas and dust that are formed as the outcome of the star
formation process. In these disks, solids are expected to grow though collisions over
timescales of several million years, eventually leading to planet size objects.

One of the biggest challenges of the planet formation process is related with the fact
that, in a disk, the gas (that composes 99% of the mass of the disk) and the solids do
not rotate at the same velocity. This leads to a gas drag that will make small, meter-
sized pebbles to fall into the star in timescales of a few thousands of years.

Assume you have a disk of gas and dust whose density and temperature decrease with
distance to the star. Show that, in such circumstances, you expect the velocity of the
gas to be given by

ez \1/2
vdust X (1 - .’,.2_02) I

where 2 = \/GM /r3 and c is the speed of sound.
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Solvutions

Question 1 [25 points]

M.

Figure 1-Problem scheme

a, M,
M1a1 == Mzaz 5 —=—
a, M

v, a M, vy M,
—_—_— = — = —
v, ap M v, M
|fM1 = 1OOOM2 = V= 0,001172
v, = (5.2AU X 150 X 10°~km X 2 x m)/(12anos X 365 X 24 X 3600) = 12.9kms™?!
Question 2 [25 points]

The power received by a planet is given by:

2

TR
24 p
P;p, < ATRIT, X D2

where R, is the stellar radius and T, the temperature, and R, and D are the planet radius
and the distance to the star, respectively.

Poye o 4TRAT,
In equilibrium:

R,
Pin = Poyt = Tp < T, 2D

The proportionality is related to the planet’s Albedo.

Question 3 [25 points]
For a planet to keep its atmosphere:

vparticles < Vesc
Escape velocity (v, ) at the limit:

1 ) GMm
S MVese = —F7—

2 R
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2GM

Vesc = R

For a 0.5M),,y¢er pPlanet, if p = pjypyter, We can estimate:
R~ 57 x103%km
= Vpe = 47km/s
Let's now assume that Ty, 4nec = 1250K:

3 1 5
ER=EKTzEm<vk>

If the atmosphere is made of H,, < v, >~ 4km/s.
Since < v, ><K v, We can expect the planet to retain its atmosphere.

Question 4 [25 points]

We have the following situation:

e(ﬂuﬂn“- ¢ il g

< -~ V= F Adreal
R s g

Figure 2-Problem scheme

The master equation is:

v GM  10P

rr2 por

ey

2 2
which is a sum of two effects: 1;7 = ‘i—’:’ takes into account the solid component and 1;7 =

10P

.. V2 _GM GM
o accounts also for the gas. For solids, — = — = v = r, where 2 = ’T—3

Knowing that 2 = /i—l‘: andp = ¢?p, from equation 1:

v? , . c?
— = Q0 r+—
r r

g(when doing the integration).

ap
because — =~
or

So:
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and

making

where Qr = vg,q -
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Problem 6

Cosmology

Professor Orfeu Bertolami



Introduction

The simplest cosmological model scientifically non-trivial can be obtained by
Newtonian considerations assuming that a mass, M, is isotropically distributed in a
volume, V5, around an arbitrary origin. Suppose that, at a given time, a generic galaxy
with mass m is at a distance a(t) from the origin.

Question 1 [16 points]

Use Newton's Second law and the law of Universal Gravitation to obtain an equation of
motion for a(t).

Question 2 [16 points]

Show that this equation of motion admits the integral:

1. GM k
A

where k is an integration constant.

Question 3 [16 points]

Assume that the mass M is made up of homogeneously distributed pressureless dust
with density, p(t), within the radius, a(t), of a sphere. Insert this mass into the previous
equation tfo obtain an expression for the square of the expansionrate, H = a /a, interms
of the density. This equation is known as Friedmann's equation and was obtained by
the Russian polymath Alexander Friedmann (1888-1925)in 1922 in the context of the
Theory of General Relativity, which means that this equation is more general than the
Newtonian considerations assumed for the above derivation (small velocities, v/c « 1,
and weak gravitational fields, V/c? « 1, where V is the gravitational potential).

Question 4 [16 points]

Assume that the mass M is constant to obtain a relationship between p(t) and a(t).

Question 5 [36 points]

In the Theory of General Relativity the integration constant, k, is
associated to the spatial curvature of the Universe. There are three
possible geometries to consider:

a. Closed Universe for k > 0, which corresponds to a Universe
with a spatial geometry of a three-dimensional sphere, $3, with
radius of curvature, R(t), related with the above model by
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ko1
a(®)?  R()?’

associated to the volume V5 (t) = 2n2R(t)3;

b. Flat Universe for k =0, which corresponds to a Universe with spatial
geometry of a three-dimensional Euclidean space, E3, for which R — oo;

c. Open Universe for k <0, which corresponds to a Universe with spatial
geometry of a three-dimensional hyperboloid, H3.

Show that the evolution of the Universe can be understood for these three different
cases rewriting Friedmann's equation as

1. k
Eaz = —Verr(a) — >

where V,¢r(a) = —4nGpa?/3, drawing the diagram of V,¢r(a) as a function of a and
discussing how a(t) evolves as a function of the cosmic time, t .

Relevant constants:
Newton's gravitational constant: G = 6.67 X 10711 m3 kg1 s72

Speed of light: ¢ =3 x 108 m/s
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Solvutions

Question 1 [16 points]

Question 2 [16 points]

Question 3 [16 points]

letbe H = z,
a

Hence,

Question & [16 points]

Question 5 [36 points]

. GMm
ma = —
a2
. GM
i=—
) GM |
da=—-——a
a
d[l'Z] d[GM
—l—a = — | —
del2 dtl a
1., GM k
—a = ———
2 a 2
41 3
Mz?ap
1 4G k
22 =" 2 _C
24 T3 PY Ty

M = const = p,, x a3

1 k
—dz + Veff(a) = —=

2 2
4nGp 471G const
Verr(@) = ——3—a* ===

The potential corresponds to Vs and the energy to _Tk

Graphically:



ks

k<o W&J@

k>D

Figure 1- Ve 55 function of a.

Figure 2-Expansion followed by collapse.
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Nanotechnology

Professor André Pereira



Intfroduction

Nanotechnology is an emerging area that revolutionized the end and beginning of the
XX and XXI Century, respectively. This field has already proved many advantages to
improve the level of our society. In particular, Spintronics has a preponderant role in the
growth and fast processors applied to several devices such as laptops, desktops,
workstations, and servers.

One breakthrough was the invention of magnetic junctions constituted by the two
electrodes that are ferromagnetic materials sandwiching a non-magnetic material, all
at the nanometer thickness (Fig. 1). These devices can detect the binary unit (bit) in
computing and digital communications, namely for information storage systems such
as hard disk drive (HDD). The electric current in these devices consists of two partial
currents in a ferromagnetic material, each with either spin-up or spin-down electrons.
Moreover, they can present two different configurations related to the relative direction
of the FM layers (these layers are usually metals).

Figure 3- Two FM materials
sandwiching a non-magnetic
material

Question 1 [15 points]
Explain the working principle of these nanodevices and how they can measure a bit.
Question 2 [20 points]

Consider that the magnetic junction is a spin valve, e.g. the non-magnetic layer is a
metal. What is the expression of the spin valve system's maximum sensitivity
(magnetoresistance's maximum) using the simplest model? [Suggestion: consider the
variation of resistance]

Question 3 [40 points]

Consider now a magnetic tunnel junction barrier (MTJ) in which
the non-magnetic layer is an insulator. Disregarding the
magnetic contribution considering the metal layers, determine
the tunnel current's general expression through the MTJ.
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Question 4 [25 points]

Quantum sensors are another technology gaining extreme relevance. An example
is the quantum dots nanoparticles that can be used as sensors for biomedical
applications.

4.1 Determine the general expression between the bandgap (Eg) of quantum
dots and its bulk counterpart.

4.2 What is expected for the quantum dot's Eg if the simple parabolic band's
curvature presents a strongly curved parabola?
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Solutions
Question 1 [15 points]

Model of 2 channels:

Antiparallel Parallel
magnetizations  magnetizations

e —- Ferramagnet (Co)
Nonmagnetic metal (Cu)
m— —- Ferromagnet (Co)

Resistance
R+, GMR= Ry —Ryy
Rip
R‘IT ................
Magnetic field

Two values of resistance: when they are parallel - state "0"; perpendicular - state
"1". It works like in the following figure:

(L1

Notice that the bit needs to be in the same direction as the magnetic layers.
Question 2 [20 points]

Model of 2 channels

Spin FM NM FM Spin FM NM FM

I- -

-
\

Parallel (left) Rp = (r+ R)/(2rR)

Antiparallel (right) Ryp=(R+1)/2
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Final Result

2R (5" ~px)

GMR =
r+R

Question 3 [40 points]

Consider two metal electrodes with an insulator of thickness L between them. If
electrodes are under the same potential, the system is in thermodynamic equilibrium
and the Fermi levels of electrodes coincide (Fig. 1).

WaCLIUMm
R T —— level
F
q:'l . [:PI
Fermi
level
! position

metal 1| 18003t00 | petm) 2

Fig. 1. Diagram of MIM system in equilibrium.
j1 andj2 — work function of the left and right metals, respectively.

Let's calculate the transparency of the rectangular barrier. Suppose that electrons of
energy E are subjected to a potential barrier defined by

0,z<0
U(z)={U0, 0<z<L (1)
0, z>1L

Assuming that the total energy E is less than U, we have:

Fig. 2. Rectangular potential barrier and particle wave function ¥

The stationary Schrédinger equations can be written as follows
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P+kw=0,2<0
Y —k2Y =0,z€[0;L] (2)
P+kw=0,2z>L

V2mE k _ 2m(Uy—E)
R h

where k; = are wave vectors, and h is the Planck's constant.

The solution to the wave equation at z < 0 can be expressed as a sum of incident and
reflected waves W = exp(ik,z) + a exp(—ik,z), while solution atz > L as a transmitted
wave ¥ = b exp(ik,z). A general solution inside the potential barrier 0 < z < L is written
as¥ = c exp(ik,z) + d exp(—ik,z). Constantsa, b, ¢, dare determined from the
wavefunction ¥ and ¥ continuity condition at z = 0 and z = L.

The barrier transmission coefficient can be naturally considered as a ratio of the
transmitted electrons probability flux density to that one of the incident electrons.

In the case under consideration this ratio is just equal to the squared wavefunction
module at z > L because the incident wave amplitude is assumed to be 1 and wave
vectors of both incident and transmitted waves coincide.

-1
2
D =bb* = (coshz(kzL) +§("— - ﬁ) sinhz(kzL)) (3)

ki Kk

If k,L > 1, then both cosh(k,L) and sinh(k,L) can be approximated to exp(k,L)/2 and
(3) will be written as

D(E) = Dyexp {—%,/Zm(UO - E)} (4)

-1
- (ke _ )2

where D, = 4 [1 + 4(k1 kz) ]

The approximation technique of the Schrédinger equation solution when quasiclassical

conditions are met was first used by Wentzel, Kramers and Brillouin (WKB). This

technique is known as WKB approximation or quasiclassical quantization method.

With this method the barrier transparency is given by

D(E)ocexp{—§ [ Zm(U(z)—E)dz} (5)

For the number of electrons N; tunneling through the barrier from electrode 1 into
electrode 2, we can write

Ny = [ dp, [T dpy, [ 22— £, (E)(1 - f,(E + eV))D(E,)dp, = [ D(E,)n(p,)dE, (6)

— 473h3m

where f; and f, are Fermi Dirac distributions in electrodes 1 and 2, respectively,
1 00 o
() = = [ dpe [7, AE)(L - f,(E + eV))D(E)dp, (7)
and E,, is the maximum energy of tunneling electrons.

Integration of expression (7) can be performed in polar coordinates. Because in the
model under consideration p} = pZ + p3, E, = p}/2m and the total energy isE = E, +
E,, by changing variables p, = p,cos, p, = p,sinf, we get
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n(p,) = —=Jy " d6 [ AE)(L = fo(E + eV))pydp, = 5= [ fi(E)(1 = f,(E + eV))dE, (8)
Substituting (8) in (6), we obtain

N, = f D(E)AE, [” fi(E, + E)(1 — f,(E, + E, + eV))dE, (9)

2m 2h3

The number of electrons N, tunneling back from electrode 2 into electrode 1 is
calculated in the same way. The potential barrier transparency in the given case will be
such as if positive voltage V is applied to electrode 1 relative to electrode 2.

In this case

N, = ;" D(E)AE, [ fo(E, + Er + eV)(1 = f,(E, + E,))dE, (10)

21 2h3
Net electrons flow N through the barrier is obviously N = N; — N,,.

Let us denote
& (E,) = n2h3f f1(E)(1 f2(E + eV))dEr:
§(E,) = n2h3f f2(E + eV)(l f1(E))dEr,

E(E,eV) = & — & = o [“IAL(E) — fo(E + eV)IdE, (11)

Then, the funneling current density J is
J = J;" D(E,)¢(E,, eV)dE, (12)

According to Fig. 1, U(z) can be written in the form U(z) = u + ¢(z). Then, integrating
(5) and using expression (A5) we get

D(E,) o exp{~A6,/u+ () ~ E,} (8)

where @ is the average barrier height relative to Fermi level of the negative electrode:

= —f @(2)dz;

_Zﬁ hzl

B— dimensionless factor defined in the Appendix (A6) as

p=t-5m | @ -1 ez

AtT=0K
ev, E, €[0;u—eV]
me
E(Ez) = 2h3 u—E, E, € [/.l —ev; /.l] (9)
0, E,>u
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Combining (8) and (?) into (7), we obtain

J = 2:;;3 {eV fou_ev exp[—A(S‘Z,/,u +@— EZ]dEZ + f:_ev(,u - Ez)exp[—Aé‘Z,/,u +@— EZ]dEZ}

(10)

Integrating (10), we get Simmons current equation

J= %{(ﬁ exp(—A&Zﬁ) —(p+ eV)exp[—A(SZ\/m]} (11)
where a = e/4m??h.
Question 4 [25 points]

4.1. In a quantum dot, the movement of electrons is confined in all three dimensions
and there are only discrete (ky, ky, k,) states in the k-space.

bulk semiconductor quantum dot semiconductor

E(k) E(k) w V() o
% i \
3 \ ,/
f \ /
\ P ¥(0)
s /
ha ¥ 5
-k ~1 k r
E,(bulk) =l l Eg(d) o T e
> 4 o
P \\ S
/ \
¥ Y / \

The charge carriers are confined in all three dimensions and this system can be
described as an infinite three-dimensional potential well. The potential energy is zero
everywhere inside the well but is infinite on its walls. We can also call this well a box. The
simplest shapes for a three-dimensional box can be, for instance, a sphere or a cube.
If the shape is cubic, the Schrédinger equation can be solved independently for each of
the three translational degrees of freedom and the overall zero-point energy is simply
the sum of the individual zero point energies for each degree of freedom:

Eyena = (1/8)h*/md?

Ewell,3d(cube) = 3Ewell,ld = (3/8)h2/md2

where d is the size of the cube edge.

If the box is a sphere of diameter d, the Schrédinger equation can be solved by
infroducing spherical coordinates:

Ewell,3d(sphere) = (1/2)h2/md2

A correction should be done considering that the strength of the screening coefficient
depends on the dielectric constant of the semiconductor. An estimate of the Coulomb
term yields

Ecou = —1.8e%/2meeyd
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The final equation is:
E,(d) = E;(bulk) + h*/2m * d* — 1.8e?/2megyd

4.2. The strongly curved parabola will change the effect mass to have a low effective
mass and the Eg will increase.

Appendix
Let us integrate an arbitrary function m from z; to z,.
LVf@dz (A1)
Defining f as
f=517F@dz (A2)

where f — average value of a function f on the interval from z; to z,, §, = z, — z,. Then

equation (A1) can be rewritten as

fZle /f(z)dz:\/ZfZZf 1+@dz (A3)

Considering a Taylor series expansion of the integrand (A3) in and neglecting [(f(z) —

3
f) /f] and higher order members, we get

fZle f(Z)dZ — \/Zfzzlz {1 + [f(z)f_ﬂ _ [f(Z)i_zﬂ }dZ (A4)

The second term in (A4) vanishes upon integration, therefore (A4) can be expressed
as

[2[F@dz = B |3, (AS)

where the correction factor is

1

p=1-gr [f@ 1] 4z (h6)
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Problem 8

Cosmological Consequences
of Scalar Fields

Professor Carlos Martins



Introduction

Since the 2012 discovery of a Higgs-like particle at the LHC, we know that
fundamental scalar fields are among Nature's building blocks. Here we will explore
some cosmological consequences of such scalar fields. We will assume homogeneous
and isotropic universes, for which the Friedmann equation is

k 8nG
H2+—=—p,(1
23 p,(1)

where a is the scale factor, H = a/a is the Hubble parameter (the dot denotes a time
derivative), k is the curvature parameter, and p is the total density (a sum of those of
the constituents of the universe). We will work in units where ¢ = 1. It is also useful to
know the continuity equation

p=-3H(p+p)=-3H(1+w)p,(2)

where p is the total pressure and for convenience we also intfroduced w = p/p, the
equation of state parameter.

Question 1 [20 points]
Consider a scalar field with
1 5 1 5
p1= E‘Ib +Vi(¢), p1= E‘l’ - V1(¢),(3)

where V; is a generic potential. Calculate the cosmological evolution equation for this
scalar field. Then repeat the calculation for a scalar field with

pr=——, D2
/1—452

where again V;, is a generic potential.

= —1,(p) 1 - $2,(4)

Under what conditions can each field dominate the universe and cause its recent
acceleration?

Question 2 [20 points]

Consider the first of the scalar fields in Question 1. Show that if the field speed is small
one can write, to first order,

2

Hg
wiz)=—-1+1+ WO)HZ—(Z) ,(5)

where wy, and H, denote present-day values.
Further assuming a flat universe containing only matter and the
scalar field (with present-day fractional contributions to the

energy density 2,, and 04), show that the Friedmann equation
has the form

53



1+wy
(1+2)3 g
0,1+ 2)3 +!2¢] -(6)

H*(2)
H§

=0,1+2)3 +Q¢[

Question 3 [30 points]

Consider a flat universe containing matter and a cosmological constant, but also a
scalar field which obeys the cosmological evolution equation

b+ 3Hp = 383 [0 (22) + maa] @)

where n,, and n, are constant coupling parameters describing how the scalar field
couples to the matter and dark energy sectors and a, is the present-day value of the
scale factor (you can assume ¢, = 0).

Assuming that you can neglect the scalar field's contribution to the Friedmann
equation, solve the above evolution equation and obtain the explicit form of the redshift
evolution of the scalar field.

Hint: Under the above assumption there is an exact analytic solution, which is easiest to
obtain through a carefully chosen change of variables. You should obtain as final result
a combination of logarithmic functions, which is typical for many cosmological scalar
fields.

Question 4 [30 points]

Aninteresting observational consequence of scalar fields is that they lead to a variation
of the fine-structure constant a (o measure of the strength of the electromagnetic
interaction), and thus also to a violation of the Einstein Equivalence Principle (the
cornerstone of General Relativity). For a universe containing only matter and a
homogeneous scalar field (which is also responsible for accelerating the universe), a
has the redshift dependence

A_a(z) _ a(z) — ay
a a,

[ dy
—(fo \/3f¢()’)[1+W¢(}’)]m,(8)

where wy is the scalar field equation of state parameter,

Py

=——(9)
Pm +p¢

fo

is the fractional contribution of the scalar field to the energy density of the universe, and
{ is another constant coupling parameter.

Calculate the generic explicit form (and redshift dependence) of the dark energy
equation of state parameters that lead to a logarithmic dependence of «,

Aa
7(2) « In(1+2).(10)

You may again assume a flat universe. Then calculate the explicit
redshift-dependent form of the Friedmann equation for that generic
equation of state parameter.

54




Question 1 [20 points]

The scalar field evolution equations can be found by substituting the expressions for
density and pressure (Eq.3 and Eq.4, for each of the two models) into the continuity
equation (Eq.2). This leads, respectively, to

. . dVl_
¢+3H¢+E_O (11)
and
¢ ; 1dv, _
1_¢2+3H¢+V_2E_0 (12)

To answer the second part, one first needs to obtain the Raychaudhuri equation. The
simplest way to do it is by differentiating both sides of the Friedmann equation (Eq.1).
This will lead to a p term for which one can substitute the continuity equation (Eq.2).
After some simplifications (including re-substituting the Friedmann equation) one finds

a 4TtG

8= (p+3p) (13)

The recent universe contains matter (with a density p,,), plus the assumed scalar field.
For the scalar field fo dominate the universe, the Friedmann equation requires pg > pp,
while for the universe to be accelerating the Raychaudhuriequation requires pg, + 3pg, +
pm < 0 (recall that matter is pressureless). Therefore for the first model the conditions
are

2Vi(P) > 2pm — %, 2Vi(@) > pm + 297, (14)

while for the second model they are

V@) > (1= 20, Va(#) > oo, (1)

Obtaining each of these is worth 4 points (i.e. obtaining both is worth 8 points).

Question 2 [20 points]

For the first of the fields in Part 1 (Eq.3) we can write

_ p__ ¢?
Ltw=1+0= % (16)

For a slowly moving field ¢2 < V, and moreover V will be almost constant in time, so we
can write

(1+w) < p? (17)

Now consider the equation of motion for this field, which was obtained in Part 1 (Eq.11).
For a slowly moving field one can neglect the ¢ term, and since V is almost constant, so
is its derivative. Therefore we can also write

¢ oy (18)

Together, these imply that (1 +w) x 1/H?. Normalizing with present-day values
therefore yields
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HE

wiz)=—-1+(1 +W0)H2—(z),

(19)

Now let's consider a universe with matter and a scalar field. The redshift (or time)
dependence of each component can be inferred using the continuity equation. It is
useful to write this in tferms of redshift rather than time

dp _ , 1+w(2)

= =3, P (20)
For matter one has w = 0 and therefore p,, x a™3 « (1 + z)3 while for the dark energy
the behaviour will depend on the explicit form of w(z). Again normalizing the
Friedmann equation with present-day values, we can write

H%(z)
H§

= 0, (1 +2)* + Qypexp [3 foz(l%;fy)dy] (21)
To calculate the integral we can now use

L+ w(2) = (1+wp) 7, (22)

and again since the field is moving slowly (and to first approximation, dark energy can
be assumed to be a constant, i.e. independent of redshift) one can write

_ 14w,
1+w(z) = PRSI (23)

Finally, calculating the integral leads to

1+wo

(1+2)3 0
=0,(1+2)° + 04 [m} v (24)

H%(2)
H§

Question 3 [30 points]

In order to answer this one first needs an explicit solution for the Friedmann equation in
a flat universe with matter and a cosmological constant. In this case the Friedmann
equation can be written

H%(2)

=0,1+2)3+ 0, =E*z) (25)

2
0

where for later convenience we defined the function E(z). For the moment, it is more
convenient to rewrite this in terms of the scale factor

H? = (g)2 = H? (an—‘j + !ZA) (26)

This can be solved by the useful change of variables y? = (2,/02,,)(a/ay)3, leading to
the equation

92 = (2Ho) 241432, (27)

which can be easily intfegrated, although one needs to bear in mind that the integration
constant should be a(0) = 0. The resultis

2O (22)" sinh?”* (2 it (28)

) 02,
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Using this solution, Eq.(7) can now be integrated analytically twice. The first integral is
¢ = —30,,H2S %2 [t + 22 (sinh(bt) - bt)| (29)

where for convenience we have defined b = 3,/02,H, and the integration constant was
set to zero since one physically expects that ¢(0) = 0.

One thenintegrates again, being careful to use the relation ag/a = 1 4+ zto convert time
and scale factor into redshift. This will finally lead to the solution

B(2) = 2pin(1 +7) + 22200 [m (1;%) — JE2@)In (%’i—g))] (30)

where In is the natural logarithm and E(z) is defined in Eq.25. Obtaining this equation
is worth 10 points.

Question 4 [30 points]

The obvious insight here is that in order for the solution of the integral to be alogarithm,
the term inside the square root must be a constant, i.e.

fo(@D[1+w(2)] = const. (31)

where clearly it is beneficial to express them as a function of redshift. The redshift
dependencies of the matter and scalar field components can be gathered from Egs.
20 and 21 (for matter there is an explicit form, for the scalar field only anintegral form).
One then simply differentiates both sides of Eq.31, and after some algebra finds the
following equation

dw 1+w
& = 3+ wo e

—94,]. (32)

Equation [eq32] can be easily integrated, with the integration constant found bearing
in mind the physical interpretation that w, must be the present-day value of the dark
energy equation of state parameter. This leads to the solution

[1-024(1+wg)]w,

.Qm(1+w0)(1+z)3[1_04"(“‘”0)]_WO

w(z) = , (38)

where we are assuming that 2,,, + 2 = 1. Obtaining this result is worth 10 points.

To obtain the Friedmann equation one either uses Eq.9 to find the explicit form of py, or
alternatively substitutes Eq. 33 into Eq.21 and computes the integral. Either way, this
leads to the explicit result

Q¢

H%(2)
Om(1+wg)—wyg

P 0,1+2)>%+

[2,,(1 + wo) (1 4 2)3 — wo (1 + 2)3%(1+wo]
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Problem 9

Electromagnetism

Professor Jaime Villate



Intfroduction

A proton moves in a vacuum chamber, entering a region with a uniform magnetic field
E that points into the page, as shown in the figure. The proton passes through point P,
at a distance [ from the region, with velocity 7, on the plane of the page and making an
angle 8 with the perpendicular to the border of the region. After entering the region, it
exits at a point which is at a distance d from the point where it entered, and with velocity
that makes an angle ¢ with the perpendicular to the border. Assume that v is large
enough so the effect of gravity can be neglected during the trajectory, but much
smaller than the speed of light making relativistic effects irrelevant.

o

~ X X X X X

X X X X X

X X X _x X

d X X xBx X

X X X X X

X X X X X

_9 XXX XX

p o) X X X X X

Figure 4 - Schematic representation of a proton
entering a region with a magnetic field

Question 1 [10 points]
Find the exit angle ¢.
Question 2 [20 points]

Find the distance d.

Question 3 [35 points]

If the direction of the uniform magnetic field is reversed, making it
point out of the page, find the angle 6 that would make the proton
return to point P after exiting the region.

Question 4 [35 points]

With the initial magnetic field, pointing into the page, if the region is
kept at a constant electrostatic potential V different from the

potential equal to zero outside the region, find the distance d.
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Solutions

Question 1 [10 points] In the region with the magnetic field, the force
acting on the proton is:

F=eBxB
where e is the charge of the proton.

That force will always be on the plane perpendicular to B (plane of
the page). Since the proton enters the region at point P with velocity
on that same plane, its trajectory will be on that plane. And since F
is also perpendicular to ¥ and it has constant module, the proton has
uniform circular motion, following an arc of circle in anti-clockwise
direction, as shown in the figure.

The velocity of the proton in the entry point Q and in the exit point U
are both tangent to that arc. The symmetry of the circle implies that
¢ isequalto 6.

Question 2 [20 points] The module of the magnetic force is the
centripetal force responsible for the proton’s circular motion.
Therefore:

2

mv mv

> R=——
eB

evB =

where R is the radius of the arc and m is the mass of the proton.

As shown in the figure, the triangle QUC, where C is the center of the
arc and Q and U are the points where the proton enters and exits the
region, has two sides of length R and two angles equal to 6.
Therefore, the distance d between Q and U will be:

2muvcosf

d=72Rcosf =
cos -5

Question 3 [35 points] The direction of the circular motion will now
be clockwise as shown in the figure. The radius of the arc, R, is given
by the same expression obtained in the previous item.

Observing the figure we see that
R cosf = ltan6
Thus, we obtain a quadratic equation for sing:

Rsin?0 +1lsind—R =0

with solutions:

= — -+ (l)2+1
SN =R+ 2R

Since 0 < 0 < m/2, the sine of 8 must be positive and we are only
interested in the positive solution. Substituting the expression found
for the radius, we conclude that the incidence angle must be:
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leB)2 leB

f =sint (va

2mv

Question 4 [35 points] The effect of the potential V is to modify the velocity v of the
proton outside the region, intfo v’ inside the region. By conservation of mechanical
energy

m m 2eV
— 12 =—v%24+eV = VZ=vZ-
2 2 m

The electric force acting at the boundary of the region is perpendicular to it. Therefore,
the components of ¥ and ¥’ parallel to the boundary of the region will be equal, as
shown in the following figure

0 0

p sin

which leads to:

cosf’ =

The expression for d is the same as in item (b), replacing v by v’ and 6 by 6’

d_va’cose’ B 2m

) 2ain2
—\v'?% —v?sin“f
eB eB

And substituting the expression for v'? we finally obtain

2m 2el
d =— |v?cos?f — ——
eB m
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What Can Statistical Mechanics Tell us

About Pressure, Buoyancy
and Soap Bubbles?

Professor Jo&o Viana Lopes, Simé&o Meneses Jodo and Jodo Pedro Pires



Intfroduction

Albeit being a central quantity in the physics of fluids, hydrostatic pressure dresses
itself in rather diverse definitions depending on the physical contfext. In
thermodynamics, the pressure of a gas confined inside a container is defined in terms
of the work done when the confining volume is changed. In contrast, in the kinetic
theory of gases, pressure is seen as the rate at which free particles transfer momentum
to the wall due to elastic collisions. Inboth cases, the very definition of pressureis anon-
local one, that seemingly requires the introduction of a macroscopic hard-wall.

Meanwhile, in statistical physics thermodynamic state variables (e.g. internal energy,
temperature, chemical potential, electric polarization, magnetization, etc...) can be
described in ferms of averages of microscopic observables with respect to an
equilibrium probability distribution for the micro-state of the many-particle system. In
order to define pressure in this language, one must find a way which does not depend
on the existence of a container's wall, onto which the gas can exert force. Instead, we
will consider a system of N independent particles in free space, in equilibrium at a
temperature T and subjected to a general confinement potential — V(r). Our aim is to
provide a local definition of pressure in this setup using purely statistical arguments.

Figure 5 — Sketch of the physical situation.
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1.Particle Density in Different
Confining Geometries

The Hamiltonian for each particle of a non-interacting gas is simply

p?
H=—+V(r)
2m

for a general external confining potential V(r).

1.1. [8 points] Using the canonical ensemble, show that the particle density is
p(r) = Ce™AV®

and determine the constant C.

1.2. Sketch and characterize the particle density profiles for the following
confinement V(r):

c. [4 points] A cubic box (of side L) with hard walls

d. [4 points] A semi-infinite cylinder with hard walls defined by x? + y?2 < R? and z >
0, with a gravitational potential mgz.

e. [4 points] A three-dimensional harmonic well V(r) = %klrlz.

2.Local Pressure as a Statistical
Quantity

To define alocal pressure, let us intfroduce a small perturbation to (probe) the gaseous
system — a small (radius R) and immovable sphere centered in position r = r,. With no
loss of generality, we can use a coordinate system centered in the probing spherer’ =
r — 1y fo make the calculations easier. The independent particles will repeatedly bounce
off this sphere, as shown in Fig. 1, transferring momentum in each collision. This is the
physical origin of gas pressure. Actually, only the momentum component normal to the
surface will contribute to this pressure. To calculate it from such a microscopic
description, we take the sphere's surface, not as a rigid wall, but rather as a steep
potential which allows the particles to penetrate, whilst repelling them strongly in the
outwards radial direction. Formally, this spherically symmetric potential can be
modeled as

r"—R

Usph(r’) = UOf( >0(R -1r")

being included into the Hamiltonian for each gas particle. Here, U, >
0, O(x) is the Heaviside function and f(x) = — x for x = 0. This way,
when Uy, = + o0, we re-obtain the rigid wall scenario and, in that limit
the interior details of the potential will not matter. Within this
framework, answer the following questions:
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2.1.  [5 points] As the walls of the central sphere are not perfectly rigid, the particles
are allowed to penetrate it. When doing so, each will feel a force F(r;) propelling
it outwards (rj being the position of the particle i in the coordinate system
centfered in the sphere). Find an expression for this force, in terms of the Uy, (1)
potential.

2.2.  [5points] Using the canonical ensemble, show that the statistical distribution of
F(r')is

2 [~ S exp (~BUn(r) 767

F(r) = Nf d®r'exp(—BUspn () + V(o + 1))

where J(r") is a radial function. Determine the form of 7(r") and interpret it.

2.3. [5 points] Assuming the gas to be in thermodynamic equilibrium, what is the
physical meaning of the average (F - #')? How does it relate to the pressure felt
by the central sphere? Determine the pressure on the surface of the sphere.

2.4.  [5 points] The integrals above can be done in the limit of rigid walls (U, - +0).
In this limit, prove that

foo dr'r'?|— dUspn
0 ar’

2.5.  [5 points] Assuming that V(r) is a slowly-varying function at scale of the central
sphere. Show that the expression for the pressure simplifies to:

P(ry) = kgTp(r).

] exp (—ﬁUsph(r’)) 10" = %RZJ(R).

Retrieve the ideal gas law. Which confining potential will you use?

2.6. [5 points] Consider the case in which the sphere is centered on an harmonic well
potential — V(r) = %klrlz. Obtain the exact expression of the pressure exerted on

the sphere as a function of temperature and k. Derive the ideal gas law in the limit
k — 0% and the first correction due to a finite k. Physically justify the sign of this
first correction. [Hint: Despite there being no container, the confining potential
allows one to define an effective volume, where the gas gets concentrated in
equilibrium.]

3. A Statistical Derivation of
Archimedes' Principle

Since the classical antiquity, it is known that a solid body immersed in
a fluid is acted upon by a vertical Buoyancy force which precisely
equals the weight of the displaced volume of fluid (Archimedes’
Principle). Using the framework devised above, one can re-obtain this
result using a microscopic theory.
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3.1[10 points] Derive the average force in the i direction (F - i) = F,
caused by the gas on the sphere, i.e.

3.2.

3.3.

L,

s T2 oo (~8U.pn ) 3

Fu= [ d®rexp(—pV(r))

where J(r' = [r—ro|) = [ d¢' [T d6'cos’sing’exp(—BV (r',6",¢")) by aligning
the z" axis of the spherical coordinates along 1.

[10 points] If V(r) is considered constant across the sphere, the Buoyancy force
is zero. Based on the hydrostatic interpretation of this force, provide a physical
justification for this result.

[10 points] In the rigid wall limit U, — 400, obtain the following expression for the
Buoyancy force:

F= —gnRgp(ro)(—VV(ro)).

If V(r) is an uniform gravitational potential, show that the previous expression
reduces to Archimedes' principle

Fn = Vpp(z)mg
where Vj, is the volume of the sphere.

[Hint: Approximate exp(—BV(r)) by a multivariable Taylor series around r, (up to
first order) and express it in spherical coordinates. Set @ as the direction of the
gradient of V]

How can a Soap Bubble be used a
Barometer?

Previously, we have used a small spherical probe as a theoretical device to define the
pressure at any point inside a gas, in a statistical sense. Now, we will see that such
device can actually be put to practice and used as a local barometer.

Consider a soap bubble of radius R suspended in the gas. This bubble

is stable thanks to the mutual equilibrium of its internal gas pressure,
the surface tension of the thin soap film and the pressure due to the
external gas. If the external pressure is increased, the radius of the
bubble must decrease accordingly, in order to achieve a new
equilibrium state. Therefore, the radius R can be used as an indirect
measure of the local pressure of the gaseous environment. The change
in energy due to a change in area of a surface held together by surface
tension is given by dE =ydA, where y > 0, so the system tends to
smaller areas. Assuming the gas inside the bubble to be anideal gasin
thermodynamic equilibrium, answer the following questions.
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4.1.

4.2,

[10 points] Obtain Laplace's equation,

Pour — Pin = T
for the equilibrium of forces acting on the soap bubble.

[10 points] Show that the external pressure is related to the bubble's radius (R)
through

Pows =g——+—~
§T[R3

where N is the number of gas particles inside the bubble and T is the temperature.
Verify that this expression allows for a one-to-one correspondence between R
and P,,;, across any physical regime.
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Problem 1: Particle Density in Different Confining
Geometries

1.1 General expression

The quantity that has to be averaged over in order to calculate the statistical average
of the density of particles is

N
IOEDIICEN
i=1

Considering only the gas subject to an external potential, the Hamiltonian of one
particleis

2

H@5,p) = 53—+ V()

and the Hamiltonian of the whole system is

N N 2
H(rpd) = ) HEmp) = ) (;’—m + V(n-))
i=1

i=1
The partition function of N particles is

1
" NIR3N

Zn J @*Nr[ d*Npexp(—pH)

which has the N! to correct for Gibbs' paradox. Since the particles are independent, Z
reduces to

— 11 3 3 N
Zn = 3 |75J 1S d*pexp(—pH (. p)|

the integral in the momentum can be done explicitly

1 [/2mm\3/2 N
Iy = m[(m) fd3rexp(—ﬁV(r))]

The average of the density of particlesis

1
Wf A*Nr[ d*Vp YN, 8 (r — r)exp(—BH)
Zy

(p(n) =
since the integrals are independent, we get the simplification

Nmfd‘“‘rf d*p&(r — r)exp(—fH)

L T e f depexp(—pHG p)]

(p(0)) =

which simplifies further because the momentum integrals also factor out
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[ d®r'8(r — rexp(—pV ("))

(p(m) =N J @3r'exp(=pV ("))

Acting with the Dirac delta yields the final expression

exp(—pV(r))

=N
p(r)) [ d3r’exp(—pV(r")
1.1.1 Small cubic box
_ (0 inside the box
v = {+oo outside the box
therefore
N ide the b
(P(F))oy = V_b inside the box
0 outside the box
1.1.2 Cylinder
V() {mgz inside the cylinder
r +oo  outside the cylinder

we just have to solve the integral

R 21 o)
[ d®r’exp(—pV (") J drrf dqbf d zexp(—pmgz)
0 0 0

= nsz d zexp(—pmgz)
0

o]

, &Xp(=pmygz)

= R
—pmg |,
3 nR?
pmg
therefore
N side the oylind
—— inside the cylinder
(p(M)pox =1 Bmg Y
0 outside the cylinder

1.1.3 Harmonic confinement

The harmonic potential extends to all space V(r) = %klrl2 and integrates to



[ d®r'exp(—pv (")) = f+ood rr? fzndqb fnd fsin(8)exp (—ﬁ%kﬂ)
0 0 0

+o00 k
= 47rj drr?exp (—ﬁ—rz)
o 2
+0oo k
= Zﬂf drr?exp <—ﬂ7r2
o .
VT Bk 2
- ()
2 \2
_ <2n)
= o

which provides the final value for the density

3
2

_3
(p@®) =N (;—’,:) “exp (—ﬁ;ﬂ)

Problem 2: Local Pressure as a Statistical Quantity

2.1 Expression for the force

The force each particle feels is simply minus the gradient of the potential fo which they
are subjected. This case is particularly simple because the potential is spherically
symmetric and so the force only has radial component:

dU
f=-VU@)=-—_F

2.2 Distribution of the force

The total force is a function of all the coordinates

N
frora () = ) ()
i=1

but the force at a point r depends on how many particles are in that position

N
F() = ) )o@ — 1)
i=1
The force distribution is therefore
1
Wf d*Nr[ d3NpF(r)exp(—BH)

Zy

s | Ve[ VP, £ (1)8(r, — Dexp(~BIH)
Zy

ﬁNf d*ry [ d3p1f(r;)6(r; — r)exp(—BH(ry, py))

11
med%lf d3plexp(—ﬁH(r1,p1))

(F(r)) =
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Now the Hamiltonian of one particle has an extra term stemming from the spherical
potential in the middle

p?
H=—+V(r)+U()
2m

so that, after integrating the momentum, we get

[_Cé_’rff] exp(—BIV () + UM

(F(r)> =N fd3r1exp(_ﬁ[v(r1) + U(Tl)])

Since we're only interested in the radial distribution of the force, we can integrate its
angular component in spherical coordinates

21 Vs
(F(r)) j d¢ f d 6sin(0)r%(F(r))
0 0

N r? [— i—g{f] exp(—pU(r)) f021r do fon d 0sin(8)exp(—BV(r))
J d*riexp(=BIV(ry) + U@

r2 [_((ii_gf] exp(—pUr))1(r)

J dPriexp(=BV(r) + U(r)])

where we defined
27 Vs
f d qﬁf d Gsin(G)exp(—ﬁV(r)) =7(r)
0 0

2.3 Pressure

The quantity (F - £) is the average radial force that the particles exert on the surface of
the sphere. Dividing by the surface area, we get the pressure

1
= (F-f
P=mr 0

[t can now be calculated

1

P= ez F 0
1 ©
1 Y ood ~ 12 [—i—(r{f] exp(—[)’U(T))f](T)
4nR? fo T drexp(BIV(r) + UGDD
- 1 fooodrr2 [— (cil_Lr]] exp(—pUr))I(r)
- 4mR? " [ d3rexp(=BV(ry) + U(r)])
2.4 Taking the limit

The numerator can be simplified by noting that the potential is zero when r > R and
letting the derivative act on the exponential
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© au
f drr? [— W] exp(=pU(r))7(r)
0
17> d
= E.[ draexp(—BU(T))rzj(T)
0
1(® d
= E.[ draexp(—BU(T))rzj(T)
0

this can be integrated by parts

- %fORdr%exp(—ﬁU(r))rsz(r)

1 R R d
E[[exp(—ﬁU(r))rzﬂ(r)]o —f drexp(—ﬁU(r))E(rzﬂ(r))

0
the last term vanishes in the limit U - +o0o0 and the first oneis zero atr = 0 so we reach

o du 1
JO arr? || exp(-U)I0) = FRI®)

2.5 Slowly varying potential

If we assume the potential V(r) is slowly varying in the scale of the sphere, then we can
approximate it by its value at the origin

I(R) = f an o) f "4 gsin(0)exp(—BV(R, 6, p)) = 4mexp(—pV(0))
0 0

The denominator in the pressure also simplifies, because for very large U, there will be
no conftribution to the integral, and this lack of contribution is very small. Therefore, we
can simply ignore U

J &riexp(=BV(ry) + UGDD = [ d*riexp(=V(r)])

With these simplifications, the pressure

1 fooodrrz [— Z—g{] exp(—pU®r))I(r)
4nR? " [ d3riexp(=BV(ry) + U(r)])
1

1 FR2IR)

17R? " T Pryexp(—BV ()

1 %RMnexp(—ﬁV(O))

4nR2Nfd3r1exp(—ﬁV(l'1))
N exp(=pV(0))

B | d3riexp(—BV(ry))

the last term is exactly the density of particles, so
P = kgTp(0)
This is the pressure of the gas at the origin, because the sphere is assumed to be very

small. This expression is actually valid for any point because the origin is arbitrary:
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P(r) = kgTp(r)

Using the density of particles derived in the first part of the problem, p(r) = N/V,, we
get

P(r) = kyTN/V,
the ideal gas law.
2.6 Harmonic potential

The general expression obtained before yields the pressure in the rigid walls of the
central bubble (of radius R) as follows:

_ NkeT ST dg [T dgsinexp(—BV(R))
PN am fooo dr f027r d¢o fon d@sin@rzexp(—ﬁV(r))'

where we already assumed a spherically symmetric form for the confinement
potential, V(r). For the case in point, we have V(r) = kr?/2. The integral in the
denominator is then simply a gaussian integral in a three-dimensional infinite volume,
whilst the numerator integrates trivially for a spherically symmetric potential. Hence,
we arrive at

X e 2kgT,

3
2mkgT 2 kR?
Psph = NkBT[ ]

Although there is no fixed volume container, the harmonic confinement potential
naturally defines an effective spherical volume, which reads

3
v _4nm [kBT]E
eff — 3 k

and allows the equation for Py, to be written as

b _ |2NKkeT[ 1 R? .
Ph ™ o Vg 2" kgT/k '

Note that in lowest order, we have an ideal gas law, with the correct dependence on
both temperature and the effective volume of the gas cloud. The first correction to this
law is negative in the radius of the sphere — this makes sense as the potential energy at
the boundary of the central sphere is now larger than zero, leading to a decreased
kinetic energy of the gas and, hence, a reduced momentum transfer to the surface.

Problem 3: A Statistical Derivation of Archimedes'
Principle

3.1 Average vertical force

To calculate (F - Z) = F, we can use the distribution of the force we calculated previously
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E = (F - 2)
[ d3r(F(r)) - 2
J @[~ 3] exp(—Iv(r) + UMD

= N T Brem (V) + UGDD

in spherical coordinates - Z = cos(8) so we get
F = (F-2)
= J ®*r(F()) - 2
R 2 (2T T . au
. [Fdrr? [2d ¢ [T d6sing [—Wcos(e)] exp(=B[V () + UM
J d¥riexp(=B[V (ry) + U@)])

The denominator is simplified like before, and the numerator becomes

foRd rr? f:"d ¢ fond sing [_Z_ZCOS(Q)] exp(=plV(r) + U]

R 2 s
.[Odrrz [—Z—l:] exp(—ﬁU(r))jo dqbfo d sinfcos(8)exp(—BV(r))
R
_ fo drr? [—Z—Z] exp(—BU1))I ()

where we defined

21 s
J) :f d¢f d@sin@cos(@)exp(—ﬁV(r))

0 0

3.2 Constant potential

If V(r) is constant, then the integral J is zero:

21 s
J@) J do J d Bsinfcos(8)exp(—BV)
0 0

exp(—ﬁV)anﬂd fsinfcos(0)
0

.2 L
exp(—BV)2r <S|r; 6) =0

0

The buoyancy comes from a local imbalance of pressure. If there is a higher pressure
on one side of an object than another, there will be a net force acting on that object. If
the pressure is constant, no net force will exist.

3.3 Derivation
To derive Archimedes' principle, we let V vary slowly. Then, we can say

av

av
0z

0x

ov
x—p

r=0 @ y_ﬁ

r=0

Z]
r=0

exp(—pV(r)) = exp(—pV(0)) — Bexp(—BV(0))VV(0) - (rsinfcos(¢), rsinBsin(¢), rcosh)

exp(—pV(r)) = exp(—pV(0)) [1 -B

which in spherical coordinates is
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Only the term in the z direction will contribute to the integrall

21 Vs
Jm f do f d fsinfcos(8)exp(—BV(r))
0 0

B av
B g 0z

21 s
exp(—BV(O))f d ¢f d 8sinfcos(0)rcoso
0 0 0

r=

_ av 4r
= —ﬁz Oexp(—ﬁV(O))?r

r=

and so the net force is

1 (R 9
~ Ffo drr?5(r —R) av 4
FZ - Nf d3r1exp(—ﬁV(r1)) [_ﬁg Oexp(_ﬁv(o))?r]

4nR3 exp(—pV(0)) [OV ]
r=0

3 f d3r1exp(—ﬁV(r1)) S0z
In reality, since this z axis was arbitrary for this result, this is valid in a general direction
and for a general point, so we get

r=

F=- 4?“ R3p(l‘0)(—VV(I‘0))

In the case of Archimedes, the potential V only depends on z and so does p:

A s () (—mg)

F
A 3

Vyp(z)mg

Problem 4: How can a Soap Bubble be used a
Barometer?

4.1 Laplace's equation

Consider a soap bubble with radius R filled by an ideal gas of N; particles at
temperature T; and surrounded by another gas of N, particles at temperature T, in a
container of volume V,. The bubble is held together by surface tension, which has an
associated energy Eg,+ = YA where Ais the surface area of the bubble, wherey > 0. The
change in energy due to a variation in the radius dR can be calculated as

dE = y8nRdR
and the forceis
F = dE = 8mR
“Tar” oM

The pressure at the surface is therefore

Psurf = = —y8nR p- = —

Equilibrium of forces dictates Py + Pgy,r = Pin, SO we obtain
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which is Laplace’s equation.

4.2 Barometer

With this expression, we can get a formula for the pressure as a function of the bubble's
radius. Assuming the gas in the middle is an ideal gas, we obtain

Pour = Pin""T

N kgT; -2

- sl T4

4] R

_ NikgTy —2y

T 4 s R
gT[R

When P,,; > 0, the function is injective and so by measuring the radius of the bubble,
we can deduce the pressure inside the large container. The bubble can then work as a
barometer to measure the pressure of the container as a function of position.
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Intfroduction

The Magnetic Resonance phenomenon is the basis of a medical tool used to obtain
anatomic and functional images of the human body, widely spread around the world.

To do so, powerful superconducting solenoids or Helmholtz coils produce strong
magnetic fields that create a macroscopic magnetization arising from the nuclear
magnetic momenta alignment. To obtain suitable signals to build the image, the
magnetization must be perturbed from its equilibrium direction, which can be done
using radiofrequency pulses. When this perturbation is removed, the magnetization
relaxes towards the equilibrium value. During this process, the signal for imaging is
recorded.

Consider a proton under the influence of a uniform magnetic field B, = B,2. The
magnetic moment ji of proton is related with the total angular momenfumffollowing

the equation ji = yf, where y is the gyromagnetic ratio. Assume that no dissipative
mechanism is considered and consider a fixed reference frame (x, y, z).

Question 1 [30 points]

Write the equation of motion of the magnetic moment under the influence of the
magnetic field, assuming that the angle between these two vectorsis 6y, and show that
each magnetic momentum precesses around the direction of the external magnetic
field B,.

Question 2 [5 points]
Determine the precession frequency w, of the magnetic moment.
Question 3 [25 points]

A second reference frame (x',y',z") is now considered which rotates with angular

velocity Q = —wyZ, in such a way that z =z'. Write the equation of motion of the
magnetic moment referring to the rotating reference frame.

Question 4 [30 points]

Assume now that a known radiofrequency magnetic field described by B, (t) =
B; (t) cos(wt)x — B, (t) sin(wt)y, with B;(t) a rectangular function, applied during a
time interval . Show that the magnetic moment precesses around the x’ axis with
angular frequency w, = yB; if the condition w = w, holds. This is the case of
resonance conditions.

Question 5 [10 points]

Calculate 7 to flip the magnetic moment onto the y'-axis.
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Solvutions

Question 1 [30 points]

The student should recognize that a magnetic moment, ji when inside a magnetic field
B, is acted upon by a torque 7, given by

2=[xB

Using the relation i = yfcmd 7= % he should arrive at the conclusion that:

dj -
— =[UXB
a

dﬁ =g
— =yiUXxB

Note that this should be considered as the equation of motion.

The student should now show that the magnetic moment precesses around B_O). One

%fl = 0andthatdji L fi, B, and dji # 0. The student also

has the liberty to use other methods, however he should show that the precession
phenomena appears around any B_(;.

way to show thisis to prove that

Question 2 [5 points]

The student should arrive at the conclusion that wy, = yB,. One way to do so, is to

recognize that du = usinf,d¢ where d¢ is the angle swept by the magnetic moment in

atime dt. Since du = yuB,sinfydt, we can equate both expressions and show Thaf% =

)/BO = (,Uo.
Question 3 [25 points]

The student has to be able to recognize that for a rotating frame with Q= —woZ, flis
constant. It's important to note that there are at least two valid cases:

The student recognizes that the magnetic moment precesses in a clockwise fashion
around LTO)Through verbal arguments, with angular velocity wg, and that the rotating

frame with 2 = —w,Z also results in a clockwise rotating frame with the same angular
velocity, resulting in a constant fi;

The student is able to mathematically show that:

(8 oo = (08 e * 2
dt inertial dt rotational

di

N
) =0.
at/rotational

which will allow him to prove that (

Question 4 [30 points]

The student should show that:

79



(8 o = (08t * 2
dt inertial dt rotational

With this tool he should be able to show that:

dit\ _ ix(B+2
at =Y(u ?
T r

He should now recognize that the magnetic field B; (¢) = B (£)x", for w = w.

Finally, he should be able to show that:

dﬁ - al
PR RS Bix

and prove that this is a precession around the ' axis with angular velocity w; = yB;.
Question 5 [10 points]

The student should recognize that the rotation happens in the y’'z plane and that the
magnetic moment [ has an angle of 6, with the 2 axis.

Then, he should acknowledge that the rotation needed is 8 = %— 6,. Therefore

g—@o=wlr—>r=(%—90)8—iy
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Question 1 [20 points]

A short light pulse (1, = 590nm) is split in fwo by a prism mirror. One of the beams travels
in the air (refractive index 1.000) and the other travels through one meter of glass (silica)
with a refractive index of 1.458.

Tm
\4 P

N> /7

&

\

Compute the time difference of the two pulses arriving at the target.

Note: For simplicity, assume ¢ = 3.000 x 108 m/s in all questions of this problem.

Question 2 [20 points]

Let's assume that the two beams in the previous system interfere constructively at the
target (mirrors are used to superpose them). What would be the minimum temperature
variation of the one-meter silica bar to change the interference from constructive to
destructive interference?

The temperature coefficient of the refractive index of silicais 8.7 x 1076 K-1.

Question 3 [20 points]

A short pulse of light cannot be considered monochromatic. The limitation in the time will
tfruncate the sinusoidal oscillation of the electromagnetic wave. The resulting spectrum
depends on the temporal shape of the pulse (the shape that makes the envelope of the
ideal electromagnetic sinusoidal wave). For the particular mathematical Gaussian shape
envelope, the resulting envelope of the frequencies shape is also a gaussian, and the
product of the two Gaussian envelopes is equal to one (4t X Af = 1). This means that a
gaussian very short pulse with 10 fs (1 fs = 10-1% s) will have a gaussian spectrum with 1014
Hz width (corresponding to 83 nm for a pulse centered at 500 nm).

Consider a 300 km fiber optic link with gaussian digital pulses
carrying the information. The fiber optic link is operated at the 1550
nm window (4, = 1550 nm), where the refractive index is 1.468 and
has a linear variation with wavelength 5.4 x 1076 nm-*.

To allow some simplification of the problem, we will assume a
gaussian pulse with width T in a time slot of 2t (meaning that for a
fransmission frequency of 1 MHz, T is equal to half a period of the
datafrequency,t = 1us /2), and that the pulse can spread in time by
25% (tcanincrease 1.25 times during the propagation).
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What would be the maximum frequency of transmission for this simplified system, due to
the different speeds of the pulse spectral components?

Note: with these simplifications, the maximum data frequency computed will be smaller
than what an optical fiber can carry. (The refractive index variation with wavelength
crosses zero at the second transmission window, around 1310 nm).

Question 4 [20 points]

For simplification, consider now a triangular-shaped pulse centered at 1550 nm
wavelength, and with a temporal duration of 200 ps.

200 ps

The pulse carries an energy of 200 nanojoules and has a diameter of 10 micrometers
in the optical fiber (for simplification assume a uniform distribution of power).

One of the effects that limit the performance of fiber optical systems is the nonlinear
refractive index. The speed of light inside a material can be changed by theirradiance
of light (power per unit area), in an optical fiber, this effect has a value of
3.0 x 1072°m?/W. In the leading part of the pulse, as the power rises in time, the
refractive index increases, decreasing the speed of light (this is similar fo the distance
to the entrance of the fiber increasing with time). The effect reverses at the back of
the pulse. This variation of the velocity shifts the frequencies of the pulse in an
analogous way to the Doppler shift.

Compute the new spectral width of this pulse after 1 m propagation, considering this
nonlinear effect.

Note: assume for the initial spectrum the one obtained with a Gaussian pulse with the
200 ps width.

Question 5 [20 points]

The dispersion of the fiber at around 1550 nm is anomalous, i.e., the longer
wavelengths travel slower than the shorter ones. Since the nonlinear refractive index
shifts the wavelengths in the leading edge of the pulse to longer wavelengths, and the
ones in the trailing edge to shorter wavelengths, the shifting of wavelengths can be
compensated by the different propagation velocities. This is indeed used for the
soliton propagation of pulses (a hyperbolic secant shape is one solution for these
pulses).

Compute the pulse energy, for a triangular pulse with 200 ps duration
(like the one considered in Question 4) that keeps the same pulse
duration after 50 km, using the simplifications below.
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Notes: As said, thisis only possible for a special shape of the pulse, so we
will consider a simplified problem. First, we will consider, like in Question
3, that the original pulse spectrum is equal to the one of a Gaussian pulse
of 200 ps. Second, we consider that the nonlinear effect is only present
at the first meters of the fiber (no nonlinear behavior on the rest of the
propagation to separate the two effects). We will consider only the
points at half height (separated by 100 ps). We will consider only the
maximum shifted frequencies (the slower at the leading edge, and the
faster at the trailing edge) for calculation. The equal pulse duration to be
computed shall be simplified to be that the slower wavelength
generated at the leading edge is 100 ps slower than the faster
wavelength generated at the trailing edge.

Note: At 1550 nm the refractive indexis 1.468 and has a linear variation with wavelength
of 5.4 x 107 nm™t. The nonlinear refractive index is 3.0 X 1072°m?/W. Assume a uniform

spot with 10 micrometer diameter.
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Solvutions

Question 1 [20 points] The time needed to the light travel a distance L in a medium with
refractive index n;is:

ani
B c

The difference in time between the two pulse will be:

_ Lxng _ Lxngir Lx(ng_naiT)
c c

At

=1.527ns=1.527%x10"%s

Question 2 [20 points] If the two beams have initially a constructive interference, that
means that the optical path length difference is an integer multiple of the wavelength (or
that the phase difference is an integer multiple of 21)

0.p.d.=LXng—LXng, =mly or LxXky—LXkey =p2n whereki:%zzz_:i

The next destructive interference occurs when the optical path difference increases by half
a wavelength (or the phase difference changes by m). So:

on on A
A@pdj=<LxQ@+E%M>—anw)—@xmf¢xnwj=LXE%AT=§

Ao 590x107°

AT = =
Sng T 2x1x8.7%1076
2Lx—5

=0.03391K

Or, using phase,

AP =| L X

2 (n 4—§EQAT) ény
T\N"g T 3T —sznnair —(sznng—sznnair>:Lx2n5_TAT:n

Ao Ao Ao Ao Ao

mxXly __ 590x107°
211><L><66L7:" 2X1%8.7x1076

AT = =0.03391K

Question 3 [20 points] Assuming a transmission frequency F with the pulse occupying
half-period, the gaussian pulse width (t ) will be 7 = % A Gaussian pulse of width © will

wave a bandwidth of Af = % = 2F, centered at a frequency f = Ai =1.935 x 101 Hz.

(]
We now have to choose using the bandwidth in frequency, and convert the variation of the
refractive index with wavelength to the variation with frequency, or convert the bandwidth
to wavelength and use the variation of the refractive index with wavelength.

dn _ _dnc — _AfS = _pfh
v ur AN = Affz— Af =

The faster wavelengths at the leading edge of the pulse will be the first to arrive at the rear
end of the fiber. The slower wavelength at the trailing edge of the pulse will be the last to
arrive. The new pulse temporal width will be the initial pulse width increased by the time
difference on arrival between the faster and slower wavelengths.

85



The tfime to travelis equal to the length of the fiber multiplied by the refractive index at that
wavelength and divided by the speed of light in vacuum t;qper = LTn . The time difference,
at arrival, between the faster and slower wavelengths will be:

Ln Ln,,; L L sdn L rdn
Attrgper = ;nax - % = E(nmax - nmin) = E(ﬁ X A/l) = E(E X Af)

In order to limit the pulse width spread to be smaller than 25% the initial pulse width, we
need to have:

At <0257 = 025
travel . 2F
or

L /dn L /dn c 0.25
(a7 <)

Stvwa =7 (g7 o7 ) =2 (@7E ¥ ) <77

Rearranging:

2 025 f2 0.25 (1.935x101%)? 18 1L1_2
—_— X == = . X
F*< 42_: L 4x5.4x103 3x105 1.445 X 10" Hz

So, the maximum data frequency would be the square root of this value = 1.700 x 10° Hz
=1.7GHz

Question 4 [20 points] Auxiliary data:

e Beamarea: 4 = nDTZ =7.854 x 10711 m?

o Peakpower: P, = % =2.000 x 103 W

e Peaklrradiance: I, = %” = 2.546 x 1013 W/ m?

e Peak refractive index change: 4n, = n,I,, = 7.3639 x 1077

dan _ MM _ 7639 x 103 -1

Time variation of the refractive index change on the pulse: 5 = oo

Assuming a 200 ps gaussian pulse, and using At X Af =1, we get Af =5 x 10° Hz for the
spectral width without nonlinear effects. Thisis centered at f = % = 1.935 x 10'* Hz.

We can compute the optical path length (equivalent to the distance fraveled in vacuum in
the same time) as the physical distance multiplied by the refractive index (opl = L X n). The
rate of change of the optical path length is equivalent to a source speed.

This equivalent speed of the source moving away in the leading edge of the pulse is: v =

d;—t"xL =7639%x103mst

This 'velocity' of the source, moving away, shifts the spectrum to lower frequencies by an
amount given by the Doppler formula (as the 'speed’ is small, can be used either the
relativistic, or the non-relativistic, Doppler equation). The Doppler shift will be:
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o

1.7
Af =—|1- ’: X f = —4.929 x 10° Hz

In the trailing edge of the pulse, the Doppler shift will be symmetrical (frequency
increases).

(424 = 0.03947 nm)

The total width of the spectrum will be the original width (5 x 109), plus two times the
calculated Doppler shift. This gives a total spectrum width of 1.486 x 101 Hz. (0.119 nm)

Question 5 [20 points] Auxiliary data, from previous resolutions:

Assuming a 200 ps gaussian pulse, and using At X Af = 1, we get Af =5 x 10° Hz for the
spectral width without nonlinear effects. Thisis centered at f = % = 1.935 x 10 Hz.

2
Beam area: A = nDT =7.854 x 10711 m?2

Refractive index variation with frequency z—’; =— Z—Zf—cz

. 2E
Peak Irradiance: I, ==
TA

oo 21, E
Peak refractive index change: 4n,, = n,I,, = —
p p TA

Time variation of the refractive index change on the pulse:

din An, 4nE

dt T Axt?
2

The optical path length is (opl = L X n). The rate of change of the optical path length is
equivalent to a source speed. This equivalent speed of the source moving away in the
leading edge of the pulse is:

din 4n, E
L j—

= X
dt A X 12 L

This 'velocity' of the source, moving away, shifts the spectrum to lower frequencies by an
amount given by the Doppler formula (as the ‘speed’ is small, can be used either the
relativistic, or the non-relativistic, Doppler equation). The Doppler shift will be:

X f

c f fxc
Af = — Xf=- 7=
(c+v) 1+ C+jr>l<2£><l‘
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In the trailing edge of the pulse, the Doppler shift will be symmetrical (frequency
increases).

The faster frequency in the pulse is separated to the slower frequency by an amount equal
to pulse bandwidth added with two times the frequency shift in the leading edge
(symmetrical to the one generated at the trailing edge) The pulse bandwidth after the
nonlinear effect will be:

2XfXc
4n, E
A X 1?

Af' =5x10°+

c+ X L

The time difference between the extreme frequencies after propagating 50 kmis:

At —L(dnxa ')—Lxd" 5 x 107 4 —T X
travel_c df f _C df C+4n2EXL
AXT?
This must be equal to 100 ps. So:
L dn 2XfXc
- X— 5x109+; =10710
c df c+dmkE
AXT?

We can rearrange, replace all variables by their numerical value and obtain E:

2Xfxc  c¢x107°

4n, E N dn
C+WXL LXW

—5x10°

2XfXc

-10
&_5 X 109

Lxdn

E= df
ﬂxl[
A X T2

The pulse energy (E)needed to keep the same width after 50 km, is 6.852 mJ.
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