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The Hubble Space Telescope is one of themost important andwell known scientific instruments
in history. Since its launch in 1990, it has detected hundreds of thousands of celestial objects,
provided unprecedented astronomical images of high quality and beauty, and played a key
role for the better understanding of the universe. The telescope was designed to be visited
in space by astronauts on servicing missions to perform repairs, update the technology and
install new instruments. Shortly after it was deployed, two flaws were detected that limited its
performance, although both were corrected afterwards. We will deal with those issues here.

The Hubble weighs 11500 kg and oper-
ates in a low Earth circular orbit, with
inclination of 28.5º to the equator, at
altitude ℎ = 547 km.

a) Calculate theHubble’s orbital period (inminutes), and calculate the time it spends in Earth’s
shadow during an orbit on the equinox days (i.e., the days of the year when the sunlight
is parallel to the orbital plane). Data: Earth radius 𝑅⊕ = 6371 km, ecliptic angle 23.5º. (1
point)

The Hubble‘s optical system is a
two-mirror Cassegrain reflecting tele-
scope of Ritchey-Chrétien design. The
primary mirror is a Φ1 = 2.4 m diam-
eter concave hyperboloid with a 𝑅1 =
11040mmcurvature radius and a 0.6m
central opening. The secondary mir-
ror is aΦ2 = 0.3mdiameter convex hy-
perboloid with a 𝑅2 = 1358 mm curva-
ture radius. The separation between
mirrors is 𝑑 = 4906 mm.

b) Calculate the focal length of the two mirrors, the effective focal length of the system and
the f-number. Obtain the angular resolution of the telescope diffraction-limited at 𝜆 =
632.8 nm. (1 point)

Conic constants of the mirrors were calculated so that the optical aberrations compensated
each other. However, due to an error in polishing the shape of the primary mirror was not cor-
rect, resulting a conic constant 𝑄∗ = −1.0139 instead of 𝑄 = −1.0023 as planned. The equation
for a conic surface is (1 + 𝑄)𝑧2 − 2𝑅𝑧 + 𝑟2 = 0, where 𝑧 is the surface elevation from a plane

1



tangential to the vertex, 𝑟 is the polar coordinate from the axis passing through the vertex, 𝑅 is
the radius of curvature, and 𝑄 = −𝑒2 is the conic constant, being 𝑒 the eccentricity.

c) Give an expression for 𝑧(𝑟) up to 4th order (i.e., neglecting terms higher than 𝑟4 ). Make, on
the same graph, an approximate plot of the real and the planned elevations of the primary
mirror. Calculate the error Δ𝑧𝑚𝑎𝑥(𝑟𝐻) (in microns) at the edge of the mirror between the
elevation of the real and the planned surface. (1 point)

Paraxial rays reflected from a conical mirror converge at the focus, i.e., at the paraxial focal
length 𝑓𝑝. However, the marginal rays intersect the axis at points located at a distance 𝑓(𝑟) =
𝑓𝑝+𝐴sa⋅ 𝑟2 from themirror’s vertex, where the term𝐴sa is the longitudinal spherical aberration.
d) Obtain the spherical aberration coefficient 𝐴sa. What is the geometry of the aberration-

free conical mirror? Calculate the value of the longitudinal spherical aberration for a ray
reflected at the edge of the Hubble’s primary mirror. (1.5 points)

The optical quality of the primary
mirror is tested by a Twyman–Green
interferometer. A reference plane
wavefront is interfered with the wave-
front reflected from the Hubble’s mir-
ror, whose curvature center is located
at the focus of a lens. In front of the
lens is a correcting plate designed to
compensate the spherical aberration
of the planned mirror after the dou-
ble pass of the light, so if the mir-
ror’s shape were correct the return-
ing wavefront towards the interfer-
ence screen would be plane.

e) Make a freehand drawing of the fringes of the resulting two-dimensional interferogram
due to the wrong real shape of the Hubble’s mirror. Shade the dark areas of the pattern.
At least you must accurately locate the relative position of the first minimum. (1 point)

The power for Hubble comes from two rectangular solar arrays 12.2 x 2.5 m2 in size. The effi-
ciency of the solar cells to convert light energy into electric is 𝜂 = 12%. The temperature of the
Sun is 𝑇⊙ = 5780 K, its diameter is Φ⊙ = 1391016 km and the distance to Earth is 𝑑 = 150 · 106

km. Hubble consumes 𝑃 = 2.1 kW. The night power is supplied by 6 batteries of 32 V and 88 A·h
each, connected in parallel. Data: Stefan-Boltzmann constant 𝜎 = 5.67 · 10−8 W/(m2·K4).

f) Calculate the value of the solar irradiance on the Hubble and, then, obtain the electric
power produced by the solar panels when the solar incidence angle is 60∘. What is the
excess energy (in kJ) produced by the panels during one orbit? (1 point)

g) If the solar panels broke, how many orbits could Hubble travel with the energy stored in
its batteries? (0.5 points)
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The panels are subject to strong ther-
mal variations due to the interruption
of the solar flux when the satellite is
in Earth’s shadow. We will use the fol-
lowing simplified model to estimate
this thermal effect. During sunlight,
the panels face perpendicular to the
sun. During the eclipse, the panels
face the center of the Earth and they
receive the blackbody radiation of the
planet. Both emission and absorption
occurs only from the side of the panels
exposed to radiation (the other side is
insulated).

h) Determine the equilibrium temperature reached by the panels in the sunlight and in the
eclipse. Make an approximate plot of the temperature profile for the heating and cool-
ing cycles. Data: Earth’s temperature 𝑇⊕ = 252 K, panels’ absorptance 𝛼 = 0.67, panels’
emissivity 𝜀 = 0.85. (1.5 points)

The thermal expansions and contrac-
tions of some structural elements of
the solar panels causemechanical dis-
turbances in the telescope that excite
vibrations of the pointing system (de-
signed to hold an image stable at the
focal plane) at a main frequency 𝜈 =
0.1 Hz and amplitude 𝐴 = 0.1 arcsec.

i) Calculate the RMS of the vibration, averaged over an oscillation period. Since this vibra-
tion results in the loss of pointing lock on the targeted star, what is the resolution of the
telescope due to this problem? (0.75 points)

j) A possible solution could be the addition, through the Hubble positioning control system,
of an external oscillation of the same frequency as the thermal disturbance and phase
shift of 𝜋 rad relative to it. Determine the amplitude of the external oscillation to reduce
by a factor of 10 the amplitude of the resulting vibration. (0.75 points)
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Solution
a) Orbit data
Orbital period.
𝑅⊕ = 6371 km and ℎ = 547 km give 𝑟 = 𝑅⊕ + ℎ = 6918 km.

From Kepler’s 3𝑟𝑑 Law 𝑇 2 = 4𝜋2
𝐺𝑀⊕

𝑟3 ⇒ 𝑇 = 5732.3 s = 95.5 min.

Time eclipsed by Earth: The eclipse duration changes seasonally. A full calculation would re-
quire to take orbit’s inclination, 25.5∘, into account. However, on the equinox the sunlight is
parallel to the Hubble’s orbital plane.

The shadow cast by the Earth on the Hubble spacecraft is determined by the angle 𝛾

sin 𝛾 = 𝑅⊕
𝑅⊕ + ℎ ⇒ 𝛾 ≃ 67∘ ≃ 1.17 rad.

A simple rule of three gives the time 𝑡 it spents in the Earth shadow

𝑡
2𝛾 = 𝑇

2𝜋 ⇒ 𝑡 = 35.5min,

with the remaining 60 minutes illuminated by the Sun.
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b) Focal distances
For the primary mirror with 𝑅1 = 11040mm, 𝑓1 = 𝑅1/2 = 5520mm.
For the secondary mirror 𝑅2 = 1358mm, 𝑓2 = 679 mm.
These are absolute values, they have opposite signs since onemirror is concave while the other
is convex.

Given the separation 𝑑 = 4906 mm between mirrors, we have |𝑠2| = 𝑓1 − 𝑑 = 614 mm, hence

1
𝑠′

2
+ 1

𝑠2
= 1

𝑓2
⇒ 𝑠′

2 = −6414mm

giving a second mirror lateral magnification 𝛽2 = −𝑠′
2/𝑠2 = 10.44 and an effective focal lenght

𝑓 = 𝑓1𝛽2 ≈ 57629 mm.
This could also be directly computed using the systems theory formula:

𝑓 = − 𝑓1𝑓2
𝑑 − 𝑓1 + 𝑓2

Given the diameterΦ1 = 2400mm, the f-number becomes𝑁 = 𝑓/Φ ≃ 24. The angular resolution
is obtained applying the Rayleigh criterion, 𝜃 = 1.22(𝜆/𝜙), gives 𝜃 = 3.2 10−7 rad = 0.066arcsec
for the wavelenght 𝜆 = 632.8 nm.

c) Surface elevation 𝑧(𝑟)
From the text, (1 + 𝑄)𝑧2 − 2𝑅𝑧 + 𝑟2 = 0 ⇒ 𝑧(𝑟)

𝑅 = 1
(1+𝑄) [1 − √1 − (1 + 𝑄) 𝑟2

𝑅2 ] A Taylor series

expansion up to fourth order in (𝑟/𝑅) << 1 gives

𝑧(𝑟)
𝑅 = 𝑟2

2𝑅2 + (1 + 𝑄)𝑟4

8𝑅4 .
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Hence, Δ𝑧𝑚𝑎𝑥 = 𝑧(𝑟𝐻) − 𝑧∗(𝑟𝐻) = 𝑄−𝑄∗

8𝑅3 𝑟4
𝐻 = 2.2𝜇𝑚, where we used that for the primary mirror

surface 𝑅 = 𝑅1 = 11040mm, and 𝑟𝐻 = 𝜙𝐻/2 = 1200mm.

d) Spherical aberration coefficient
We combine the reflection law with conic surface geometry to get

tan 𝜃 = 𝑑𝑧
𝑑𝑟 = 𝑧′, 𝑧(𝑟)

𝑅 = 𝑟2

2𝑅2 + (1 + 𝑄)𝑟4

8𝑅4 → 𝑧′(𝑟) = 𝑟
𝑅 + (1 + 𝑄)𝑟3

2𝑅3 .

From the figure we note that tan 2𝜃 = 𝑟
𝑓−𝑟 , but also tan 2𝜃 = 2 tan 𝜃

1−tan2 𝜃 , so that

𝑓 = 𝑧 + 𝑟
2 ( 1

𝑧′ − 𝑧′) ≃ 𝑅
2

1
1 + (1+𝑄)𝑟2

2𝑅2
.

Obviously this is valid only up to order (𝑟/𝑅)4. A Taylor series expansion gives

𝑓 ≃ 𝑅
2 − (1 + 𝑄)𝑟2

4𝑅 ,

so to the paraxial focal distance 𝑓 = 𝑅/2wemust add a spherical aberration term𝐴sa ⋅ 𝑟2 where
𝐴sa = − (1+𝑄)

4𝑅 is the longitudinal spherical aberration coefficient.
With 𝑄 = −1.0139, 𝑅 = 11040mm, and at the edge 𝑟 = 𝑟𝐻 = 1200 mm we get

Δ𝑓 = −(1 + 𝑄)
4𝑅 𝑟2

𝐻 = 453 𝜇m.

The aberration term should vanish for an aberration free conicalmirror, i.e., 1+𝑄 = 0 ⇒ 𝑧 = 𝑟2
2𝑅 ,

a parabola.

e) Interferogram
No interference fringes would be produced if the shape of the tested primary mirror were as
planned. However, the correcting plate does not compensate the additional spherical aber-
ration that appears because of the sag difference between the real and the planned surface:
Δ𝑧 = Δ𝑄

8𝑅3 𝑟4 , where Δ𝑄 = 𝑄 − 𝑄∗ = 0.0116.
Due to the reflection, the light travels twice this distance. Thus, the wavefront error with respect
to the plane wavefront is

Δ𝑊(𝑟) = 2Δ𝑧(𝑟) = Δ𝑄
4𝑅3 𝑟4.
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The minima (destructive interference) will occur for radial positions that satisfy Δ𝑊(𝑟) = (2𝑚 −
1)𝜆

2 , with 𝑚 = 1, 2, 3 …
Then, Δ𝑄

4𝑅3 𝑟4 = (2𝑚 − 1)𝜆
2 → 𝑟𝑚 = (2𝑚 − 1)1/4 , where 𝑟1 = (2𝑅3𝜆

Δ𝑄 )
1/4

= 619 mm.

For the other minima: 𝑟2 = 815 mm, 𝑟3 = 926 mm ,𝑟4 = 1007 mm, etc.

These values are relative to the dimension of the mirror that has circular section of radius
𝑟𝐻 = 1200 mm. Transforming to normalized coordinates at the interferogram plane, we get
the minima at positions: 0.52, 0.68, 0.77, 0.84, 0.89, 0.94, and 0.98 relative to the radius of the
interferogram.

f) Electric power

We will use the Stefan-Boltzmann Law 𝑃⊙ =
𝜎𝑇 4

⊙, the Luminosity of the Sun 𝐿⊙ = 4𝜋𝑅2
⊙𝑃⊙,

and the Solar constant 𝐼 = 𝐿⊙/(4𝜋𝑑2), where
𝑑 is the Sun-Earth distance. Putting the values
given in the text, we get 𝐼 = 1360 W m−2. Con-
sidering the incidence angle 𝜃 = 60∘ of the solar
radiation, an electric efficiency 𝜂 = 12%, and the
panels’ area 𝐴 = 61 m2, we get
𝑃 = 𝜂𝐼𝐴 cos 𝜃 = 5 kW

The Hubble is illuminated during a time 𝑡 = 60 min per orbit. The energy produced during this
time is 𝐸 = 𝑃 𝑡 = 18000 kJ. On the other hand, the orbital period is 𝑇 = 95.5 min, therefore to
keepHubble runningwith the power consumption 𝑃 = 2.1 kWneeds an energy𝐸 = 𝑃𝑇 = 12000
kJ per orbit. There is an energy excess of 6000 kJ.

g) Broken solar panels
Under these circumstances all the energy comes from the 6 batteries that can provide 𝑄 = 𝐼𝑡 =
6 ⋅88 A⋅h of charge. At a potential of 32 volts, the total energy 𝐸𝑄 available to the satellite will be
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𝐸𝑄 = 𝑉 𝑄 = 60825.6 kJ. As the satellite consumption is 𝑃 = 2.1 kW, the possible operation time
will be 𝑡 = 𝐸𝑄/𝑃 = 8 h allowing 5 orbits.

h) Temperature of the panels
At thermal equilibrium 𝑄̇ = 𝐶 𝑑𝑇

𝑑𝑡 = 0, in general 𝑄 will increase due to absorption of that part
of the incoming radiation from the Earth and the Sun that is not used to produce electricity.
Besides, 𝑄 will also be lost due to emission. The overall balance is
𝑄̇ = (𝛼 − 𝜂)𝐼𝐴 − 𝜀𝐴𝜎𝑇 4

where 𝛼 = 0.67 is the absorptance, 𝜂 = 0.12 the electric efficiency, 𝜀 = 0.85 the emissivity of the
panels of area 𝐴, and 𝐼 the intensity of the radiation incident on the panels. In equilibrium
𝑑𝑇
𝑑𝑡 = 0 ⇒ (𝛼 − 𝜂)𝐼 = 𝜀𝜎𝑇 4.

Sunlight equilibrium temperature:

𝐼 = 𝐼⊙ → 𝑇𝑆 = [ (𝛼−𝜂)𝐼⊙
𝜀𝜎 ]

1/4

Darkness equilibrium temperature:

𝐼 = 𝐼⊕ → 𝑇𝐷 = [ (𝛼−𝜂)𝐼⊕
𝜀𝜎 ]

1/4

We got the solar energy flux 𝐼⊙ = 1360Wm−2 in question
f). The Earth energy flux at height ℎ above the surface is
given by

𝐼⊕ = 𝜎𝑇 4
⊕ ( 𝑅⊕

𝑅⊕ + ℎ)
2

= 194Wm−2,

finally 𝑇𝑆 = 353 K = 80 ∘C and 𝑇𝐷 = 217 K= - 56 ∘C.
Temperature profile for the heating

and cooling cycles

i) Vibrations
The angular amplitude 𝐴 = 0.1 arcsec at frequency 𝜈 = 0.1 Hz produce angular displacements
𝛿(𝑡) = 𝐴 cos 2𝜋𝜈𝑡. The corresponding root mean square RMS can be given as

RMS2 = 𝛿2 − ( ̄𝛿)2 = 1
𝑇 ∫

𝑇

0
𝑑𝑡𝐴2 cos2(2𝜋𝜈𝑡) = 𝐴2

2 ⇒ RMS = 𝐴√
2

= 0.07 arcsec.
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These vibrations cause a loss of resolution. To the angular resolution limit of the Rayleigh crite-
rion computed in b) above 𝜃 = 0.066 ≃ 0.07 arcsec, we must add the RMS inaccuracy due to the
vibrations. The new resolution will be 0.07+0.07 = 0.14 arcsec.

j) Reducing vibrations
The proposed solution consists of adding an external vibration 𝛿𝑒𝑥𝑡(𝑡) = 𝐵 cos(2𝜋𝜈𝑡 + 𝜑) of the
same frequency, amplitude 𝐵, and with a relative phase shift 𝜑, to the thermal and mecanical
vibrations 𝛿(𝑡) of the telescope. The aim is to get a reduced amplitude; let’s see how it works:

𝛿𝑟𝑒𝑑𝑢𝑐𝑒𝑑(𝑡) = 𝛿(𝑡) + 𝛿𝑒𝑥𝑡(𝑡) = 𝐴 cos 2𝜋𝜈𝑡 + 𝐵 cos(2𝜋𝜈𝑡 + 𝜑) = 𝐶 cos(2𝜋𝜈𝑡 + 𝜙)

This gives 𝐶 = √𝐴2 + 𝐵2 + 2𝐴𝐵 cos𝜑, hence for 𝜑 = 𝜋 ⇒ 𝐶 = 𝐴 − 𝐵. To reduce the amplitude
of the resulting vibration by a factor of 10, 𝐶 = 𝐴/10, we need 𝐵 = 9 𝐴/10 = 0.09 arcsec.
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