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The maser (Microwave Amplification by Stimulated Emission of Radiation) uses the stimulated
emission process to produce coherent electromagnetic waves through amplification. The first
maser was created by the Nobel Prize-winning Charles H. Townes in 1953, and was based on
the umbrella inversion mode of the ammonia molecule NH3. The structure of this molecule
consists of a pyramid with a nitrogen atom at the apex and one hydrogen atom at each corner
of the triangular base, see Figure 1 a). The umbrella inversion of ammonia corresponds to
the motion of the N atom relative to the H3 symmetrical triangle, i. e., the nitrogen atom
may be on both sides of the plane of hydrogen atoms. This phenomenon can be described by
a symmetric double-well potential possessing two quantum states, corresponding to the two
positions of the nitrogen atom, that are coupled.

Figure 1: Sketches (not up to scale) of a) the two states for the ammonia molecule (left), and
b) of the ammonia maser (right).

1. Ammonia can be described by the two quantum states

|𝑣1⟩ = (
1
0

) y |𝑣2⟩ = (
0
1

) ,

having energy 𝐸0, which are coupled by a constant potential, −𝐴, with 𝐴 = 0.04919 meV.

(a)[1P] obtain the Hamiltonian matrix 𝐻0 describing this quantum system, the two eigen-
states |𝑣𝑠⟩ and |𝑣𝑎⟩, their energies 𝐸0

𝑠 and 𝐸0
𝑎, and their energy splitting ℏ𝜔0 =

|𝐸0
𝑠 − 𝐸0

𝑎|.

2. The first step to create the maser is to spatially separate the symmetric and antisymmetric
states |𝑣𝑠⟩ and |𝑣𝑎⟩ of ammonia with an inhomogeneous electric field, which couples to
the electric dipole moment 𝜇, see Figure 1 b). To calculate this spatial separation:

(a)[2P] obtain the Hamiltonian matrix 𝐻 describing ammonia in a static electric field ⃗𝜀 =
𝜀𝑠 ̂𝑧, with 𝜀𝑠 being the electric field strength and ̂𝑧 the unit vector along the 𝑧-axis,
and determine the energies of the two eigenstates, 𝐸𝑠 and 𝐸𝑎,

(b)[1P] determine these energies, 𝐸𝑠 and 𝐸𝑎, in the weak and strong field regime, i. e., when
the electric field interaction is much smaller and larger than the coupling between
the two states,
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(c)[2P] in the weak field regime, obtain the force acting on the molecule for an electric field
⃗𝜀 = 𝜀𝑖

√
𝑧 ̂𝑧, with ̂𝑧 being the unit vector along the 𝑧-axis, and the spatial separation

of the two states with opposite parity after 0.1 s and 𝜀𝑖 = 0.2 MV/m3/2. Assume
that their initial velocity along this 𝑧-axis is zero.

3. In the second step, the molecules in the antisymmetric state enter a cavity with an
oscillating electric field ⃗𝜀 = 2𝜀0 cos(𝜔𝑡) ̂𝑧, with frequency 𝜔 and 𝛿 = ℏ𝜔 − ℏ𝜔0. This
cavity field induces a transition from the antisymmetric state to the symmetric one, and
the energy released is fed into the oscillatory field. This process is called stimulated
emission, and it allows for the conversion of molecular energy into the energy of an
external electromagnetic field. In the weak field regime and for a resonant cavity field
𝛿 = 0, determine:

(a)[2P] for a molecule initially in the antisymmetric state, the probability to remain on this
state or to perform a transition to the symmetric one,

(b)[1P] the time needed by the ammonia to leave the cavity on the symmetric state after a
single cycle for a cavity field strength 𝜀0 = 0.01 V/m,

(c)[1P] the length of this cavity if the molecules perform a single cycle from the asymmetric
state to the symmetric one. Assume that they move along the 𝑥-axis, which is
perpendicular to the cavity field, see Figure 1 b), at a temperature of 𝑇 = 300 K.

Hints:

i) Assume that the ammonia dipole moment always lays on the same axis as the applied
electric field.

ii) To solve the time-dependent Schrödinger equation:

• use the symmetric and antisymmetric basis states 𝑐𝑠(𝑡) and 𝑐𝑎(𝑡)

• perform the transformation 𝑐𝑠(𝑡) = 𝛾𝑠(𝑡)𝑒−𝑖𝑡 𝐸0−𝐴
ℏ and 𝑐𝑎(𝑡) = 𝛾𝑎(𝑡)𝑒−𝑖𝑡 𝐸0+𝐴

ℏ ,

• apply the rotating wave approximation by neglecting the terms proportional to
𝑒+𝑖𝑡(𝜔+𝜔0) and 𝑒−𝑖𝑡(𝜔+𝜔0), which rapidly oscillate around zero and in any appreciable
time scale of the system these oscillations quickly average to zero.

Data: Dipole moment of ammonia 𝜇 = 1.47𝐷, ℏ = 1.054571817 ⋅ 10−34 Js, 𝑘𝐵 = 1.380649 ⋅
10−23 J/K. The dalton or unified atomic mass unit is equal to 1.6605402 ⋅ 10−27 kg, and the
Debye is equal to 1𝐷 = 3.33564 ⋅ 10−30 C m. 1 eV= 1.60218 ⋅ 10−19 J.
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SOLUTION
The maser (Microwave Amplification by Stimulated Emission of Radiation) uses the stimulated
emission process to produce coherent electromagnetic waves through amplification. The first
maser was created by the Nobel Prize-winning Charles H. Townes in 1953, and was based on
the umbrella inversion mode of the ammonia molecule NH3. The structure of this molecule
consists of a pyramid with a nitrogen atom at the apex and one hydrogen atom at each corner
of the triangular base, see Figure 1 a). The umbrella inversion of ammonia corresponds to
the motion of the N atom relative to the H3 symmetrical triangle, i. e., the nitrogen atom
may be on both sides of the plane of hydrogen atoms. This phenomenon can be described by
a symmetric double-well potential possessing two quantum states, corresponding to the two
positions of the nitrogen atom, that are coupled.

Figure 1: Sketches (not up to scale) of the two states for the ammonia molecule (left), and of
the ammonia maser (right).

1. Ammonia can be described by the two quantum states

|𝑣1⟩ = (
1
0

) and |𝑣2⟩ = (
0
1

) ,

having energy 𝐸0, and being coupled by the constant potential −𝐴 with 𝐴 =
0.04919 meV.

(a)[1P] Obtain the Hamiltonian matrix 𝐻0 describing this quantum system, the two eigen-
states |𝑣𝑠⟩ and |𝑣𝑎⟩, their energies 𝐸0

𝑠 and 𝐸0
𝑎, and their energy splitting ℏ𝜔0 =

|𝐸0
𝑠 − 𝐸0

𝑎|.

Solution:

The Hamiltonian reads

𝐻0 = (
𝐸0 −𝐴
−𝐴 𝐸0

) ,
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and the Schrödinger equation 𝐻0|𝜙⟩ = 𝐸0|𝜙⟩. Diagonalizing the Hamiltonian matrix, we
get the following symmetric and antisymmetric eigenstates and their energies

|𝑣𝑠⟩ = 1√
2

(
1
1

) , 𝐸0
𝑠 = 𝐸0 − 𝐴, and |𝑣𝑎⟩ = 1√

2
(

1
−1

) , 𝐸0
𝑎 = 𝐸0 + 𝐴.

The energy splitting between them is ℏ𝜔0 = |𝐸0
𝑠 − 𝐸0

𝑎| = 2𝐴, which is ℏ𝜔0 =
0.09838 meV= 1.576 ⋅ 10−23 J.

2. The first step to create the maser is to spatially separate the symmetric and antisymmetric
states |𝑣𝑠⟩ and |𝑣𝑎⟩ of ammonia with an inhomogeneous electric field, which couples to
the electric dipole moment 𝜇, see Figure 1 b). To calculate this spatial separation:

(a)[2P] Obtain the Hamiltonian matrix 𝐻 describing ammonia in a static electric field ⃗𝜀 =
𝜀𝑠 ̂𝑧, with 𝜀𝑠 being the electric field strength and ̂𝑧 the unit vector along the 𝑧-axis,
and determine the energies of the two eigenstates, 𝐸𝑠 and 𝐸𝑎,

Solution:

The dipole moment of ammonia couples to the electric field as ⃗𝜇 ⋅ ⃗𝜀. As indicated in
the first hint given at the end of the exercise, we consider that the dipole moment is
always along the electric field axis. Taking into account that the two inversion modes
have dipole moments with opposite directions, see Figure 1 a), the Hamiltonian of
ammonia in the presence of the electric field reads

𝐻 = (
𝐸0 + 𝜇𝜀𝑠 −𝐴

−𝐴 𝐸0 − 𝜇𝜀𝑠
) ,

Solving the corresponding Schrödinger equation, the eigenenergies are

𝐸𝑠 = 𝐸0 − √𝐴2 + 𝜇2𝜀2
𝑠 and 𝐸𝑎 = 𝐸0 + √𝐴2 + 𝜇2𝜀2

𝑠.

(b)[1P] determine these field-dressed energies in the weak and strong field regime, i. e., when
the electric field interaction is much smaller and larger than the coupling between
the two states,

Solution:

The weak field regime appears if 𝜇𝜀𝑠 ≪ 𝐴, the eigenenergies can be written as

𝐸𝑠 = 𝐸0 − 𝐴√1 + 𝜇2𝜀2
𝑠

𝐴2 and 𝐸𝑎 = 𝐸0 + 𝐴√1 + 𝜇2𝜀2
𝑠

𝐴2 ,
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and we use the following approximation
√

1 + 𝑥 ≈ 1 + 𝑥
2 for |𝑥| ≪ 1, in this case

𝑥 = 𝜇2𝜀2
𝑠

𝐴2 . In this weak field regime, the eigenenergies show a quadratic dependence
on the field strength

𝐸𝑠 = 𝐸0 − 𝐴 − 1
2

𝜇2𝜀2
𝑠

𝐴
and 𝐸𝑎 = 𝐸0 + 𝐴 + 1

2
𝜇2𝜀2

𝑠
𝐴

.

The strong field regime appears if 𝜇𝜀𝑠 ≫ 𝐴, the eigenenergies can be written as

𝐸𝑠 = 𝐸0 − 𝜇𝜀𝑠√1 + 𝐴2

𝜇2𝜀2
𝑠

and 𝐸𝑎 = 𝐸0 + 𝜇𝜀𝑠√1 + 𝐴2

𝜇2𝜀2
𝑠
,

Using, the following approximation √1 + 𝐴2

𝜇2𝜀2
𝑠

≈ 1 + 𝐴2

2𝜇2𝜀2
𝑠
, we obtain that in the

strong field regime the energies, in first order, depend lineally on the field strength

𝐸𝑠 = 𝐸0 − 𝜇𝜀𝑠 − 1
2

𝐴2

𝜇𝜀𝑠
and 𝐸𝑎 = 𝐸0 + 𝜇𝜀𝑠 + 1

2
𝐴2

𝜇𝜀𝑠
.

(c)[2P] in the weak field regime, obtain the force acting on the molecule for an electric field
⃗𝜀 = 𝜀𝑖

√
𝑧 ̂𝑧, with ̂𝑧 being the unit vector along the 𝑧-axis, and the spatial separation

of the two states with opposite parity after 0.1 s and 𝜀𝑖 = 0.2 MV/m3/2. Assume
that their initial velocity along this 𝑧-axis is zero.

Solution:

The force acting on ammonia is 𝐹 = −∇𝐸. For the symmetric and antisymmetric
states, it yields

𝐹𝑠 = 1
2

𝜇2

𝐴
∇𝜀2 and 𝐹𝑎 = −1

2
𝜇2

𝐴
∇𝜀2,

using 𝜀 = 𝜀𝑖
√

𝑧, we obtain

𝐹𝑠 = 1
2

𝜇2

𝐴
𝜀2

𝑖 and 𝐹𝑎 = −1
2

𝜇2

𝐴
𝜀2

𝑖 .

and for the accelerations,

𝑎𝑠 = 1
2

𝜇2𝜀2
𝑖

𝐴𝑚𝑁𝐻3

and 𝑎𝑎 = −1
2

𝜇2𝜀2
𝑖

𝐴𝑚𝑁𝐻3

with 𝑚𝑁𝐻3
= 3𝑚𝐻 + 𝑚𝑁, 𝑚𝐻 and 𝑚𝑁 being the masses of the hydrogen and

nitrogen atoms, respectively.
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Their numerical values of the accelerations are 𝑎𝑠 = −𝑎𝑎 = 2.161 ms−2, where we
have used 𝜀𝑖 = 0.2 MV/m3/2, 𝜇 = 1.47 D= 4.0934 ⋅ 10−30 cm, and 𝑚𝑁𝐻3

= 17 Da=
2.823 ⋅ 10−26 kg.

The position of the ammonia molecules along the 𝑧-axis is 𝑧 = 𝑧0 + 𝑣0𝑡 + 𝑡2𝑎/2. As
indicated in the problem 𝑣0 = 0, and we can take 𝑧0 = 0 without loss of generality,
we obtain that in 0.1 s each state is shifted 1.08 cm in opposite directions, and their
spatial separation is 2.16 cm.

3. In the second step, the molecules in the antisymmetric state enter a cavity with an
oscillating electric field ⃗𝜀 = 2𝜀0 cos(𝜔𝑡) ̂𝑧, with frequency 𝜔, and 𝛿 = ℏ𝜔 − ℏ𝜔0. This
cavity field induces a transition from the antisymmetric state to the symmetric one, and
the energy released is fed into the oscillatory field. This process is called stimulated
emission, and it allows for the conversion of molecular energy into the energy of an
external electromagnetic field. In the weak field regime and for a resonant cavity field
𝛿 = 0, determine:

Solution:

For the questions of this part, we need to solve time-dependent Schrödinger equation

𝑖ℏ 𝑑
𝑑𝑡

|𝜓⟩ = 𝐻|𝜓⟩ with 𝐻 = (
𝐸0 + 𝜇𝜀𝑠(𝑡) −𝐴

−𝐴 𝐸0 − 𝜇𝜀𝑠(𝑡)
) ,

which is a systems of coupled differential equations

𝑖ℏ𝑑𝑐1(𝑡)
𝑑𝑡

= [𝐸0 + 2𝜇𝜀0 cos(𝜔𝑡)] 𝑐1(𝑡) − 𝐴𝑐2(𝑡) (1)

𝑖ℏ𝑑𝑐2(𝑡)
𝑑𝑡

= [𝐸0 − 2𝜇𝜀0 cos(𝜔𝑡)] 𝑐2(𝑡) − 𝐴𝑐1(𝑡) (2)

We transform them to the basis 𝑐𝑠(𝑡) = 𝑐1(𝑡) + 𝑐2(𝑡) and 𝑐𝑎(𝑡) = 𝑐1(𝑡) − 𝑐2(𝑡), obtaining

𝑖ℏ𝑑𝑐𝑠(𝑡)
𝑑𝑡

= (𝐸0 − 𝐴)𝑐𝑠(𝑡) + 2𝜇𝜀0 cos(𝜔𝑡)𝑐𝑎(𝑡) (3)

𝑖ℏ𝑑𝑐𝑎(𝑡)
𝑑𝑡

= (𝐸0 + 𝐴)𝑐𝑎(𝑡) + 2𝜇𝜀0 cos(𝜔𝑡)𝑐𝑠(𝑡) (4)

This systems of differential equations is further simplified with the change

𝑐𝑠(𝑡) = 𝛾𝑠(𝑡)𝑒−𝑖𝑡 𝐸0−𝐴
ℏ and 𝑐𝑎(𝑡) = 𝛾𝑎(𝑡)𝑒−𝑖𝑡 𝐸0+𝐴

ℏ ,

where 𝛾𝑠(𝑡) and 𝛾𝑎(𝑡) satisfy

𝑖ℏ𝑑𝛾𝑠(𝑡)
𝑑𝑡

= 2𝜇𝜀0 cos(𝜔𝑡)𝛾𝑎(𝑡)𝑒−𝑖𝑡 2𝐴
ℏ (5)

𝑖ℏ𝑑𝛾𝑎(𝑡)
𝑑𝑡

= 2𝜇𝜀0 cos(𝜔𝑡)𝛾𝑠(𝑡)𝑒𝑖𝑡 2𝐴
ℏ (6)

Question 4. The Ammonia Maser Page 6



Using the expression of the cosine in terms of exponentials, these equations read

𝑖ℏ𝑑𝛾𝑠(𝑡)
𝑑𝑡

= 𝜇𝜀0 [𝑒−𝑖𝑡(𝜔−𝜔0) + 𝑒+𝑖𝑡(𝜔+𝜔0)] 𝛾𝑎(𝑡) (7)

𝑖ℏ𝑑𝛾𝑎(𝑡)
𝑑𝑡

= 𝜇𝜀0 [𝑒𝑖𝑡(𝜔−𝜔0) + 𝑒−𝑖𝑡(𝜔+𝜔0)] 𝛾𝑠(𝑡) (8)

where we have used ℏ𝜔0 = 2𝐴. The terms 𝑒+𝑖𝑡(𝜔+𝜔0) and 𝑒−𝑖𝑡(𝜔+𝜔0) rapidly oscillate
around zero, the rotating wave approximation neglects them on the basis that on any
appreciable time scale of the system these oscillations will quickly average to zero. As a
consequence, the system of differential equation reads

𝑖ℏ𝑑𝛾𝑠(𝑡)
𝑑𝑡

= 𝜇𝜀0𝑒−𝑖𝑡(𝜔−𝜔0)𝛾𝑎(𝑡) (9)

𝑖ℏ𝑑𝛾𝑎(𝑡)
𝑑𝑡

= 𝜇𝜀0𝑒𝑖𝑡(𝜔−𝜔0)𝛾𝑠(𝑡) (10)

The cavity field is resonant if ℏ𝜔 = ℏ𝜔0 = 2𝐴, and these equations are further simplified
as

𝑖ℏ𝑑𝛾𝑠(𝑡)
𝑑𝑡

= 𝜇𝜀0𝛾𝑎(𝑡) (11)

𝑖ℏ𝑑𝛾𝑎(𝑡)
𝑑𝑡

= 𝜇𝜀0𝛾𝑠(𝑡) (12)

To solve them, we derivate the first equation and substitute the second one on the first
one obtaining

𝑑2𝛾𝑠(𝑡)
𝑑2𝑡

= −𝜇2𝜀2
0

ℏ2 𝛾𝑠(𝑡) (13)

The solutions are

𝛾𝑠(𝑡) = 𝑐1 cos (𝜇𝜀0
ℏ

𝑡) + 𝑐2 sin (𝜇𝜀0
ℏ

𝑡) (14)

𝛾𝑎(𝑡) = 𝑖𝑐2 cos (𝜇𝜀0
ℏ

𝑡) − 𝑖𝑐1 sin (𝜇𝜀0
ℏ

𝑡) (15)

where 𝑐1 and 𝑐2 are constants to be determined by the initial conditions. For 𝑡 = 0, the
ammonia is on the asymmetric state 𝛾𝑎(𝑡 = 0) = 1 and 𝛾𝑠(𝑡 = 0) = 0, obtaining 𝑐1 = 0,
𝑐2 = −𝑖, and

𝛾𝑠(𝑡) = −𝑖 sin (𝜇𝜀0
ℏ

𝑡) and 𝛾𝑎(𝑡) = cos (𝜇𝜀0
ℏ

𝑡) (16)

(a)[2P] for a molecule initially on the antisymmetric state, the probability to remain on this
state or to perform a transition to the symmetric one,
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Solution:

The probability that ammonia remains on the antisymmetric state is 𝑃𝑎(𝑡) =
|𝛾𝑎(𝑡)|2 = cos2 (𝜇𝜀0

ℏ 𝑡).

The probability that ammonia performs a transition to the symmetric state is
𝑃𝑠(𝑡) = |𝛾𝑠(𝑡)|2 = sin2 (𝜇𝜀0

ℏ 𝑡).

(b)[1P] the time needed by the ammonia to leave the cavity on the symmetric state after a
single cicle for a cavity field strength 𝜀0 = 0.01 V/m,

Solution:

The ammonia leaves the cavity on the symmetric state if 𝑃𝑠(𝑇 ) = 1, i. e.,
sin2 (𝜇𝜀0

ℏ 𝑇) = 1, which holds if 𝑇 = 𝑛𝜋ℏ
2𝜇𝜀0

with 𝑛 = 1, 3, … . Taking 𝑛 = 1 and
𝜀0 = 0.01 V/m, it yields 𝑇 = 3.38 ms.

(c)[1P] the length of this cavity if the molecules perform a single cicle from the asymmetric
state to the symmetric one. Assume that they move along the 𝑥-axis, which is
perpendicular to the cavity field, see Figure 1 b), at a temperature of 𝑇 = 300 K.

Solution:

For a Maxwell-Boltzmann distribution, the most probable velocity is given by

𝑣 = √
2𝑘𝐵𝑇
𝑚𝑁𝐻3

. (17)

For 𝑇 = 300 K, it yields 𝑣 = 541.71 m/s. For the length of the cavity, we use this
velocity and the time needed to perform a single cycle within the cavity computed
in the previous question 𝑇 = 3.38 ms. Thus, the cavity length is 𝐿 = 𝑣𝑡 = 1.83 m.

Data: Dipole moment of ammonia 𝜇 = 1.47𝐷, ℏ = 1.054571817 ⋅ 10−34 Js, 𝑘𝐵 = 1.380649 ⋅
10−23 J/K. The dalton or unified atomic mass unit is equal to 1.6605402 ⋅ 10−27 kg, and the
Debye is equal to 1𝐷 = 3.33564 ⋅ 10−30 C m. 1 eV= 1.60218 ⋅ 10−19 J.

Historic remark: This problem is based on the lecture about The Ammonia Maser given
in 1963 by Richard Feynman at The California Institute of Technology, see https://www.
feynmanlectures.caltech.edu/III_09.html, Figure1 a) and Figure 1 b) were adapted from this
web page.
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