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This problem studies the force associated with the action of a beam of electromagnetic radia-
tion on a moving dust particle, (a small, homogeneous, spherical body of mass m moving with
velocity ⃗𝑣 in some reference frame). Let us call Φ𝑑𝑡 the energy of the radiation that illuminates
the particle during a time 𝑑𝑡 coming in the direction of the unitary vector ̂𝑒. We start with the
simplifying assumption that the particle absorbs all the incoming radiation and isotropically
re-emits a fraction 𝑄 of it in the form of thermal radiation1.

1 How much momentum does the re-emitted radia-
tion take? Does the particle accretes mass? (0.5
points)

2 Compute the acceleration of the particle on the inci-
dent direction and the drag along ⃗𝑣 that would slow
down the particle. (1 point)

3 In the case where the particle moves in the Solar
System, it is illuminated by the Sun. Determine Φ
in terms of the particle radius 𝑅, its distance to the
Sun 𝑟, and the power 𝐿⊙ emitted by the Sun. (0.5
points)

4 Determine the net attraction force toward the Sun.
For what radii 𝑅 will the resulting radial force over-
come gravity, pushing homogeous particles of den-
sity 𝜌 away from the Sun? Will the angular momen-
tum ⃗𝐽 of the particle remain constant? (1 point)

You may have found that the rate at which the mass of the particle changes depends on its ve-
locity. Strange, right? Mass - rest mass! - becoming a velocity-dependent property. Something
analogous happens with the isotropy of the re-emitted radiation; if it occurs in the particle’s rest
frame, then it will not occur in others that are not at rest relative to it.

From now on we will re-analyse the problem in the light of relativistic mechanics. Our starting
point here is that the isotropy of the re-emitted radiation only holds in the proper reference
frame S’ in which the particle is at rest at the instant of analysis. You are asked to determine
the motion of the particle in the Sun’s rest frame S where it moves with velocity ⃗𝑣. From here on
we will ignore the gravitational force (as if 𝐺 = 0). Also, the notation can be too cumbersome
and the problem too long to handle in the allotted time. For this reason we will consider that
all radiation is re-emitted (𝑄 or 𝑄′ = 1) and there is no scattering.

The particle is instantaneously at rest in frame S’ that moves with velocity ⃗𝑣 with respect to S, so
that for any four-vector 𝑉 𝜇 = (𝑉 0, ⃗𝑉 ),

𝑉 ′0 = 𝛾 (𝑉 0 − ⃗𝑣 ⋅ ⃗𝑉
𝑐 ) or, 𝑉 0 = 𝛾 (𝑉 ′0 + ⃗𝑣 ⋅ ⃗𝑉 ′

𝑐 ) (1)

⃗𝑉 ′ = ⃗𝑉 + [(𝛾 − 1) ⃗𝑣 ⋅ ⃗𝑉
⃗𝑣2 − 𝛾 𝑉 0

𝑐 ] ⃗𝑣, or ⃗𝑉 = ⃗𝑉 ′ + [(𝛾 − 1) ⃗𝑣 ⋅ ⃗𝑉 ′

⃗𝑣2 + 𝛾 𝑉 ′0

𝑐 ] ⃗𝑣 (2)

1Part of the incoming radiation would also be scattered, a phenomenon that we will ignore in this problem for
simplicity, i. e., only absorption and isotropic re-emission here.
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where 𝛾 = (1 − ⃗𝑣2/𝑐2)−1/2. In words, the transverse components of ⃗𝑉 are unchanged while the
longitudinal ones experience the Lorentz boost. Also, for an arbitrary interval

(𝑐𝑑𝜏)2 = (𝑐𝑑𝑡′)2 − 𝑑 ⃗𝑥′2 = (𝑐𝑑𝑡)2 − 𝑑 ⃗𝑥2, (3)

where 𝜏 is the particle’s proper time, that is invariant. Note that using 𝜏 instead of 𝑡 or 𝑡′ in your
equations will save precious time.

5 In 𝑆′ the incoming radiation that illuminates the
particle with a four-momentum 𝑑𝑝′

𝑖𝑛/𝑑𝜏 per unit
time, comes in the direction ̂𝑒′, while re-emission
occurs isotropically. Write 𝑑𝑝′

𝑖𝑛/𝑑𝜏 and 𝑑𝑝′
𝑜𝑢𝑡/𝑑𝜏 in

terms of ̂𝑒′ and the power Φ′ of the solar radiation
that illuminates the particle as observed in S’. (0.5
points)

6 Write the equation of motion for the particle four-
momentum of components 𝑝′𝜇 = (𝑝′0, ⃗𝑝′) in S’. (0.5
points)

7 Work out the transformation that connects the four-forces 𝐹 = 𝑑𝑝/𝑑𝜏 and 𝑑𝐹 ′ = 𝑑𝑝′/𝑑𝜏 in
both frames 𝑆 and 𝑆′. Use this result to write the components of 𝑑𝑝/𝑑𝜏 in terms of those
of 𝑑𝑝𝑖𝑛/𝑑𝜏 . (2 points)

8 Write the components of

𝑑𝑝𝑖𝑛
𝑑𝜏 = (𝑑𝑝0

𝑖𝑛
𝑑𝜏 , 𝑑 ⃗𝑝𝑖𝑛

𝑑𝜏 ), and
𝑑𝑝𝑜𝑢𝑡

𝑑𝜏 = (𝑑𝑝0
𝑜𝑢𝑡

𝑑𝜏 , 𝑑 ⃗𝑝𝑜𝑢𝑡
𝑑𝜏 )

in terms of the Solar System quantities Φ and ̂𝑒.
Then explicitly determine

𝑑𝑝′0
𝑖𝑛

𝑑𝜏 , 𝑑 ⃗𝑝′
𝑖𝑛

𝑑𝜏 , and
𝑑𝑝′0

𝑜𝑢𝑡
𝑑𝜏 , 𝑑 ⃗𝑝′

𝑜𝑢𝑡
𝑑𝜏

in terms of those components and ⃗𝑣, i. e., in terms
of Φ, ̂𝑒 and ⃗𝑣. Ignore any effect of the Lorentz con-
tracted geometry of the sphere. (2 points)

9 Using the relations obtained so far, determine the force on the particle, ⃗𝐹 = 𝑑 ⃗𝑝/𝑑𝜏 , ob-
served in the solar reference frame in terms of Φ, ⃗𝑣, ̂𝑒, and the dimensionless quantity
Γ = (1 − ̂𝑒 ⋅ ⃗𝑣/𝑐). (1 point)

10 Finally, give the particle acceleration in the solar reference frame, 𝑆, and check whether
or not the mass becomes velocity independent. (1 point)
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Solution
1. The energy 𝐸 and momentum 𝑝 of the particle change due to the net balance between what
goes in and what goes out. The incoming radiation delivers Φ energy per unit time, while the
outcoming removes 𝑄Φ, hence

𝑑𝐸
𝑑𝑡 = 𝑑𝐸𝑖𝑛

𝑑𝑡 − 𝑑𝐸𝑜𝑢𝑡
𝑑𝑡 = 𝑑𝐸𝑘

𝑑𝑡 + 𝑑(𝑚𝑐2)
𝑑𝑡 ⇒ 𝑑(𝑚𝑐2)

𝑑𝑡 = Φ(1 − 𝑄) − ⃗𝑣 ⋅ 𝑑 ⃗𝑝
𝑑𝑡 (4)

Where 𝑑𝐸𝑘
𝑑𝑡 is the change in kinetic energy of the particle. A similar argument applies to the

momentum. However, since the re-radiation is isotropic, the total momentum carried by the
outcoming radiation vanishes; hence

𝑑 ⃗𝑝
𝑑𝑡 = 𝑑 ⃗𝑝𝑖𝑛

𝑑𝑡 − 𝑑 ⃗𝑝𝑜𝑢𝑡
𝑑𝑡 = Φ

𝑐 ̂𝑒, (5)

where the right hand side is the momentum per unit time given to the particle by the incoming
radiation. Combining both equations gives

𝑑(𝑚𝑐2)
𝑑𝑡 = Φ [(1 − 𝑄) − ̂𝑒 ⋅ ⃗𝑣/𝑐] = Φ [Γ − 𝑄] (6)

so that the sign of (1 − 𝑄) − ̂𝑒 ⋅ ⃗𝑣/𝑐 determines whether the mass increases of decreases. Γ =
1 − ̂𝑒 ⋅ ⃗𝑣/𝑐 is a widely used notation.

2. Using (5) and (6)
𝑑 ⃗𝑝
𝑑𝑡 = 𝑑𝑚

𝑑𝑡 ⃗𝑣 + 𝑚𝑑 ⃗𝑣
𝑑𝑡 ⇒ 𝑑 ⃗𝑣

𝑑𝑡 = Φ
𝑚𝑐 ( ̂𝑒 − (Γ − 𝑄) ⃗𝑣

𝑐 ) . (7)

so the radiation not only pushes the particle in its incoming direction ̂𝑒, it also slows or pushes
it in the direction of velocity ⃗𝑣. Since | ̂𝑒 ⋅ ⃗𝑣/𝑐| < 1 is generally small and 𝑄 ≤ 1, a slowdown of the
particle is to be expected in most cases.

3. The power density radiated at a distance 𝑟 from the Sun is 𝐿⊙/4𝜋𝑟2, so that the total power
on the particle will be Φ = 𝐿⊙𝜋𝑅2/4𝜋𝑟2 = 𝐿⊙𝑅2/4𝑟2.

4. Now ̂𝑒 = ⃗𝑟/𝑟 is in the Sun→particle direction. Both, gravity and the radiation pressure, act on
the radial direction; the resulting radial force is

𝐹𝑟 = −𝐺𝑀⊙𝑚
𝑟2 + Φ

𝑐 = −𝐺𝑀⊙𝑚
𝑟2 (1 − 𝛼) (8)

where 𝛼 = 𝐿⊙𝑅2/(4𝐺𝑀⊙𝑚) = 3𝐿⊙/(16𝜋𝐺𝑀⊙𝜌𝑅). The radial force is in the direction away from
the Sun if 𝛼 > 1, i. e., for small particles with radius 𝑅 < 3𝐿⊙/(16𝜋𝐺𝑀⊙𝜌). The angular momen-
tum ⃗𝐽 of the particle remains constant:

̇⃗𝐽 = 𝑑( ⃗𝑟 ∧ ⃗𝑝)/𝑑𝑡 = ̇⃗𝑟 ∧ ⃗𝑝 + ⃗𝑟 ∧ ̇⃗𝑝 = 0. (9)

which vanishes in the solar system since in it ̇⃗𝑝 = Φ
𝑐 ̂𝑒 goes in the radial direction, (even though

there is a component of ̇⃗𝑣 in the direction of ⃗𝑣).
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5.

𝑑𝑝′
𝑖𝑛/𝑑𝜏 = (𝑑𝑝′0

𝑖𝑛/𝑑𝜏, 𝑑 ⃗𝑝′
𝑖𝑛/𝑑𝜏) = Φ′

𝑐 (1, ̂𝑒′) (10)

𝑑𝑝′
𝑜𝑢𝑡/𝑑𝜏 = (𝑑𝑝′0

𝑜𝑢𝑡/𝑑𝜏, 𝑑 ⃗𝑝′
𝑜𝑢𝑡/𝑑𝜏) = Φ′

𝑐 (1, ⃗0) (11)

where we used that 𝑄′ = 1 ⇒ 𝑑𝑝′0
𝑖𝑛/𝑑𝜏 = 𝑑𝑝′0

𝑜𝑢𝑡/𝑑𝜏 , and the isotropy of the outgoing radiation,

6. The equation (𝑑𝑝/𝑑𝜏) = (𝑑𝑝𝑖𝑛/𝑑𝜏) − (𝑑𝑝𝑜𝑢𝑡/𝑑𝜏) is valid in any frame as these objects are
four vectors (the 𝑝′𝑠 are four-vectors and 𝜏 , the proper time, is a scalar). Specifically, in the
instantaneous proper frame S’ one has

𝑑𝑝′/𝑑𝜏 = Φ′

𝑐 (1, ̂𝑒′) − Φ′

𝑐 (1, ⃗0) = Φ′

𝑐 (0, ̂𝑒′) = (0, ⃗𝑑𝑝′
𝑖𝑛/𝑑𝜏). (12)

7. Taking into account the four vector character of the objects, we can use (1) and (2) to write

𝑑𝑝0/𝑑𝜏 = 𝛾 (𝑑𝑝′0/𝑑𝜏 + ⃗𝑣 ⋅ ⃗𝑑𝑝′/𝑑𝜏
𝑐 ) (13)

𝑑 ⃗𝑝/𝑑𝜏 = 𝑑 ⃗𝑝′/𝑑𝜏 + [(𝛾 − 1) ⃗𝑣 ⋅ 𝑑 ⃗𝑝′/𝑑𝜏
⃗𝑣2 + 𝛾 𝑑𝑝′0/𝑑𝜏

𝑐 ] ⃗𝑣. (14)

According to (12) 𝑑𝑝′0/𝑑𝜏 = 0 and the above reduces to

𝑑𝑝0/𝑑𝜏 = 𝛾 ⃗𝑣 ⋅ ⃗𝑑𝑝′/𝑑𝜏
𝑐 (15)

𝑑 ⃗𝑝/𝑑𝜏 = 𝑑 ⃗𝑝′/𝑑𝜏 + [(𝛾 − 1) ⃗𝑣 ⋅ 𝑑 ⃗𝑝′/𝑑𝜏
⃗𝑣2 ] ⃗𝑣. (16)

We need to get the scalar product ⃗𝑣 ⋅ 𝑑 ⃗𝑝′/𝑑𝜏 which is on the rhs of these expressions. Using (12),
(1), and (2) again,

𝑑 ⃗𝑝′/𝑑𝜏 = 𝑑 ⃗𝑝′
𝑖𝑛/𝑑𝜏 = 𝑑 ⃗𝑝𝑖𝑛/𝑑𝜏 + [(𝛾 − 1) ⃗𝑣 ⋅ 𝑑 ⃗𝑝𝑖𝑛/𝑑𝜏

⃗𝑣2 − 𝛾 𝑑𝑝0
𝑖𝑛/𝑑𝜏
𝑐 ] ⃗𝑣

⃗𝑣 ⋅ ⃗𝑑𝑝′/𝑑𝜏 = ⃗𝑣 ⋅ ⃗𝑑𝑝′
𝑖𝑛/𝑑𝜏 = 𝛾 [ ⃗𝑣 ⋅ ⃗𝑑𝑝𝑖𝑛/𝑑𝜏 − ⃗𝑣2𝑑𝑝0

𝑖𝑛/𝑑𝜏
𝑐 ] . (17)

Putting (17) into (15) and (16), and after some algebra, we arrive at

𝑑𝑝0/𝑑𝜏 = 𝛾2 [ ⃗𝑣
𝑐 ⋅ ⃗𝑑𝑝𝑖𝑛/𝑑𝜏 − ⃗𝑣2

𝑐2 𝑑𝑝0
𝑖𝑛/𝑑𝜏] (18)

𝑑 ⃗𝑝/𝑑𝜏 = 𝑑 ⃗𝑝𝑖𝑛/𝑑𝜏 + 𝛾2 [ ⃗𝑣 ⋅ 𝑑 ⃗𝑝𝑖𝑛/𝑑𝜏
𝑐 − 𝑑𝑝0

𝑖𝑛/𝑑𝜏] ⃗𝑣
𝑐 (19)
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Everything on the rhs of (18) and (19) is written in terms of 𝑆 frame (unprimed) quantities, so we
have formally solved the problem. However, it remains to determine those unprimed quantities
from the data given in the text, which corresponded to quantities of 𝑆′.

8. Taking into account (1), (2), (10) and (11) and 𝑑 ⃗𝑝′
𝑜𝑢𝑡/𝑑𝜏 = 0, that transforms in 𝑑𝑝0

𝑜𝑢𝑡/𝑑𝜏 =
𝛾 (𝑑𝑝′0

𝑜𝑢𝑡/𝑑𝜏) (or Φ = 𝛾Φ′), and also in 𝑑 ⃗𝑝𝑜𝑢𝑡/𝑑𝜏 = 𝛾 (𝑑𝑝′0
𝑜𝑢𝑡/𝑑𝜏) ⃗𝑣/𝑐 = Φ ⃗𝑣/𝑐2 we get

𝑑𝑝𝑖𝑛/𝑑𝜏 = (𝑑𝑝0
𝑖𝑛/𝑑𝜏, 𝑑 ⃗𝑝𝑖𝑛/𝑑𝜏) = Φ

𝑐 (1, ̂𝑒) (20)

𝑑𝑝𝑜𝑢𝑡/𝑑𝜏 = (𝑑𝑝0
𝑜𝑢𝑡/𝑑𝜏, 𝑑 ⃗𝑝𝑜𝑢𝑡/𝑑𝜏) = Φ

𝑐 (1, ⃗𝑣/𝑐) (21)

9. Using these values in the rhs of (18) and (19) we get

𝑑𝑝0/𝑑𝜏 = Φ
𝑐 (1 − 𝛾2Γ) (22)

𝑑 ⃗𝑝/𝑑𝜏 = Φ
𝑐 [ ̂𝑒 − 𝛾2Γ ⃗𝑣

𝑐 ] . (23)

10. Differentiating (𝑝0, ⃗𝑝) = 𝑚𝛾(𝑐, ⃗𝑣) with respect to time as we did in (7) for 𝑚 ⃗𝑣, we get

𝛾 𝑑𝑚
𝑑𝜏 = 0 (24)

𝛾 𝑑 ⃗𝑣
𝑑𝜏 = Φ

𝑚𝑐 [ ̂𝑒 − ⃗𝑣
𝑐 ] . (25)

The end result is an increasing acceleration in the direction of the incoming radiation and a
braking in the direction of ⃗𝑣. As expected, the change in mass occurs at a rate independent of
speed; it vanishes here because we chose 𝑄 = 1, all the energy that comes in goes out. For
𝑄 < 1, we would obtain 𝛾𝑑𝑚/𝑑𝜏 = (1 − 𝑄)Φ/𝑐2. A full account of these questions can be found
in Ref. [4].

Historical note. The problem we are dealing with here is the so-called Poynting-Robertson ef-
fect. The effects of absorption and re-emision of solar radiation on the motion of small bodies
were first analysed by Poynting1 at the beginning of last century, still in the ether paradigm
(it can be read in page 541 of that paper ”The ether, or whatever we term the lightbearing
medium, is material...”, etc.). Three decades later, Robertson2 reexamined this question from
the standpoint of the theory of relativity. Section 2 of this article provides a deep and beau-
tiful overview of the relativistic equations of motion of the system. Much later, Burns and his
colleagues3 wrote a paper designed to describe the problem for the astronomical community,
which became the standard reference on the subject. Finally, Klacka and its groupgave themost
complete treatment of this phenomenon. The essay4 collects relativistic and non-relativistic de-
scriptions of the effects of scattering, absorption, thermal emission, anisotropy etc., and the
competing phenomena of the solar wind.

1. J. H. Poynting, Radiation in the Solar System: its Effect on Temeprature and its Pressure on Small
Bodies, Phil. Trans. Roy. Soc., A, 202, 525, 1903.
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2. H. P. Robertson, DYNAMICAL EFFECTS OF RADIATION IN THE SOLAR SYSTEM, Mon. Not. Roy.
Astron. Soc. 97, 423.

3. J. A. Burns, Ph. L. Lamy and S. Soter, Radiation Forces on Small Particles in the Solar System,
Icarus 40, (1979) 1.

4. J. Klac̆ka, J. Petrz̆ala, P. Pástor and L. Kómar, The Poynting–Robertson effect: A critical per-
spective, Icarus 232 (2012) 249.
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