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The relativistic Lagrangian for a particle of mass 𝑚 in motion in the central potential 𝑉 (𝑟) = −𝑘/𝑟 (with𝑘 > 0) is (in natural units 𝑐 = 1) .

𝐿 = −𝑚√1 − ̇r2 − 𝑉 (𝑟) (𝑟 = |r|).

1) Determine the quantitites J and 𝐸 that are conserved as a result of the invariance of the Lagrangian
under rotations and time translations (i.e., the relativistic angular momentum and energy respectively).
Show that, as in the non relativistica case, the motion remains within a plane passing through the origin
of coordinates. [0.5 points]

Solución:
J = r × 𝜕𝐿𝜕 ̇r = 𝑚r × ̇r√1 − ̇r2

≡ 𝑇r × ̇r , 𝐸 = ̇r ⋅ 𝜕𝐿𝜕 ̇r − 𝐿 = 𝑚√1 − ̇r2
− 𝑘𝑟 ≡ 𝑇 − 𝑘𝑟 ,

where 𝑇 = 𝑚/√1 − ̇r2 is the relativistic kinetic energy. Due to J and orthogonality between r and J, the
motion is in the plane orthogonal to J that goes through the origin.

2) Taking the plane of motion so that J = 𝐽e
𝑧

with 𝐽 = |J| > 0, express the relativistic kinetic energy of
the particle 𝑇 as a function of 𝐽, 𝑟 and ̇𝑟. [1 point]

Solución: Be 𝑟 y 𝜃 the polar coordinates in the plane of motion 𝑧 = 0,

𝐽 = 𝑇 𝑟2 ̇𝜃 ⟹ ̇r2 = ̇𝑟2 + 𝑟2 ̇𝜃2 = ̇𝑟2 + 𝐽2

𝑇 2𝑟2
⟹ 𝑚2 = 𝑇 2(1 − ̇r2) = 𝑇 2(1 − ̇𝑟2) − 𝐽2

𝑟2

⟹ 𝑇 = √𝑚2 + 𝐽2/𝑟2

1 − ̇𝑟2
.

3) Let 1/𝑟 = 𝑢(𝜃) be the equation of the orbits. Using both, conservation of energy and relativistic angular
momentum, find the first order differential equation satisfied by 𝑢(𝜃). (Help: according to subsection 2)𝑇 2 = 𝐴(𝑟) + 𝑇 2 ̇𝑟2 for a certain function 𝐴(𝑟).) en [2.5 points]

Solución:

(𝐸 + 𝑘𝑢)2 = 𝑇 2 = 𝑚2 + 𝐽2𝑢2 + 𝑇 2 ̇𝑟2 = 𝑚2 + 𝐽2𝑢2 + 𝑇 2 ̇𝜃2𝑟′(𝜃)2 = 𝑚2 + 𝐽2𝑢2 + 𝐽2𝑢4𝑟′(𝜃)2

= 𝑚2 + 𝐽2𝑢2 + 𝐽2𝑢′(𝜃)2 ⟹ 𝑢′(𝜃)2 = 1𝐽2
[(𝐸 + 𝑘𝑢)2 − 𝑚2 − 𝐽2𝑢2] .

4) Let’s assume from now on that (as it happens in the planetary motion) 𝑘 < 𝐽. Using the equation in
the previous section, prove that the relativistic energy 𝐸 is positive. [1 point]

Solución: We can write the previous equation as follows

𝑢′2 = −𝛾2𝑢2 + 2𝑘𝐸𝐽2
𝑢 + 𝐸2 − 𝑚2

𝐽2
≡ 𝑃(𝑢) , 𝛾2 ≡ 1 − 𝑘2

𝐽2
> 0 .
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Figure 1: gráfica de 𝑃(𝑢) para 𝐸 ≥ 𝑚 (izda.) y 𝑚𝛾 ≤ 𝐸 < 𝑚 (drcha.).

For 𝐸 ≤ 0, this equation implies that 𝐸2 ≥ 𝑚2. In this case, the point 𝑢 = 0, that is 𝑟 = ∞, would be within
the accesible region 𝑃(𝑢) ≥ 0. However, if the particle reaches the spatial infinity 𝐸 = 𝑇 |

𝑟=∞
> 0, which

is against the hypothesis that 𝐸 ≤ 0.

5) Determine for which values of 𝐸 and 𝐽 the particle describes a bounded orbit that does not reach the
origin of coordinates. [1 point]

Solución: As seen in the previous question, the equation for the accesible region is 𝑃(𝑢) ≥ 0 and the
energy 𝐸 is positive. With 𝑃(0) = (𝐸2 − 𝑚2)/𝐽2 and for 𝐸 ≥ 𝑚, the trajectories either fall in the origin,
or they reach infinity, or both (cf. la Fig. 1 izda.). Hence, bound orbits with 0 < 𝑟

0
≤ 𝑟 ≤ 𝑟

1
< ∞ should

have an energy 𝐸 ∈ (0, 𝑚). Besides, the polynomial 𝑃(𝑢) must have two positive real roots. As in this
case 𝑃(0) < 0 and 𝑃 ′(0) = 2𝑘𝐸/𝐽2 > 0, the necessary and sufficient condition for this to occur is that the
discriminant of 𝑃 is not negative, that is

(𝑘𝐸𝐽2
)2 + 𝛾2

𝐽2
(𝐸2 − 𝑚2) ≥ 0 ⟺ 𝑘2𝐸2 + 𝛾2𝐽2(𝐸2 − 𝑚2) ≥ 0 ⟺ 𝐸 ≥ 𝑚𝛾 .

(cf. Fig. 1 dcha.). Note that this last condition is consistent with the previous one (0 < 𝐸 < 𝑚), since 𝛾 < 1.
In short, the requested conditions are

𝑚𝛾 ≤ 𝐸 < 𝑚 .

6) Find the equation of the bounded orbits in the previous section. (Help: derive the first-order equation
for 𝑢(𝜃) and integrate the resulting second order differential equation.) [2 points]

Solución:

2𝑢′𝑢″ = 𝑢′𝑃 ′(𝑢) ⟹ 𝑢″ = 12 𝑃 ′(𝑢) = −𝛾2𝑢+ 𝑘𝐸𝐽2
⟺ 𝑢″ +𝛾2𝑢 = 𝑘𝐸𝐽2

⟹ 𝑢 = 𝑘𝐸𝛾2𝐽2
+𝐴 cos(𝛾(𝜃−𝜃

0
)) ,

where 𝜃
0

is an integration constant and the constant 𝐴 is easily calculated by substituting it into the
first-order differential equation:

𝐴 = √𝐸2 − 𝑚2𝛾2

𝛾𝐽
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(Note that 𝐴 can be taken non-negative without loss of generality, because if it were not it would suffice
to change 𝜃

0
for 𝜃

0
+ 𝜋/𝛾).

7) A periapsis of a bounded orbit is a point of the orbit at minimum distance from the origin. The dis-
placement of the periapsis of a bounded orbit is defined as Δ𝜃 = 𝛿𝜃 − 2𝜋, where 𝛿𝜃 is the angle between
two successive periapses. Calculate the displacement of the periapsis of the orbits of the previous sec-
tion. en [1 point]

Solución: nótese que las órbitas del apartado anterior solo son cerradas si 𝑢 es una función periódica
de 𝜃, es decir si 𝛾 es un múltiplo racional de 2𝜋. Como 𝐴 ≥ 0, el ángulo 𝜃 en un periápside de la órbita
está dado por

Note that the orbits of the previous section are only closed if 𝑢 is a periodic function of 𝜃, that is, if 𝛾 is a
rational multiple of 2𝜋. As 𝐴 ≥ 0, the angle 𝜃 in a periapsis of the orbit is given by

𝜃 = 𝜃
0

+ 2𝑘𝜋𝛾 , con 𝑘 ∈ ℤ .
Por tanto 𝛿𝜃 = 2𝜋𝛾 ⟹ Δ𝜃 = 2𝜋 (1𝛾 − 1) > 0.

8) In planetary motion, 𝛾 ≃ 1 and closed orbits differ very little from the non-relativistic ellipses. Express
approximately in this case the displacement of the periapsis as a function of the semimajor axis of the
orbit 𝑎 and its eccentricity 𝑒. [1 point]

Solución: As the closed orbits are approximately elliptical for 𝛾 ≃ 1, we can use as a very good approxi-
mation the relativistic formula relating 𝐽 to 𝑎 and 𝑒, that is

𝐽2 = 𝑚𝑘𝑎(1 − 𝑒2) .
Substituting in the formula of the previous question, we get

Δ𝜃 ≃ 2𝜋(1 − 𝛾) = 2𝜋 (1 − √1 − 𝑘2

𝐽2
) ≃ 𝜋𝑘2

𝐽2
= 𝜋𝑘𝑚𝑎(1 − 𝑒2) = 𝜋𝐺𝑀𝑎(1 − 𝑒2) ,

where 𝑀 is the Sun mass.

Comments.

• Restoring the speed of light we get

Δ𝜃 = 𝜋𝐺𝑀𝑐2𝑎(1 − 𝑒2) ,
This is exactly 1/6 od the correct result obtained using General Relativty. This problem therefore
demonstrates that Special Relativity is insufficient to explain the correct value of the perihelion
displacement of the planets with an acceptable approximation.
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• En el caso del planeta Mercurio se puede comprobar fácilmente que la aproximación utilizada (𝑘 ≪𝐽) para obtener la fórmula de Δ𝜃 del último apartado está plenamente justificada. En efecto, en
primer lugar la velocidad máxima de Mercurio es 𝑣max = 58.98 km < 2 ⋅ 10−4𝑐, por lo que los efectos
relativistas son pequeños y podemos calcular 𝐽 utilizando la ecuación no relativista del apartado
anterior. En tal caso (restaurando de nuevo la velocidad de la luz)

In the case of the planet Mercury, it can be easily verified that the approximation used (𝑘 ≪ 𝐽) to
obtain the formula of Δ𝜃 in the last section is fully justified. In effect, Mercury’s maximum speed
is 𝑣max = 58.98 km < 2 ⋅ 10−4𝑐, so the relativistic effects are small and we can calculate 𝐽 using the
non-relativistic equation of the previous section. In such a case (restoring the speed of light again)

𝑘2

𝐽2𝑐2
= 𝑅𝑎(1 − 𝑒2) ,

where 𝑅 = 𝐺𝑀/𝑐2 = 1.477 km is the gravitational radius of the Sun. Using the values

𝑎 = 5.791 ⋅ 107
km , 𝑒 = 0.2056

we get 𝑘2

𝐽2𝑐2
= 1.24 ⋅ 10−8.
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Figure 1: Representation of a refrigerator. Energy currents are indicated with the sign convention used.

Introduction and context
Consider a quantum system Σ in contact with two different thermal baths at temperatures 𝑇𝑐 (cold) and
𝑇ℎ (hot) respectively, with 𝑇𝑐 < 𝑇ℎ. When the whole system (machine) is operating as a refrigerator some
power 𝑃 is injected in Σ, some energy per unit time (energy current) 𝑄̇ℎ is extracted from the system and
delivered to the hot bath, and energy per unit time 𝑄̇𝑐 is extracted from the cold bath towards Σ. It is
assumed that the whole system is operating at stationary conditions.

The energy per unit time that enters the system Σ is taken positive. In figure (1) the machine energy
fluxes between baths and Σ are schematically represented. As Σ is a quantum system in contact with
thermal reservoirs two important constants of the problem are the Planck’s constant ℎ and the Boltz-
mann’s constant 𝑘𝐵. Notice that conservation of energy demands that

𝑄̇𝑐 + 𝑄̇ℎ + 𝑃 = 0.

Three level maser
A simple choice for Σ is a three level system with Bohr frequencies 𝜔𝑐, 𝜔ℎ and 𝜔 = 𝜔ℎ − 𝜔𝑐. A periodic
driving with frequency 𝜔 is externally applied as power source. For instance, by applying a coherent
laser field. As a matter of fact, Σ exchanges photons of energy ℏ𝜔𝑐 and ℏ𝜔ℎ with the cold and hot baths
respectively. From now on we shall set ℏ = ℎ/2𝜋 = 𝑘𝐵 = 1.

In addition, the Second Law of Thermodynamics states that the entropy production ̇𝑆 (entropy produced
per unit time) of the process satisfies

̇𝑆 = −𝑄̇𝑐𝑇𝑐

− 𝑄̇ℎ𝑇ℎ

≥ 0. (1)

For the three-level maser, in certain conditions that involve the high temperature limit, it is found that

𝑄̇𝑐 = 𝜔𝑐𝐼
𝑄̇ℎ = −𝜔ℎ𝐼

𝑃 = −(𝜔𝑐 − 𝜔ℎ)𝐼, with

𝐼 = 𝜅 ( 𝜔𝑐𝜔ℎ

)𝑑−1 (𝜔ℎ𝑇ℎ

− 𝜔𝑐𝑇𝑐

) , 𝑑 = 1, 2, 3 and 𝜅 =constant > 0 (2)

Suppose that all parameters are fixed except 𝜔𝑐 —forwhich it is assumed that a good experimental
control is possible —and answer the following questions.
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Cooling window
Show that the maximum frequency 𝜔𝑐 at which the machine can operate as a refrigerator is

𝜔𝑐,𝑀𝑎𝑥 = 𝜔ℎ

𝑇𝑐𝑇ℎ

. (3)

The set of frequencies within (0, 𝜔𝑐,𝑀𝑎𝑥) are named as the cooling window of the machine. [1.5 points]

Efficiency

Show that the efficiency of the refrigerator, defined as 𝜖 = 𝑄̇𝑐/𝑃, is such that 𝜖 ∈ [0, 𝜖𝐶], where

𝜖𝐶 = 𝑇𝑐𝑇ℎ − 𝑇𝑐

[1.5 points]

Maximum cooling power
At what frequency 𝜔∗

𝑐 the extraction of energy per unit time from the cold bath is maximum? [2 points]

Efficiency at maximum cooling power
When the machine operates at frequency 𝜔∗

𝑐, what is the limit of the ratio

𝜖(𝜔∗
𝐶)

𝜖𝐶

(4)

when 𝜖𝐶 → 0? [4 points]

Tuning
What would happen if 𝜔𝑐 is tuned within the interval (𝜔𝑐,𝑀𝑎𝑥, 𝜔ℎ)? [1 point]

Solutions

Cooling window

The machine operates as a refrigerator when 𝑄̇𝑐 > 0 which is equivalent to 𝐼 > 0. This means that

(𝜔ℎ𝑇ℎ

− 𝜔𝑐𝑇𝑐

) > 0. (5)

If all parameters are fixed, the previous condition implies that 𝜔𝑐 ≤ 𝜔ℎ
𝑇 𝑐
𝑇ℎ

= 𝜔𝑐,𝑀𝑎𝑥.

Efficiency
The efficiency of this machine equals

𝜖 = 𝜔𝑐𝜔ℎ − 𝜔𝑐

, (6)

which is a monotonically increasing function of 𝜔𝑐. Hence the maximum efficiency is reached for 𝜔 =
𝜔𝑐,𝑀𝑎𝑥 frequency at which

𝜖(𝜔𝑐,𝑀𝑎𝑥) ≡ 𝜖𝐶 = 𝑇𝑐𝑇ℎ − 𝑇𝑐

, (7)
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Maximum cooling power

The energy per unit time extracted form the cold bath is 𝑄̇𝑐(𝜔𝑐) that reaches its maximum when the
following conditions are satisfied,

𝜕𝑄̇𝑐𝜕𝜔𝑐

= 0 with
𝜕2𝑄̇𝑐𝜕𝜔2

𝑐

< 0. (8)

From the first condition in (8) it is obtained that for

𝜔∗
𝑐 = 𝑑

𝑑 + 1𝜔ℎ

𝑇𝑐𝑇ℎ

, 𝑄̇𝑐 has an extreme. To confirm that such extreme is a maximum, we notice that for the range of fre-
quencies 𝜔𝑐 ∈ [0, 𝜔𝑐,𝑀𝑎𝑥], 𝑄̇𝑐 is positive and that its only zeroes are located at the boundaries 𝜔𝑐 = 0 (zero
with multiplicity 𝑑) and 𝜔𝑐 = 𝜔𝑐,𝑀𝑎𝑐. Hence the extreme value of 𝑄̇𝑐 is a maximum.

The fact that the located extreme is a maximum can also be worked out explicitly evaluating the second
derivative referred in (8).

Efficiency at maximum cooling power
The efficiency at 𝜔∗

𝑐 is given by

𝜖(𝜔∗
𝑐) = 𝛼𝑇𝑐𝑇ℎ − 𝛼𝑇𝑐

, with 𝛼 = 𝑑
𝑑 + 1. (9)

As we are asked for the behavior of 𝜖(𝜔∗
𝑐) for small 𝜖𝐶. We can use the definition 𝜖𝐶 = 𝑇𝑐/(𝑇ℎ − 𝑇𝑐) to get

𝑇𝑐 = 𝑇ℎ

𝜖𝐶1 + 𝜖𝐶

, (10)

that for small 𝜖𝐶 can be approximated by

𝑇𝑐 ≈ 𝑇ℎ𝜖𝐶(1 − 𝜖𝐶) + 𝑂(𝜖3
𝐶) (11)

By using this last expression in equation 9 the result follows, 𝑖.𝑒.
𝜖(𝜔∗

𝑐)
𝜖𝐶

≈ 𝑑
𝑑 + 1, for small 𝜖𝐶 (12)

Tuning

When 𝜔𝑐 ∈ (𝜔𝑐,𝑀𝑎𝑥, 𝜔ℎ) it follows from equations (2) that 𝑄̇𝑐 < 0, 𝑄̇ℎ > 0 and 𝑃 < 0 which means that in
this case the machine will operate as an engine, delivering photons to the laser field, energy that can be
use to produced work.
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Perpendicular, uniform, and constant electric and magnetic fields are applied on a particle of electric
charge 𝑄 that is at rest at the origin of coordinates of an inertial system 𝐾, (assume that ⃗𝐸 = 𝐸 ⃗𝑗 and
𝐵⃗ = 𝐵𝑘⃗ ),

(a) Explain qualitatively what the particle motion will be. (1 point)

(b) Check the previous explanation by solving the equations of motion in the non-relativistic approxima-
tion in which the velocity of the particle is 𝑣 ≪ 𝑐. What conditions have to be met for this approach to be
adequate? (2 points)

(c) Calculate the motion of the particle in the relativistic case. (4 points)
Help: Make a Lorentz transformation to an inertial system 𝐾′ in which the electric field is zero. Determine
the motion of the particle in that system and then transform back to the original system 𝐾. Assume that
𝐸 < 𝑐𝐵.

(d) Compare the previous relativistic result with that of the non-relativistic section (b). (1 point)

(e) Compare the relativistic results in 𝐾 and 𝐾′ obtained in section (c), discussing what it takes to repeat
the motion according to each system, and also the orbit that describes the particle. (2 points)

Solution
(a) At rest ⃗𝐹𝐸 = 𝑄𝐸 ⃗𝑗. For 𝑣 along the Y axis there is an additional magnetic force ⃗𝐹𝐵 = 𝑄(𝑣 ⃗𝑗)×(𝐵𝑘⃗) = 𝑄𝑣𝐵 ⃗𝑖
pushing the particle in the direction of the X axis.

The faster it goes, the greater ⃗𝐹𝐵 is made and eventually the particle’s trajectory curves back to the X
axis. The charge now moves against ⃗𝐹𝐸, loses speed, ⃗𝐹𝐵 decreases and ⃗𝐹𝐸 takes control, leading the
charge to rest at point 𝐴 of the figure.

The process then begins again, taking the particle to point B, etc.

1.jpg

(b) ⃗𝐹 = 𝑄( ⃗𝐸 + ⃗𝑣 × 𝐵⃗)

• The electric force follows the Y axis.

• The magnetic force is perpendicular to B and therefore it is exerted in the XY plane.
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• The particle is initially at rest. Hence ⃗𝑣 component along the Z axis will be zero, ⃗𝑣 = (𝑣𝑥, 𝑣𝑦, 0).

⃗𝐹 = 𝑄(𝐸 ⃗𝑗 + 𝐵𝑣𝑦 ⃗𝑦 − 𝐵𝑣𝑥
⃗𝑗) = 𝑄𝐵𝑣𝑦 ⃗𝑦 + 𝑄(𝐸 ⃗𝑗 − 𝐵𝑣𝑥

⃗𝑗)

⃗𝐹 =
𝑑 ⃗𝑝

𝑑𝑡
, ⃗𝑝 = 𝛾𝑣𝑚 ⃗𝑣, 𝛾𝑣 = (1 − 𝑣2/𝑐2)−1/2 ⟶

𝑣≪𝑐
1

⃗𝐹 ≈ 𝑚 ̇⃗𝑣 ⇒ 𝑄𝐵𝑣𝑦 = 𝑚 ̇𝑣𝑥, 𝑄(𝐸 − 𝐵𝑣𝑥) = 𝑚 ̇𝑣𝑦

with 𝜔0 ≡ 𝑄𝐵
𝑚 (that would be the cyclotron frequency that the particle would have in the absence of

electric field), we have
̇𝑣𝑥 = 𝜔0𝑣𝑦, ̇𝑣𝑦 = 𝜔0(

𝐸

𝐵
− 𝑣𝑥)

The solution of these differential equation is

𝑥 =
𝐶1

𝜔0

sin𝜔0𝑡 −
𝐶2

𝜔0

cos𝜔0𝑡 +
𝐸

𝐵
𝑡 + 𝐶3 (1)

𝑦 =
𝐶1

𝜔0

cos𝜔0𝑡 +
𝐶2

𝜔0

sin𝜔0𝑡 + 𝐶4 (2)

Initial conditions:
𝑡 = 0, 𝑣𝑥 = 𝑣𝑦 = 0 ⇒ 𝐶1 = −

𝐸

𝐵
, 𝐶2 = 0

Then, 𝑣𝑥 = 𝐸
𝐵 (1 − cos𝜔0𝑡), 𝑣𝑦 = 𝐸

𝐵 sin𝜔0𝑡 ⇒ 𝑣 ≪ 𝑐 if 𝐸
𝐵 ≪ 𝑐, whereas the absolute magnitudes of E and

B can be arbitrary.

At 𝑡 = 0, 𝑥 = 𝑦 = 0, then 𝐶3 = 0, 𝐶4 = 𝐸
𝜔

0
𝐵 . Finally

𝑥 = 𝑅0(𝜔0𝑡 − sin𝜔0𝑡) (3)
𝑦 = 𝑅0(1 − cos𝜔0𝑡) (4)

where 𝜔0 ≡ 𝑄𝐵
𝑚 and 𝑅0 ≡ 𝐸

𝜔
0
𝐵 = 𝑚𝐸

𝑄𝐵2 . When 𝜔0𝑡 = 2𝜋𝑛 ⇒ 𝑥 = 𝑅0𝜔0𝑡 = 2𝜋𝑛𝑅0, 𝑦 = 0.

2.jpg
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The previous result is the parametric equation of a cycloid (𝑥 − 𝑅0𝜔0𝑡)2 + (𝑦 − 𝑅0)2 = 𝑅2
0 which is the

equation of a circle of radius 𝑅0 with center given by the coordinates (𝑅0𝜔0𝑡, 𝑅0, 0) traveling in the X
direction with constant velocity ⃗𝑣𝑐 = (𝑅0𝜔0, 0, 0) = 𝑅0𝜔0

⃗𝑖 = 𝐸
𝐵

⃗𝑖. Again we see that 𝑣 ≪ 𝑐 ↔; 𝐸
𝐵 ≪ 𝑐.

Then for any given instant T, for K frame the particle is at one of the points of a circle with center at
(𝑅0𝜔0𝑡, 𝑅0, 0) and radius 𝑅0.

3.jpg

(Visit https://en.wikipedia.org/wiki/Cycloid)

As expected, the distance traveled along the X axis until the motion is repeated coincides with the length
of the circumference.

(c) The relativistic case for which 𝑣 ≪ 𝑐 is not fulfilled is

𝑄𝐵𝑣𝑦 = 𝑚
𝑑

𝑑𝑡
(𝛾𝑣𝑣𝑥), 𝑄(𝐸 − 𝐵𝑣𝑥) = 𝑚

𝑑

𝑑𝑡
(𝛾𝑣𝑣𝑦)

which is very complicated to solve because 𝛾𝑣 = (1−𝑣2/𝑐2)−1/2, where 𝑣2 = 𝑣2
𝑥 +𝑣2

𝑦, can not be taken from
the derivative.

It is simpler to solve it by doing a Lorentz transformation that takes us to another inertial system 𝐾′ in
which there is only a magnetic field, so that the equation of motion is easy to solve.

Since ⃗𝐸 ⋅ 𝐵⃗ is a Lorentz scalar, ⃗𝐸 𝑝𝑒𝑟𝑝𝐵⃗ in 𝐾 implies ⃗𝐸 ⋅ 𝐵⃗ = 0 = ⃗𝐸′ ⋅ 𝐵⃗′ and we can find a system K’ with a
velocity V such that ⃗𝐸′ = 0, 𝐵⃗′ 𝑛𝑒0

𝐵⃗∥ = 0 = 𝐵⃗′
∥ 𝐵⃗⟂ = 𝛾(𝐵⃗′ +

⃗𝛽

𝑐
× ⃗𝐸′)⟂ = 𝛾𝐵⃗′ (5)

⃗𝐸∥ = 0 = ⃗𝐸′
∥

⃗𝐸⟂ = 𝛾( ⃗𝐸′ − 𝑐 ⃗𝛽 × 𝐵⃗′)⟂ = −𝛾 ⃗𝑉 × 𝐵⃗′
⟂ = − ⃗𝑉 × 𝐵⃗⟂ (6)

Finally, ⃗𝐸′ = 0 and 𝐵⃗′ = 1
𝛾 𝐵⃗. Also ⃗𝐸 = ⃗𝑉 × 𝐵⃗. therefore 𝑉 = 𝐸

𝐵 which is always possible because 𝐸
𝐵 < 𝑐.

X.jpg

Since for 𝑡 = 0 the particle is at rest in 𝐾, for 𝑡′ = 0 it will have a velocity −𝑉 ⃗𝑖 in 𝐾′. The magnetic field 𝐵⃗′

does not work on the particle so that the modulus of its velocity remains constant and the equation of
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the movement is easy to solve, describing the circumference of radius R:

𝑄𝑣𝐵′ = 𝑚𝛾
𝑉 2

𝑅
⇒ 𝑅 =

𝑚𝛾𝑉

𝑄𝐵′
=

𝑚𝛾𝑉 2

𝑄𝐵

with angular frequency 𝜔′ = 𝑉
𝑅 = 𝑄𝐵

𝑚𝛾2

4.jpg

The trayectory is

𝑥′ = −𝑅 sin𝜔𝑡′ (7)
𝑦′ = 𝑅(1 − cos𝜔𝑡′) (8)
𝑧′ = 0 (9)

i.e., the circumference 𝑥′2 + (𝑦′ − 𝑅)2 = 𝑅2 of radius 𝑅 and centre (0, 𝑅, 0).

By using Lorentz transformations the trajectory in 𝐾 is:

𝑡′ = 𝛾(𝑡 −
𝑉

𝑐2
𝑥) (10)

𝑧 = 𝑧′ = 0 (11)
𝑦 = 𝑦′ = 𝑅(1 − cos𝜔𝑡′) (12)

𝑥′ = 𝛾(𝑥 − 𝑉 𝑡) → 𝑥 = 𝑉 𝑡 −
𝑅

𝛾
sin[𝜔𝛾𝑡′] (13)

Now, putting 𝑡′ in terms of 𝑡 and 𝑥,

𝑥 = 𝑉 𝑡 −
𝑅

𝛾
sin[𝜔𝛾(𝑡 −

𝑉

𝑐2
𝑥)] (14)

𝑦 = 𝑅 − 𝑅 cos[𝜔𝛾(𝑡 −
𝑉

𝑐2
𝑥)] (15)

with the following constants 𝑉 = 𝐸/𝐵, 𝛾 = (1 − 𝑉 2/𝑐2)−1/2, 𝜔 = 𝑄𝐵
𝑚𝛾2 , 𝑅 = 𝑉 /𝛾.

When 𝜔𝛾(𝑡 − 𝑉
𝑐2 𝑥) = 2𝜋𝑛, 𝑦 = 0 and 𝑥 = 𝑉 𝑡. Hence 𝑡 = 𝛾 2𝜋𝑛

𝜔 . Finally, 𝑦 = 0 when 𝜔 = 2𝜋𝑛𝛾 and 𝑥 = 2𝜋𝑛𝛾𝑅.
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5.jpg

(d) This figure is similar to that of question (b) but with the horizontal axis stretched. In the limit 𝐸/𝐵 ≪
𝑐, 𝛾 → 1 recovering the results of (b).

(e) Comparing 𝐾′ with 𝐾. The time it takes for the motion to repeat itself in 𝐾′ is, for example, what it
takes for the particle to pass again through 𝑥′ = 𝑦′ = 0

𝜔𝑡′ = 2𝜋𝑛 → 𝑡′ =
2𝜋𝑛

𝜔

However, for 𝐾 the time the particle takes to go again through 𝑦 = 0 w as

𝜔𝑡 = 2𝜋𝑛𝛾 → 𝑡 =
2𝜋𝑛

𝜔
𝛾

This result is no more than the effect of temporary dilation. We could have reached it using the Lorentz
transformation

𝑡 = 𝛾(𝑡′ −
𝑉

𝑐2
𝑥′) =

𝑥′=0
𝛾𝑡′ → 𝑡 =

2𝜋𝑛

𝜔
𝛾

𝐾 observe that the motiont takes more time to run in 𝐾′. According to 𝐾 everything goes more slowly
in 𝐾′. A clock, such as the particle in 𝐾′ submitted to 𝐵′, goes more slowly than if it were at rest.

What 𝐾′ interprets as a magnetic process, 𝐾 interprets it as electric + magnetic. They do not coincide in
the concrete quantities that they measure, but coincide in that the equations of motion are the same. In
𝐾 the equations of the trajectory satisfy

𝛾2(𝑥 − 𝑅𝜔𝑡)2 + (𝑦 − 𝑅)2 = 𝑅2

(𝑥 − 𝑅𝜔𝑡)2

( 𝑅
𝛾 )2

+
(𝑦 − 𝑅)2

𝑅2
= 1

which is the equation of an ellipse with minor axis 𝑅/𝛾, whose center (𝑅𝜔𝑡, 𝑅, 0) travels with velocity
(𝑅𝜔, 0, 0) = (𝐸/𝐵, 0, 0). For 𝐾, at any given time 𝑡, the particle is in one of the points of this ellipse.
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6.jpg

This result is nothing more than the effect of length contraction. We got in 𝐾′ 𝑥′2 + (𝑦′ − 𝑅)2 = 𝑅2. The
Lorentz transformation is 𝑥′ = 𝛾(𝑥 − 𝑉 𝑡), 𝑦′ = 𝑦, 𝑧′ = 𝑧 wich carried to the previous equation gives

(𝑥 − 𝑉 𝑡)2

( 𝑅
𝛾 )2

+
(𝑦 − 𝑅)2

𝑅2
= 1

This can also be understood as due to the relativistic kinematics that changes the force for different
observers, so that the particle follows different trajectories.
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Spin waves are collective excitations of magnetic materials and they play a key role in the description
of solid-state systems. In essence, spin waves can be described in much the same way as phonons in a
crystal or electrons in a tight-binding model.

We will consider here one of the simplest examples of a magnetic system, namely, a ferromagnetic
Heisenberg chain. This is a one dimensional array of 𝑁 spins coupled by an isotropic interaction. At
each site, 𝑗, of the chain we define a vector of spin-1/2 operators,

⃗𝑆𝑗 = (𝑆𝑥
𝑗 , 𝑆𝑦

𝑗 , 𝑆𝑧
𝑗 ). (1)

Our Hamiltonian takes the form,

𝐻F = −𝑔 𝑁∑
𝑗=1

⃗𝑆𝑗 ⋅ ⃗𝑆𝑗+1, 𝑔 > 0, (2)

where we assume periodic boundary conditions, ⃗𝑆𝑁+1 = ⃗𝑆1 and units such that ℏ = 1.

• Consider first a classical description in which each spin is just a vector of length 1/2. What is the
set of classical minimum-energy spin configurations? What is their energy? (1 point) SOLUTION: A
classical spin can be characterized by a vector ⃗𝑆𝑗 = 1

2 𝑛̂𝜙𝑗,𝜃𝑗
. The energy is minimized by maximizing

the scalar products ⃗𝑆𝑗 ⋅ ⃗𝑆𝑗+1 = 1/4. Thus, the minimum energy configuration consists of 𝑁 parallel
spins with energy 𝐸F = −(𝑔/4)𝑁.

• Let us go back to the quantum case. Define ladder operators,

𝑆+
𝑗 = 𝑆𝑥

𝑗 + 𝑖 𝑆𝑦
𝑗 ,

𝑆−
𝑗 = 𝑆𝑥

𝑗 − 𝑖 𝑆𝑦
𝑗 . (3)

Show that the magnetic chain can be re-written like

𝐻F = −𝑔 𝑁∑
𝑗=1

12(𝑆+
𝑗 𝑆−

𝑗+1 + 𝑆−
𝑗 𝑆+

𝑗+1) − 𝑔 𝑁∑
𝑗=1

𝑆𝑧
𝑗 𝑆𝑧

𝑗+1 (1 point). (4)

SOLUTION: This is really just a simple algebraic step to help solving the following points. One has
to express 𝑆𝑥

𝑗 = (𝑆+
𝑗 +𝑆−

𝑗 )/2, 𝑆𝑦
𝑗 = (𝑆+

𝑗 +𝑆−
𝑗 )/(2𝑖) and calculate the scalar product in the Heisenberg

equation.

• We define the eigenstates of 𝑆𝑧
𝑗 , |+⟩𝑗, |−⟩𝑗, with eigenvalue +1/2, −1/2, respectively. Consider the

following quantum state, |ΨF⟩ = |−⟩1|−⟩2 … |−⟩𝑁, (5)

Show that |ΨF⟩ is an eigenstate of 𝐻F and calculate its energy, 𝐸F. (1 point)

SOLUTION: We only need to use that 𝑆−
𝑗 |−⟩𝑗 + 0, so that

𝑆−
𝑗 |ΨF⟩ = 0.

The only non-zero contribution to the energy is thus the 𝑧−coupling:

𝑆𝑧
𝑗 𝑆𝑧

𝑗+1|ΨF⟩ = −14 .
Since there are 𝑁 coupling terms we get 𝐸0 = −(𝑔/4)𝑁.

• Calculate the degeneracy of the energy 𝐸F. (3 points)

SOLUTION: This part requires some understanding of rotational symmetry. First of all we must note
that 𝐻F is invariant under global rotations and thus it commutes with the total angular momentum
operators ( ⃗𝑆 = ∑𝑁

𝑗
⃗𝑆𝑗).
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The state |ΨF⟩ can be written in terms of the eigenstates of the total angular momentum ⃗𝑆2, 𝑆𝑧. In
particular, we have that |ΨF⟩ = |𝑆, −𝑆⟩, with 𝑆 = 𝑁/2.

We can define global ladder operators 𝑆+ = 𝑆𝑥 + 𝑖𝑆𝑦. Since [𝐻F, 𝑆𝛼=𝑥,𝑦,𝑧] = 0, then [𝐻F, 𝑆+] = 0.
This means that by acting any number of times with 𝑆+ on |ΨF⟩ we generate an eigenstate of 𝐻F
with energy 𝐸F. Thus the whole set of states, |𝑆, 𝑀⟩ with 𝑆 = 𝑁/2 and 𝑀 = −𝑆, −𝑆 + 1, … , 𝑆 have
the energy 𝐸F and degeneracy is 2𝑆 + 1 = 𝑁 + 1.

• Let us define a set of 𝑁 orthonormal states, |Φ𝑛⟩, 𝑛 = 1, … 𝑁, that describe a collective spin excitation
(spin-wave). Each state 𝑛 is defined by means of a vector 𝜙(𝑛)

𝑗 ,

|Φ𝑛⟩ = 𝑁∑
𝑗=1

𝜙(𝑛)
𝑗 𝑆+

𝑗 |ΨF⟩. (6)

You can see in equation (??) that 𝜙(𝑛)
𝑗 is the probability amplitude of having a spin excitation at site𝑗 in the Heisenberg chain.

Calculate the 𝑁 orthonormal states, |Φ𝑛⟩ that are eigenstates of the Hamiltonian 𝐻F and calculate
their energy, 𝐸𝑛.(3 points)

SOLUTION: The chain is subjected to periodic boundary conditions, and thus, it has to be diagonal-
ized by plane-waves

𝜙(𝑛)
𝑗 = 1√𝑁𝑒−𝑖 2𝜋𝑛𝑗

𝑁 .
Such that the spin-wave states take the form

|Φ𝑛⟩ = 1√𝑁
𝑁∑

𝑗=1

𝑒−𝑖 2𝜋𝑛𝑗

𝑁 𝑆+
𝑗 |ΨF⟩.

To find the energy we apply the Hamiltonian 𝐻F

𝐻F|Φ𝑛⟩ = (−𝑔 𝑁∑
𝑗=1

12(𝑆+
𝑗 𝑆−

𝑗+1 + 𝑆−
𝑗 𝑆+

𝑗+1) − 𝑔 𝑁∑
𝑗=1

𝑆𝑧
𝑗 𝑆𝑧

𝑗+1) 1√𝑁
𝑁∑

𝑝=1

𝑒−𝑖 2𝜋𝑛𝑝

𝑁 𝑆+
𝑝 |ΨF⟩.

There are many ways to solve this problem, which in essence is just a tight-binding single-particle
Hamiltonian. To make things easier, let us define the set of states with a spin excited at site 𝑝,

|𝑝⟩ = 𝑆+
𝑝 |ΨF⟩ = |−⟩1 … |+⟩𝑝 … |−⟩𝑁.

We can easily show that

𝑁∑
𝑗=1

𝑆+
𝑗 𝑆−

𝑗+1|𝑝⟩ = |𝑝 − 1⟩,
𝑁∑

𝑗=1

𝑆−
𝑗 𝑆+

𝑗+1|𝑝⟩ = |𝑝 + 1⟩,
𝑁∑

𝑗=1

𝑆𝑧
𝑗 𝑆𝑧

𝑗+1|𝑝⟩ = (14(𝑁 − 2) − 142) |𝑝⟩.
The z-interaction term is calculated by noticing that there are 𝑁 − 2 bonds with aligned spins and 2
bonds with anti-aligned spins.
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Putting all together,

𝐻F
1√𝑁

𝑁∑
𝑝=1

𝑒−𝑖 2𝜋𝑛𝑝

𝑁 |𝑝⟩ = −𝑔2 1√𝑁
𝑁∑

𝑝=1

𝑒−𝑖 2𝜋𝑛𝑝

𝑁 |𝑝 − 1⟩ − 𝑔2 1√𝑁
𝑁∑

𝑝=1

𝑒−𝑖 2𝜋𝑛𝑝

𝑁 |𝑝 + 1⟩ − 𝑔(𝑁4 − 1)|𝑝⟩
= (−𝑔 cos(2𝜋𝑛/𝑁) − 𝑔(𝑁/4 − 1)) 1√𝑁

𝑁∑
𝑝=1

𝑒−𝑖 2𝜋𝑛𝑝

𝑁 |𝑝⟩.
The energy is thus

𝐸𝑛 = −𝑔𝑁4 + 𝑔(1 − cos(2𝜋𝑛/𝑁)).
The excitation energy is 𝐸𝑛 − 𝐸F = 𝑔(1 − cos(2𝜋𝑛/𝑁)).

• Imagine that you create a low-energy spin-wave excitation, for example, a wave-packet formed by
a linear combination of states |Φ𝑛⟩. By low-energy we mean that the quantum state is formed by
spin-waves with excitation energy much lower than the ferromagnetic coupling constant, 𝑔 (that is,
states such that 𝐸𝑛 −𝐸F ≪ 𝑔) Such excitation could be considered like an effective particle. Assume
that spins in the chain are separated by distance 𝑎.

What is the effective mass of this particle? (Use your result for 𝐸𝑛 and justify qualitatively your
answer - this question does not require a long calculation). (1 point)

SOLUTION: Since this is a low-energy excitation, we only need to take into account small 𝑛. The
wave-vector of the spin-plane waves is 𝑘 = 2𝜋𝑛/(𝑁𝑎), and we can write the energy in the form,

𝐸𝑛 − 𝐸F = 𝑔(1 − cos(𝑘𝑎)) ≈ 𝑔12(𝑘𝑎)2 = 𝑘2

2𝑚eff
.

The latter is the dispersion relation in terms of an effective mass. Thus we find

1𝑚eff
= 𝑔𝑎2.
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