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This problem deals with several different properties of one dimensional (1D) crystal lattices, a
paradigm in Solid State Physics.

1) When a monochromatic x-ray beam of wave number £ is used to probe a one dimensional
chain of N identical atoms, of lattice distance a, a diffraction pattern is obtained. Find the in-
tensity of the diffracted radiation. Show that the width of the maxima is inversely proportional
to N. (0.5 points)

2) Consider a 1D crystal lattice in equilibrium made of two species of alternating ions of charges
+e and —e, separated a distance R. Aside from the Coulomb interaction, consider a short range
repulsive interaction potential of the form A/R™, with A > 0 and n > 1, that only acts between
nearest neighbors since n is large. Show that the potential energy of a single ion due to the
Coulomb interaction with the rest of ions in the lattice can be written as

ae? 1

B dmey R

V(R) =

where « is a numerical constant that you are only asked to show how to calculate it explicitly,
(you would need to use numerical tables that you don’t have at hand to give its numerical value).
(0.5 points)

3) Give the total potential energy of that lattice when composed of a large number N of ions
of each species, and find the work per unit length needed to compress the chain in such a
way that the separation between nearest neighbours is R,(1 — ¢), being R, the equilibrium
separation and ¢ <<< 1. (1 point)

4) The equation describing the atomic displacements (respect to their equilibrium position) of
a 1D monoatomic chain can be written as:

Mun =K (un+1 + Up—1 — 2“71)

Where M represents the atomic mass and K is the interaction constant between neighbors.
If a is the equilibrium separation between atoms, would u,,(t) = A cos(kan — wt) constitute a
solution for the above equations? Under what conditions? (0.5 points)

5) Consider now the alternating chain made of two atoms, of masses M, and M, respectively
(being M, > M,), with the same values of a and K as before. Is the harmonic approximation
for the displacements ul) = Ajexpi(kan — wt) still good in this case?. Find the values of the
allowed frequencies and amplitudes in the limit of the first Brillouin zone. (1 point)

6) A simple model of an electron in 1D lattice is given by a periodic square potential of the form
given in the figure:

af2
S "L" Find the Fourier series coefficients of
U I ‘ ‘ this potential when the wells exhibit a
“ width equal to a/2 and a barrier height
—p >

Uy. (1 point)
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7) Write, for the square potential of 6), the energy width of the first couple of forbidden energy
band gaps given by the nearly free electron approach. (0.5 points)

8) In general, for a fixed lattice distance , the barrier width b may be arbitrarily small. In the
limiting case where b — 0 and U, — oo but b - U is finite, the barriers can be described by Dirac
deltas: .

U(z)= Y V(z—na) being V(x)=\i(z)

n=—oo

Where « is the lattice parameter and X represents the potential coupling constant. Write the
value of the band gaps predicted by the nearly free electron model in this case. (0.5 points)

9) Consider a 1D chain made up of all the same type of atom, but in such a way that the spacing
between atoms alternates as long-short-long- as follows: -+ — A =A4A—-A=A—-A=A— ..
(where = means short bond and — represents the long bond). In a tight binding model, the
shorter bonds will have a hopping matrix element ¢, ., = t(1 + ), whereas the longest bonds
have hopping matrix element ¢,,,, = t(1 —¢). Calculate the tight-binding energy spectrum of
this chain (being the onsite energy, ¢, the same on every atom). (2 points)

10) Consider a 1D chain of atoms where one of the atoms in the chain (atom n = 0) is an impurity
such that it has an atomic orbital energy which differs by A from all the other atomic orbital
energies. In this case, the tight binding Hamiltonian can be written as:

Hn,m = Z.:O(Sn,?ﬂ - t(5n+1,m + 5n—1,m> + A6’rL,'r716n,()'

Use the ansatz: ¢, = Ae 9%l with ¢ real and positive and « the lattice constant, to find the value
of ¢ and show that for ¢ > 0 there is a localized eigenstate for any negative A. Finally, determine
the energy of this eigenstate. (2.5 points)
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SOLUTIONS

1) The amplitude of the dispersed wave will be: Zmnp e AR Ty, being #,,,, the atomic positions.

For a one dimensional chain we can simply write A% - Pranp = M Ak - a, where r = ma are the
atomic positions and Ak momentum components along the chain.

Then: ,
s Nl CimAka 1 — e~ iNAka A2 — sin (%Ak:-a)
- Z € - 1— —iAk-a = ’ ‘ .29
m=0 € Sin“(5Ak - a)

The diffraction maxima appear when Ak-a = 27h, being h an integer number. Since the diffrac-
tion pattern is periodic, we can take the zeroth order (h = 0) and look at the interval between
the first couple of maxima Ak - a in between [0,27] — within such interval |A|? goes to zero
when (N /2)Ak - a = 7. Therefore, the separation between the maximum and the zero is 27/N,
which indeed goes like 1/N.

2) The energy of oneion due to its two nearest neighbors is —2¢? /47, R. The next pair of nearest
neigbors are at a distance 2R and repel it with a potential energy 2¢?/4we,2R. Continuing this
reasoning we get the electrostatic potential energy of the ion in the lattice:

2¢2 1 1 1
U(R) = — l— - — =4
(£) 4mOR< 23t

hence, « = 2(1 — 3 + § — + 4+ -). If you had the numerical tables at hand oo = 2In 2 = 1.386.

3) The total potential energy will be:

e?Na n 2NA
dregR - R
where we took into account that the repulsive interaction only acts between nearest neighbors,

and also avoided the double counting of the interactions. The equilibrium distance will be at its
minimum

UTOT(R) =

A el e?Na 1
0

_47750R0 n
Now, the work needed to compress the chain will be:

W= UTOT<R) - UTOT(RO> =

e2Na (RO 71> N INA (ﬁ 1) .

4dmeyRy \ R R \R"

Substituting the separation R = Ry(1 —d) given in the text and the value for A/R{ given above,
we get

Na 1 1 1
W =— 1— —— .
dmeg Ry < 1-9 * n(l—o)» n)

Approximating to second order in §
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wo e2a  (n—1)
2NR,  8meoR? 2
where we have divided by the lenght of the chain, 2N R, to give the work per unit lenght.

52

4) Substituting the proposed solution into the displacements equation:

K cos{(n + 1)ka — wt} + cos{(n — 1)ka — wt} 2K 4K . o
2= |2— =——(1- = —sin 2.
W= o cos (ko —wt) 7 (1 —coska) A S ka/

Hence, the proposed solution would work as long as the following dispersion relation holds:

w(k) = 2\/5 ‘sin <k2a>‘

5) We can write the motion equations for u'?, that represents the displacement from the equi-
librium position of an atom of type j (being j = 1, 2), which sits in the n-th unit cell, as:

My = K (u? +ul?) —2u?)
M2ug> = K <unlll + unl) — 2u;2))

(1)

These equations can be solved if we use a solution of the form ud) = Aje"(’“‘”*wt) forj = 1,2,

which gives:
(Myw? —2K)A, + K(1+ e k) A,

2
2
_ 1 1 1 1 4K2 cin2/ka
Hence, WP =K (37 +75;) £ [K2 (3, + 71) = 713 SN (2>] :

At the edge of the Brillouin zone ka =, and therefore w? = K (4 + 1) = (3 — 11 ) »

andsince M, > M,, w, = /%; W = /%'

6) We choose the origin = 0 in the linear chain in the middle of a region where the potential
is zero, so this periodic potential admits a Fourier series

1 a ‘ . 3a/4 ‘ . ‘ '
U($) — / dxefmrn(;)U(x) _ ﬂ dze 1% = ﬂ [efzSﬂn/Q o 6z7rn/2] .
0

a 2 /4 2m™n

Now, using that

3 . —1)H*t245 for 1=0,1,2...
cin 3™ cina" — (=1) 2041
2 2 0 for n=211=0,1,2,...

and that cos 33" —costZ =0 Vn, we get

4
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™

U,

n

(=114, 5,y for 1=0,1,2...

7) The first two band gaps in the nearly free electron model will be:

2U,
Egi = 2\U1\:—7T0

2U, 1
Egy = 2\U3\:3—7T0:§EG1.

8) Within this model a Dirac delta function is associated with every node of the 1D lattice. If we
write the Fourier series:

a/2
, , 1 4 A
Ule) = Y Ugei®, being U= [ e irUa)de =2,
G a —a/2 a
we obtain E, =2|Ugs| = 2|\|/a for the nearly free electron model.

9) Let's consider the unit cell (A = A—) as made of two sites: A (left site) and B (right site).
Without loss of generality we can set the onsite energy ¢, = 0 for simplicity and assume ¢ is a
real number. Then, the tight binding Schrédinger equation can be written as:

Ept = —t(1+e)pl —t(1—e)pl
EpB = —t(1+e)ps —t(1—e)pimy

With the usual ansatz ¢!, | = e***y!, for I = Aor B and a the lattice distance

FEA = —t(1+¢)B—t(1—¢)Be ke
EB = —t(1+¢e)A—t(1—¢)Aetke

The solutions for this eigenvalue problem are of the type

ka

B = |2t [cos (57 ) +iesin (57)] | = l2uly 22 + (1= e2)cos2 ()

10) Consider first the case without the impurity. If we use exponentially decaying or growing
solutions:
¢, = Ae*1" = B = ¢, — 2t cosh(qa).

Note that for g real (¢, — E)/2t = cosh(qa) > 1, in other words, for these solutions give energies
below the bottom of the band.

Now, we can patch together two of these evanescent waves at the impurity. Examining the
Schrodinger equation at position zero, we have:

E¢y= (e +A)pg— ¢y +¢_1) = E—gy— A =2te
Using the value of E obtaned above we get A = —2sinh(ga). Since A is negative, there is a
solution for any value of A<0 with

= 2sinh*1<|A|/2t)

5
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Then, for the bound state energy
2

A

Note that for A = 0 this gives the energy at the bottom of the band.



