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This problem deals with several different properties of one dimensional (1D) crystal lattices, a
paradigm in Solid State Physics.

1) When a monochromatic x-ray beam of wave number 𝑘 is used to probe a one dimensional
chain of 𝑁 identical atoms, of lattice distance 𝑎, a diffraction pattern is obtained. Find the in-
tensity of the diffracted radiation. Show that the width of the maxima is inversely proportional
to 𝑁 . (0.5 points)

2) Consider a 1D crystal lattice in equilibriummade of two species of alternating ions of charges
+𝑒 and −𝑒, separated a distance 𝑅. Aside from the Coulomb interaction, consider a short range
repulsive interaction potential of the form 𝐴/𝑅𝑛, with 𝐴 > 0 and 𝑛 > 1, that only acts between
nearest neighbors since 𝑛 is large. Show that the potential energy of a single ion due to the
Coulomb interaction with the rest of ions in the lattice can be written as

𝑉 (𝑅) = − 𝛼𝑒2

4𝜋𝜀0

1
𝑅

where 𝛼 is a numerical constant that you are only asked to show how to calculate it explicitly,
(youwould need to use numerical tables that you don’t have at hand to give its numerical value).
(0.5 points)

3) Give the total potential energy of that lattice when composed of a large number 𝑁 of ions
of each species, and find the work per unit length needed to compress the chain in such a
way that the separation between nearest neighbours is 𝑅0(1 − 𝛿), being 𝑅0 the equilibrium
separation and 𝛿 <<< 1. (1 point)

4) The equation describing the atomic displacements (respect to their equilibrium position) of
a 1D monoatomic chain can be written as:

𝑀�̈�𝑛 = 𝐾 (𝑢𝑛+1 + 𝑢𝑛−1 − 2𝑢𝑛)

Where 𝑀 represents the atomic mass and 𝐾 is the interaction constant between neighbors.
If 𝑎 is the equilibrium separation between atoms, would 𝑢𝑛(𝑡) = 𝐴 cos(𝑘𝑎𝑛 − 𝜔𝑡) constitute a
solution for the above equations? Under what conditions? (0.5 points)

5) Consider now the alternating chain made of two atoms, of masses 𝑀1 and 𝑀2 respectively
(being 𝑀1 > 𝑀2), with the same values of 𝑎 and 𝐾 as before. Is the harmonic approximation
for the displacements 𝑢(𝑗)

𝑛 = 𝐴𝑗 exp 𝑖(𝑘𝑎𝑛 − 𝜔𝑡) still good in this case?. Find the values of the
allowed frequencies and amplitudes in the limit of the first Brillouin zone. (1 point)

6) A simple model of an electron in 1D lattice is given by a periodic square potential of the form
given in the figure:

Find the Fourier series coefficients of
this potential when the wells exhibit a
width equal to 𝑎/2 and a barrier height
𝑈0. (1 point)
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7) Write, for the square potential of 6), the energy width of the first couple of forbidden energy
band gaps given by the nearly free electron approach. (0.5 points)

8) In general, for a fixed lattice distance , the barrier width 𝑏 may be arbitrarily small. In the
limiting case where 𝑏 → 0 and 𝑈0 → ∞ but 𝑏 ⋅ 𝑈0 is finite, the barriers can be described by Dirac
deltas:

𝑈(𝑥) =
∞

∑
𝑛=−∞

𝑉 (𝑥 − 𝑛𝑎) being 𝑉 (𝑥) = 𝜆𝛿(𝑥)

Where 𝑎 is the lattice parameter and 𝜆 represents the potential coupling constant. Write the
value of the band gaps predicted by the nearly free electron model in this case. (0.5 points)

9) Consider a 1D chain made up of all the same type of atom, but in such a way that the spacing
between atoms alternates as long-short-long- as follows: ⋯ − 𝐴 = 𝐴 − 𝐴 = 𝐴 − 𝐴 = 𝐴 − …
(where = means short bond and − represents the long bond). In a tight binding model, the
shorter bonds will have a hopping matrix element 𝑡𝑠ℎ𝑜𝑟𝑡 = 𝑡(1 + 𝜀), whereas the longest bonds
have hopping matrix element 𝑡𝑙𝑜𝑛𝑔 = 𝑡(1 − 𝜀). Calculate the tight-binding energy spectrum of
this chain (being the onsite energy, 𝜀, the same on every atom). (2 points)

10) Consider a 1D chain of atomswhere one of the atoms in the chain (atom 𝑛 = 0) is an impurity
such that it has an atomic orbital energy which differs by Δ from all the other atomic orbital
energies. In this case, the tight binding Hamiltonian can be written as:

𝐻𝑛,𝑚 = 𝜀0𝛿𝑛,𝑚 − 𝑡(𝛿𝑛+1,𝑚 + 𝛿𝑛−1,𝑚) + Δ𝛿𝑛,𝑚𝛿𝑛,0.

Use the ansatz: 𝜑𝑛 = 𝐴𝑒−𝑞𝑎|𝑛| with 𝑞 real and positive and 𝑎 the lattice constant, to find the value
of 𝑞 and show that for 𝑡 > 0 there is a localized eigenstate for any negative Δ. Finally, determine
the energy of this eigenstate. (2.5 points)
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  SOLUTIONS

1) The amplitudeof thedispersedwavewill be: ∑𝑚𝑛𝑝 𝑒−𝑖Δ�⃗�⋅ ⃗𝑟𝑚𝑛𝑝 , being ⃗𝑟𝑚𝑛𝑝 the atomic positions.
For a one dimensional chain we can simply write Δ�⃗� ⋅ ⃗𝑟𝑚𝑛𝑝 = 𝑚 Δ𝑘 ⋅ 𝑎, where 𝑟 = 𝑚𝑎 are the
atomic positions and Δ𝑘 momentum components along the chain.

Then:

𝐴 =
𝑁−1
∑
𝑚=0

𝑒−𝑖𝑚Δ𝑘⋅𝑎 = 1 − 𝑒−𝑖𝑁Δ𝑘⋅𝑎

1 − 𝑒−𝑖Δ𝑘⋅𝑎 ⇒ |𝐴|2 = sin2(𝑁
2 Δ𝑘 ⋅ 𝑎)

sin2(1
2Δ𝑘 ⋅ 𝑎)

The diffractionmaxima appear when Δ𝑘⋅𝑎 = 2𝜋ℎ, being ℎ an integer number. Since the diffrac-
tion pattern is periodic, we can take the zeroth order (ℎ = 0) and look at the interval between
the first couple of maxima Δ𝑘 ⋅ 𝑎 in between [0, 2𝜋] ⟶ within such interval |𝐴|2 goes to zero
when (𝑁/2)Δ𝑘 ⋅ 𝑎 = 𝜋. Therefore, the separation between the maximum and the zero is 2𝜋/𝑁 ,
which indeed goes like 1/𝑁 .

2) The energy of one ion due to its two nearest neighbors is−2𝑒2/4𝜋𝜀0𝑅. The next pair of nearest
neigbors are at a distance 2𝑅 and repel it with a potential energy 2𝑒2/4𝜋𝜀02𝑅. Continuing this
reasoning we get the electrostatic potential energy of the ion in the lattice:

𝑈(𝑅) = − 2𝑒2

4𝜋𝜀0𝑅 (1 − 1
2 + 1

3 − 1
4 + ⋯)

hence, 𝛼 = 2(1 − 1
2 + 1

3 − 1
4 + ⋯). If you had the numerical tables at hand 𝛼 = 2 ln 2 = 1.386.

3) The total potential energy will be:

𝑈𝑇 𝑂𝑇 (𝑅) = − 𝑒2𝑁𝛼
4𝜋𝜀0𝑅 + 2𝑁𝐴

𝑅𝑛 ,

where we took into account that the repulsive interaction only acts between nearest neighbors,
and also avoided the double counting of the interactions. The equilibrium distance will be at its
minimum

𝐴
𝑅𝑛

0
= 𝑒2𝛼

8𝜋𝜀𝑅0𝑛 ⋅ Then 𝑈𝑇 𝑂𝑇 (𝑅0) = − 𝑒2𝑁𝛼
4𝜋𝜀0𝑅0

(1 − 1
𝑛).

Now, the work needed to compress the chain will be:

𝑊 = 𝑈𝑇 𝑂𝑇 (𝑅) − 𝑈𝑇 𝑂𝑇 (𝑅0) = − 𝑒2𝑁𝛼
4𝜋𝜀0𝑅0

(𝑅0
𝑅 − 1) + 2𝑁𝐴

𝑅𝑛
0

(𝑅𝑛
0

𝑅𝑛 − 1) .

Substituting the separation 𝑅 = 𝑅0(1 − 𝛿) given in the text and the value for 𝐴/𝑅𝑛
0 given above,

we get

𝑊 = − 𝑁𝛼
4𝜋𝜀0𝑅0

(1 − 1
1 − 𝛿 + 1

𝑛(1 − 𝛿)𝑛 − 1
𝑛) .

Approximating to second order in 𝛿
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𝑊
2𝑁𝑅0

= − 𝑒2𝛼
8𝜋𝜀0𝑅2

0

(𝑛 − 1)
2 𝛿2,

where we have divided by the lenght of the chain, 2𝑁𝑅0, to give the work per unit lenght.

4) Substituting the proposed solution into the displacements equation:

𝜔2 = 𝐾
𝑀 [2 − cos{(𝑛 + 1)𝑘𝑎 − 𝜔𝑡} + cos{(𝑛 − 1)𝑘𝑎 − 𝜔𝑡}

cos (𝑘𝑎 − 𝜔𝑡) ] = 2𝐾
𝑀 (1 − cos 𝑘𝑎) = 4𝐾

𝑀 sin2 𝑘𝑎/2.

Hence, the proposed solution would work as long as the following dispersion relation holds:

𝜔(𝑘) = 2√ 𝐾
𝑀 ∣ sin(𝑘𝑎

2 )∣ .

5) We can write the motion equations for 𝑢(𝑗)
𝑛 , that represents the displacement from the equi-

librium position of an atom of type 𝑗 (being 𝑗 = 1, 2), which sits in the 𝑛-th unit cell, as:

𝑀1�̈�(1)
𝑛 = 𝐾 (𝑢(2)

𝑛 + 𝑢(2)
𝑛−1 − 2𝑢((1)

𝑛 )
𝑀2�̈�(2)

𝑛 = 𝐾 (𝑢(1)
𝑛+1 + 𝑢(1)

𝑛 − 2𝑢(2)
𝑛 )

(1)

These equations can be solved if we use a solution of the form 𝑢(𝑗)
𝑛 = 𝐴𝑗𝑒𝑖(𝑘𝑎𝑛−𝜔𝑡) for 𝑗 = 1, 2,

which gives:

(𝑀1𝜔2 − 2𝐾)𝐴1 + 𝐾(1 + 𝑒−𝑖𝑘𝑎)𝐴2 = 0
𝐾(1 + 𝑒𝑖𝑘𝑎)𝐴1 + (𝑀2𝜔2 − 2𝐾)𝐴2 = 0

Hence, 𝜔2 = 𝐾 ( 1
𝑀1

+ 1
𝑀2

) ± [𝐾2 ( 1
𝑀1

+ 1
𝑀2

)2 − 4𝐾2
𝑀1𝑀2

sin2(𝑘𝑎
2 )]

2
.

At the edge of the Brillouin zone 𝑘𝑎 = 𝜋, and therefore 𝜔2 = 𝐾 ( 1
𝑀1

+ 1
𝑀2

) ± ( 1
𝑀1

− 1
𝑀2

) ,
and since 𝑀1 > 𝑀2, 𝜔+ = √ 2𝐾

𝑀2
; 𝜔− = √ 2𝐾

𝑀1
.

6) We choose the origin 𝑥 = 0 in the linear chain in the middle of a region where the potential
is zero, so this periodic potential admits a Fourier series

𝑈(𝑥) = 1
𝑎 ∫

𝑎

0
𝑑𝑥𝑒−𝑖𝜋𝑛( 𝑥

𝑎 )𝑈(𝑥) = 𝑈0
2𝜋𝑛 ∫

3𝑎/4

𝑎/4
𝑑𝑧𝑒−𝑖𝑧 = 𝑖𝑈0

2𝜋𝑛 [𝑒−𝑖3𝜋𝑛/2 − 𝑒𝑖𝜋𝑛/2] .

Now, using that

sin
3𝜋𝑛

2 − sin𝜋𝑛
2 = { (−1)𝑙+1 2 𝛿𝑛,2𝑙+1 for 𝑙 = 0, 1, 2...

0 for 𝑛 = 2𝑙 𝑙 = 0, 1, 2, ...

and that cos 3𝜋𝑛
2 − cos𝜋 𝑛

2 = 0 ∀𝑛, we get
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𝑈𝑛 = 𝑈0
𝜋𝑛(−1)𝑙+1 𝛿𝑛,2𝑙+1 for 𝑙 = 0, 1, 2...

7) The first two band gaps in the nearly free electron model will be:

𝐸𝐺1 = 2|𝑈1| = 2𝑈0
𝜋

𝐸𝐺2 = 2|𝑈3| = 2𝑈0
3𝜋 = 1

3𝐸𝐺1.

8) Within this model a Dirac delta function is associated with every node of the 1D lattice. If we
write the Fourier series:

𝑈(𝑥) = ∑
𝐺

𝑈𝐺𝑒𝑖𝐺𝑥, being 𝑈𝐺 = 1
𝑎 ∫

𝑎/2

−𝑎/2
𝑒−𝑖𝐺𝑥𝑈(𝑥)𝑑𝑥 = 𝜆

𝑎 ,

we obtain 𝐸𝐺 = 2 |𝑈𝐺| = 2|𝜆|/𝑎 for the nearly free electron model.

9) Let’s consider the unit cell (𝐴 = 𝐴−) as made of two sites: 𝐴 (left site) and 𝐵 (right site).
Without loss of generality we can set the onsite energy 𝜀0 = 0 for simplicity and assume 𝑡 is a
real number. Then, the tight binding Schrödinger equation can be written as:

𝐸𝜑𝐴
𝑛 = −𝑡(1 + 𝜀)𝜑𝐵

𝑛 − 𝑡(1 − 𝜀)𝜑𝐵
𝑛−1

𝐸𝜑𝐵
𝑛 = −𝑡(1 + 𝜀)𝜑𝐴

𝑛 − 𝑡(1 − 𝜀)𝜑𝐴
𝑛+1

With the usual ansatz 𝜑𝐼
𝑛+1 = 𝑒𝑖𝑘𝑎𝜑𝐼

𝑛, for 𝐼 = 𝐴or𝐵 and 𝑎 the lattice distance

𝐸𝐴 = −𝑡(1 + 𝜀)𝐵 − 𝑡(1 − 𝜀)𝐵𝑒−𝑖𝑘𝑎

𝐸𝐵 = −𝑡(1 + 𝜀)𝐴 − 𝑡(1 − 𝜀)𝐴𝑒𝑖𝑘𝑎

The solutions for this eigenvalue problem are of the type

𝐸(𝑘) = ± ∣2𝑡 [cos(𝑘𝑎
2 ) + 𝑖𝜀 sin(𝑘𝑎

2 )] ∣ = ±|2𝑡|√𝜀2 + (1 − 𝜀2)𝑐𝑜𝑠2 (𝑘𝑎
2 )

10) Consider first the case without the impurity. If we use exponentially decaying or growing
solutions:
𝜑𝑛 = 𝐴𝑒±𝑞𝑎|𝑛| ⇒ 𝐸 = 𝜀0 − 2𝑡 cosh(𝑞𝑎).
Note that for 𝑞 real (𝜀0 − 𝐸)/2𝑡 = cosh(𝑞𝑎) > 1, in other words, for these solutions give energies
below the bottom of the band.

Now, we can patch together two of these evanescent waves at the impurity. Examining the
Schrodinger equation at position zero, we have:

𝐸𝜙0 = (𝜀0 + Δ)𝜙0 − 𝑡(𝜙1 + 𝜙−1) ⇒ 𝐸 − 𝜀0 − Δ = 2𝑡𝑒−𝑞𝑎

Using the value of 𝐸 obtaned above we get Δ = −2 sinh(𝑞𝑎). Since Δ is negative, there is a
solution for any value of Δ<0 with

𝑞 = 1
𝑎 sinh−1(|Δ|/2𝑡)
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Then, for the bound state energy

𝐸 = 𝜀0 − 2𝑡√(Δ
2𝑡)

2
+ 1 .

Note that for Δ = 0 this gives the energy at the bottom of the band.
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