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Abstract

In computational pattern discovery, pattern evaluation measures select or rank patterns ac-

cording to their potential interestingness in a given analysis task. Many measures have been

proposed to accommodate different pattern types and properties. This paper presents a method

and case study employing measures for frequent, characteristic, associative, contrasting, depen-

dent, and significant patterns to model pattern interestingness in a reference analysis, Frances

Densmore’s study of Teton Sioux songs. Results suggest that interesting changes from older

to more recent Sioux songs according to Densmore’s analysis are best captured by contrast,

dependency, and significance measures.

1 Introduction

Pattern discovery provides powerful and versatile techniques for symbolic music analysis. Patterns

in music include intra-opus patterns, repeated within a single piece of music, and inter-opus patterns,

occurring across multiple pieces in a music corpus (Conklin, 2010a). Inter-opus pattern discovery

can be applied to unstructured corpora, extracting patterns which describe general features of

the represented repertoire (e.g. Conklin and Anagnostopoulou, 2001), or to partitioned corpora,

extracting patterns which distinguish classes of music pieces such as different song types, geographic
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regions, or composers (e.g. Conklin and Anagnostopoulou, 2011; Collins et al., 2016). Traditionally,

pattern mining in music – both intra- and inter-opus analysis – has been dominated by work

on discovering sequential patterns. For inter-opus pattern mining, global-feature patterns offer an

alternative pattern representation (e.g. Taminau et al., 2009; Shanahan, Neubarth, and Conklin,

2016). This paper studies inter-opus, global-feature patterns in class-labelled music corpora.

Searching for patterns in music may proceed as deductive analysis, which retrieves instances

of specified patterns, or as inductive analysis, which finds unspecified patterns satisfying certain

criteria of pattern interestingness (Conklin, 2010b). Beyond music data mining, many measures

for quantifying pattern interestingness have been proposed, originating from different contexts

including statistics and information theory (Geng and Hamilton, 2006); relating to different pattern

types, such as frequent or contrasting patterns (Dong and Li, 1999; Bay and Pazzani, 2001; Han

et al., 2007); and satisfying different properties regarding e.g. their scaling behaviour (Piatetsky-

Shapiro, 1991; Tan, Kumar, and Srivastava, 2002; Lenca et al., 2007). Interestingness measures can

be employed to distinguish interesting from uninteresting patterns, usually requiring the definition

of a measure threshold, or to rank patterns. Measures are used during pattern discovery to prune

the search space, or during post-processing to filter or rank the output of discovered patterns (Geng

and Hamilton, 2006).

The work presented in this paper explores computational measures for modelling the interest-

ingness of patterns suggested by extant music analyses. Hence it lies at the intersection of deductive

and inductive analysis: it shares with deductive analysis the study of given patterns, and for study-

ing these patterns makes use of pattern evaluation criteria usually employed in inductive analysis.

More specifically, we report a case study on patterns in Native American music: a meta-analysis of

Frances Densmore’s analysis of Teton Sioux music, which investigates changes from older to more

modern Sioux songs (Densmore, 1918). The case study illustrates core interests in data mining

(e.g. Dong and Li, 1999) and computational music corpus analysis (e.g. Jackson, 1970; Broze and

Shanahan, 2013): discovering changes in chronologically structured data.

2 Reference analysis: interesting changes in Teton Sioux music

Frances Densmore (1867–1957) was one of the most prolific collectors of North American native

music. The case study in this paper focuses on Densmore’s analysis of Teton Sioux songs, collected
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Table 1: Music content descriptors in Densmore’s analysis of Teton Sioux songs (Densmore, 1918).
Attribute Description

tonality tonality [according to major/minor third above keynote]
firstReKey first note of song – its relation to keynote
lastReKey last note of song – its relation to keynote
lastReCompass last note of song – its relation to compass of song
compass number of tones comprising compass of song
material tone material
accidentals accidentals [chromatic alterations of tones]
structure melodic structure [relation between contiguous accented tones]
firstProgression first progression – downward and upward
firstMetricPos part of measure on which song begins
firstMeasure rhythm (metre) of first measure
metreChange change of time (measure-lengths)
rhythmDrum rhythm of drum
rhythmicUnit rhythmic unit of song
tempoVoice metric unit of voice (tempo)
tempoDrum metric unit of drum (tempo)
tempoVoiceDrum comparison of metric unit of voice and drum (tempo)

on the Standing Rock and Sisseton Reservations in North and South Dakota between 1911 and

1914 (Densmore, 1918). Like most of her publications with the Bureau of American Ethnology,

the study of Teton Sioux music includes quantitative analyses of the documented songs based on

global music content features, which capture the “melodic trend and general musical character” of

the songs (Densmore, 1910, p. 3).

2.1 Densmore’s collection of Teton Sioux music

Densmore’s publication on Teton Sioux music presents transcriptions and analyses of 240 songs.

The corpus is organised according to “the age of the songs, this series being divided for analysis into

two groups, one comprising songs believed to be more than 50 years old and the other comprising

songs of more recent origin” (Densmore, 1918, p. v). The class of older songs contains 147 songs

associated with obsolete ceremonies or recorded by old men who had learned or received the songs

in their youth. The class of comparatively modern songs comprises 93 songs recorded by young

men, linked to modern tribal societies, or referencing a recent custom.

To describe musical properties of songs Densmore applied global features, i.e. song-level attribute–

value pairs, which capture melodic and rhythmic-metric aspects of songs (Table 1). For the compu-
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firstProgression : up
firstMetricPos : accented
firstMeasure : 2-4
metreChange : yes
rhythmDrum :
quarter unaccented
rhythmicUnit : one
tempoVoice : slow
tempoDrum : slow
tempoVoiceDrum : same

Figure 1: Densmore’s transcription of the modern Teton Sioux song “Song of the Buffalo Hunt
(c)” (Cat. No. 545, Densmore, 1918, p. 442) with encoding by selected global features. Angular
brackets mark the rhythmic unit.

tational analysis we collated the feature encoding for the 240 songs from Densmore’s publication.

To allow comparison with Densmore’s analysis results, we aggregated attribute values when sug-

gested by Densmore’s textual description. For example, with respect to the attribute compass

Densmore commented on songs “having a range of 12 or more tones” (Densmore, 1918, p. 24),

aggregating values from 12 to 17 tones. For comparing the tempo of old and more modern Sioux

songs, the values of attributes tempoVoice and tempoDrum (measured in metronome values) were

aggregated into two bins, with a split point at the median, reducing the 30 resp. 27 fragmented

and infrequently observed attribute values considered in Densmore’s original tabulated analysis to

two categorical values slow, covering metronome markings 48 to 96, and fast, covering metronome

markings 100 to 192. Figure 1 shows a short example song encoded by selected global features.

2.2 Reference patterns in Densmore’s analysis of Teton Sioux music

Densmore’s comparative analysis of old and modern Sioux songs studied one attribute at a time, i.e.

the analysis reveals single-feature patterns. To identify reference patterns in Densmore’s analysis,

we first extracted all pairs ⟨feature , class⟩ which are mentioned in the textual descriptions accom-

panying Densmore’s quantitative analyses. From these, redundant patterns – due to symmetries

between the two classes or in cases of only two attribute values – were removed. For example, the

“larger proportion [of songs] having a range of 12 or more tones” (Densmore, 1918, p. 24) among

the old songs implies a smaller proportion of wide-range songs in the modern group (Densmore,

1918, p. 25), and a “decrease in the percentage of songs having a change of measure-lengths” from

the old to the modern songs implies “an increase [...] in songs without change in time” (Dens-
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more, 1918, p. 25). Of such symmetric pairs we retained the over-represented pattern, in the above

examples ⟨compass : twelve or more , old⟩ and ⟨metreChange : no ,modern⟩. Where the text mentions

only the under-represented pattern, for the current study this was replaced by the corresponding

over-represented pattern, e.g. “[t]he modern songs show a smaller proportion of songs in which the

final tone is the lowest in the song” (Densmore, 1918, p. 24) was recorded as the complementary

group of old songs containing a larger proportion of songs ending on the lowest tone, i.e. by the

pattern ⟨lastReCompass : lowest , old⟩.

In a second step, we assigned the reference patterns a level of interestingness based on Dens-

more’s description. Analysing changes from older to newer Teton Sioux songs, Densmore appears

to distinguish different degrees of change: for example, “the newer group shows an increase in the

proportion of songs which begin in 2–4 time” (Densmore, 1918, p. 24) but “a large increase in the

proportion having two or more rhythmic units” (Densmore, 1918, p. 25, our emphasis). Addition-

ally, Densmore’s comments on the tabulated analyses are followed by a concluding paragraph –

“[s]ummarizing briefly the results of a comparison of the old and the more modern Sioux songs”

(Densmore, 1918, p. 25) – which recapitulates a selection of the previously presented observations.

Assuming the patterns highlighted in the summary to be of particular interest, we derived an

ordinal scale of four reference levels of interestingness:

A: patterns covered in the summary and described, in the preceding text, by a

qualifier marking a pronounced (e.g. “large” or “decided”) change;

B: patterns which are included in the summary but have not been qualified as a

pronounced change;

C: patterns mentioned in the text but not in the summary (none of which is ex-

plicitly qualified as a pronounced change);

D: patterns which show “no material differences” (Densmore, 1918, p. 25) or for

which the proportion “is the same in the two groups” (Densmore, 1918, p. 23).

The analysis results in 33 reference patterns (see Figure 3 in Section 3.2): six patterns at levelA,

five at level B, four at level C, and 18 patterns (nine patterns potentially associated with either

class) at level D.
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3 Computational analysis of the reference patterns

To model pattern interestingness in Densmore’s analysis, the reference patterns are ranked by com-

putational pattern interestingness measures, considering measures for different types of patterns:

frequent and characteristic, contrasting, associative, dependent, and significant patterns.

3.1 Pattern interestingness measures

The pattern interestingness measures considered in this paper evaluate the distribution of pattern

occurrences in a partitioned corpus. They map observed frequencies onto a numeric interestingness

value, computed from a 2 × 2 contingency table (Figure 2). Here the variables C and X refer to

predicates on songs, the class and pattern predicate respectively. A song satisfies a class C if it is

annotated with the corresponding class label; a song satisfies a global-feature pattern X if the song

has the attribute value indicated by the global feature; a song satisfies the conjunction of the class

and pattern predicates, denoted X∧C, if it satisfies both X and C. We refer to the songs satisfying

a specific class C as the target class of analysis and the songs not satisfying C as the background.

To denote observed frequencies, the following notation is used: n(C) is the number of songs in the

target class, while n(¬C) is the number of songs in the background; n(X) is the number of songs in

the corpus satisfying the global-feature patternX, while n(¬X) is the number of songs in the corpus

which do not satisfy pattern X. Further, n(X ∧C) is the number of songs in the target class which

satisfy pattern X, n(¬X∧C) the number of songs in the target class which do not satisfy pattern X,

n(X ∧ ¬C) the number of songs in the background which satisfy pattern X, and n(¬X ∧ ¬C) the

number of songs in the background which do not satisfy pattern X. The variable N denotes the

total number of songs in the corpus. The relative frequency of the pattern in the corpus, or its

empirical probability, is P (X) = n(X)/N , and the relative frequency of the pattern in a class, or its

conditional probability given the class, is P (X|C) = n(X ∧C)/n(C). Building on these definitions,

Table 2 lists probability-based measures for frequent and characteristic, contrasting, associative,

C ¬C
X n(X  ∧  C) n(X  ∧  ¬C)  n(X)

¬ X n(¬X  ∧  C) n(¬X  ∧  ¬C)  n(¬X)
n(C) n(¬C)  N

Figure 2: Contingency table for a pattern ⟨X , C⟩.
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Table 2: Interestingness measures for patterns ⟨X , C⟩.
Pattern type Measure Definition

frequent coverage P (X)

support P (X ∧ C)

characteristic sensitivity P (X|C)

IC++ P (C)[1− P (¬X|C)

P (¬X|¬C)
] if 0 ≤ P (¬X|C)

P (¬X|¬C) < 1

0 otherwise
contrasting support difference P (X|C)− P (X|¬C)

growth rate P (X|C) / P (X|¬C)

associative confidence P (C|X)

dependent PS P (X ∧ C)− P (X)P (C)

interest P (X ∧ C) / P (X)P (C)

conviction P (X)P (¬C) / P (X ∧ ¬C)

significant p-value (Fisher) PF (X,C)

dependent, and significant patterns.

Frequent and characteristic patterns Frequent pattern mining is a core task in both wider

data mining and music data mining. Patterns are considered frequent if they occur in a data set

with frequency above a user-specified threshold (Han et al., 2007). In frequent pattern mining

of class-labelled corpora, coverage measures the relative frequency of a pattern in a corpus, while

support measures the relative co-occurrence of a pattern and a specific class (Geng and Hamilton,

2006). Sensitivity computes the proportion of instances in a class which satisfy a pattern (Lavrač,

Flach, and Zupan, 1999). A pattern which is shared by all or most instances in a class is considered

characteristic of the class (Han et al., 1996). Alternative measures prefer characteristic patterns

which are also distinctive of the class. As an example this study includes the IC++ measure

(Kamber and Shinghal, 1996): the more instances in the target class, relative to the background,

do not satisfy the pattern, the less characteristic of the class is the pattern.

Contrasting patterns Contrast pattern mining identifies differences between classes in cat-

egorically partitioned data or trends in chronologically partitioned corpora (Dong and Li, 1999;

Bay and Pazzani, 2001). Measures for contrasting patterns generally compare the observed relative

frequencies of a pattern in a target class and in the background. The measure of support difference,
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used in contrast set mining (Bay and Pazzani, 2001), calculates their difference, while growth rate,

used in emerging pattern mining (Dong and Li, 1999), computes their ratio. Although Densmore

does not systematically quantify differences in her tabulated analyses, for both support difference

and growth rate corresponding examples can occasionally be found in her textual description. As

an example of the first, her comparison of old and modern Sioux songs shows that “the proportion

beginning on the octave is 10 per cent greater in the modern songs” (Densmore, 1918, pp. 23-24).

On the other hand, her analysis of Sioux, Chippewa, and Ute songs gives an example of growth

rate: “The percentage of songs of a mixed form is more than twice as great in the Ute as in the

Chippewa and Sioux” (Densmore, 1922, p. 53).

Associative patterns Associations describe frequently co-occuring patterns (Han et al.,

1996); class associations relate frequent patterns to classes (Liu, Hsu, and Ma, 1998). Classic

methods for mining class association patterns combine the measures of support to ensure suffi-

ciently frequent patterns and confidence to assess the strength of the association between a pattern

and a class: confidence corresponds to the conditional probability of the class given the pattern

(Liu, Hsu, and Ma, 1998). The confidence measure does not take into account the prior probability

of the class, thus a class association pattern may be confident when pattern and class are not

correlated or even negatively correlated (e.g. Brin, Motwani, and Silverstein, 1997).

Dependent patterns To address problems of the confidence measure, alternative measures

have been used, including the PS measure (Piatetsky-Shapiro, 1991), interest (Brin, Motwani, and

Silverstein, 1997), and conviction (Brin et al., 1997): the PS measure, by taking the difference, and

interest, by calculating the ratio, compare the joint and individual probabilities of the pattern and

the target class, indicating to which extent pattern and class are statistically dependent. Conviction

considers the pattern’s occurrence in the background to quantify the dependence between pattern

and target class. Hence, while the contrast measures compare the pattern’s observed count in the

target class against its observed count outside the class, relative to the size of the class and the

background, the dependency measures compare the pattern’s observed count in the class against

its count expected under the assumption of pattern and class being independent. Rewriting the

measures with absolute rather than relative frequencies – by multiplying the two summands or

factors by N to give n(X ∧ C) and N × P (X) × P (C) for PS and interest resp. n(X ∧ ¬C) and

N × P (X)× P (¬C) for conviction – makes explicit the comparison.
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Significant patterns Statistical significance tests estimate the likelihood of encountering

observed pattern frequencies due to chance alone (Webb, 2007). Tests such as Fisher’s test have

been applied in class association mining both in combination with other measures, such as growth

rate, confidence or PS, and on their own (e.g. Conklin, 2013; Shanahan, Neubarth, and Conklin,

2016; Li and Zaiane, 2017; Neubarth, Shanahan, and Conklin, 2018). The p-value computed by

Fisher’s exact test (right tail) gives the probability of observing n(X ∧ C) or more occurrences of

the pattern in the target class given the marginal counts n(X), n(C) and N . The lower the p-value,

the more interesting is the pattern.

3.2 Comparison of reference and computational pattern interestingness

The interestingness measures listed in Table 2 were applied for computational evaluation of the

reference patterns, adjusting marginal counts in the contingency table for missing values (Neubarth,

Shanahan, and Conklin, 2018). For each interestingness measure, the evaluated patterns were

ranked from highest to lowest measure value; in the case of Fisher’s test, lower p-values indicate

a higher degree of interestingness. In a second step, the computationally ranked patterns were

mapped onto ordinal levels of interestingness, following the procedure of Ohsaki et al. (2004): based

on the categorisation of the reference patterns (6 patterns at levelA, 5 patterns at levelB, 4 patterns

at level C, and 18 patterns at level D; see Figure 3, column “Densmore”), for each interestingness

measure the six most highly ranked patterns were assigned the interestingness level A, the next five

patterns were assigned B, the following four patterns were assigned C, and the remaining patterns

were assignedD. This mapping then provides a basis for comparing interestingness ratings of human

and computational analysis qualitatively, by visualisation, or quantitatively, by determining the

number of reference patterns matched in their interestingness levels by the computational evaluation

(Ohsaki et al., 2004).

Figure 3 presents the interestingness ratings, for each reference pattern, based on Densmore’s

analysis (column “Densmore”) and assigned by the computational pattern interestingness measures

(columns “p-value” to “coverage”). Patterns are grouped into the reference levels suggested from

Densmore’s analysis, from A (top) to D (bottom). Rows within levels are ordered according to

agreement across measures, while columns are sorted by agreement across patterns. Comparing

computationally evaluated pattern interestingness against the reference levels extracted from Dens-
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rhythmDrum : quarter unaccented modern
firstMetricPos : accented modern
tempoVoiceDrum : same modern

compass : twelve or more tones old
tempoDrum : slow modern

rhythmicUnit : two or more modern

accidentals : yes modern
rhythmDrum : eighth unaccented old

firstMeasure : 2-4 modern
structure : harmonic modern

metreChange : no modern

firstReKey : twelfth or fifth old
firstProgression : down old
lastReCompass : lowest old

firstReKey : octave modern

tonality : major modern
compass : ten tones modern

material : pentatonic modern
material : minor triad and fourth old

tempoVoice : fast modern
compass : ten tones old

material : pentatonic old
tempoVoice : fast old

tonality : major old
rhythmicUnit : one modern

tonality : minor modern
lastReKey : keynote or fifth modern

material : minor triad and fourth modern
tonality : minor old

lastReKey : keynote or fifth old
rhythmicUnit : one old
tempoVoice : slow old
tempoVoice : slow modern

Figure 3: Comparison of pattern interestingness ratings suggested by Densmore’s analysis and by
computational interestingness measures. Colour legend (interestingness levels): level A;
level B; level C; level D.
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more’s analysis, the measures roughly fall into two groups. The measures for frequent patterns –

coverage, support, and sensitivity – are largely unsuccessful in distinguishing uninteresting from

interesting patterns, according to the reference analysis, matching only ten out of 18 patterns at

reference level D and at most two out of five patterns at reference level A. A larger number of

corresponding ratings is achieved by the IC++ measure, which is biased towards characteristic pat-

terns that also distinguish the target class from other classes (Kamber and Shinghal, 1996). On

the other hand, measures for contrasting and for dependent and significant patterns show overall

high agreement with reference ratings, with p-value, support difference and PS matching reference

levels slightly better (all except one reference pattern matched at level A and all reference patterns

matched at level D) than growth rate, conviction and interest (three – in the case of interest two –

out of five patterns matched at level A and 17 out of 18 patterns matched at level D). At levels B

and C, for several patterns the ratings are reversed with respect to the reference ratings, suggest-

ing that the inclusion of a pattern in Densmore’s summary may be less indicative of quantitative

interestingness ratings than her differentiation between strong and neutral changes (e.g. “large

increase” vs. “increase”), and that Densmore’s selection of patterns included in the summary may

be partly based on other, musical or contextual, rather than statistical considerations.

3.3 Analysis of interestingness ratings by computational measures

This section further analyses the differences in interestingness ratings by different computational

measures, discussing selected patterns (Table 3). To generalise observations beyond example pat-

terns, we refer to established measure properties which define a measure’s behaviour for varying

contingency tables. In particular, we build on two well-known properties (Piatetsky-Shapiro, 1991;

Tan, Kumar, and Srivastava, 2002): the first covers two scenarios affecting the relative pattern

frequencies in the target class and background, the second supports comparison of interestingness

ratings for frequent and infrequent patterns, and for different class distributions (Table 4).

Frequency measures Of the measures for frequent and characteristic patterns, support and

sensitivity do not consider the background, while coverage quantifies pattern frequency across all

classes in a corpus. Hence, sensitivity (coverage) assigns high ranks to patterns which are frequent

in the target class (corpus) even if they are similarly or more frequent in the background. For

example, the feature lastReKey : keynote or fifth occurs in 84% of the old and 85% of the modern
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Table 3: Distribution of selected patterns in old and modern Teton Sioux songs (ordered according
to their reference in the text). The pattern marked by an asterisk was evaluated taking into account
missing values (87 of the old and 31 of the modern songs were recorded without drum, cf. Densmore,
1918, p. 21, footnote 1).

old modern

n(X ∧ C) P (X|C) n(X ∧ C) P (X|C)

lastReKey : keynote or fifth 124 0.84 79 0.85
compass : twelve or more tones 47 0.32 20 0.22
rhythmicUnits : two or more 14 0.09 16 0.17
firstReKey : twelfth or fifth 63 0.43 33 0.35
firstMetricPos : accented 75 0.51 69 0.74
tempoDrum : slow∗ 31 0.52 43 0.69
metreChange : no 9 0.06 9 0.10
firstReKey : octave 30 0.20 27 0.29
lastReCompass : lowest 133 0.90 76 0.82

songs (see Table 3): both associations are ranked among the top-6 patterns (level A) by sensitivity

and coverage, while they are ranked in agreement with the reference analysis (level D) by measures

which compare pattern occurrence in the target class and in the background, such as support

difference and growth rate, as well as IC++. On the other hand, coverage, sensitivity, and support

penalise infrequent features, such as compass : twelve or more tones or rhythmicUnits : two or more

(assigning level D), even if they are distinctive for one of the classes (listed at reference level A

and assigned levels A or B by contrast, dependency, and significance measures).

Formally, these observations are captured by measure property M1.1 in Table 4. The property

describes a measure’s behaviour when, given the same pattern frequency in the target class, a

higher number of pattern occurrences is observed in the background: with increasing pattern

frequency in the corpus, n(X), but constant pattern frequency in the target class, n(X ∧C), more

pattern occurrences are found in the background, both in absolute frequency n(X ∧ ¬C) and –

with constant P (C) and therefore P (¬C) – in relative frequency P (X|¬C). Hence, for patterns

over-represented in the target class the difference between a pattern’s frequency in the class and

in the background decreases. Contrast measures, as well as dependency and significance measures,

accordingly decrease their value. Support and sensitivity, on the other hand, remain constant while

coverage increases (Table 4, column M1.1).

Association measures Confidence quantifies the proportion of pattern occurrences observed

in the target class, without taking into account the prior probability of the class (Brin, Motwani, and
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Silverstein, 1997). For illustration, pattern ⟨firstReKey : twelfth or fifth , old⟩, included at reference

level C, is ranked higher by confidence (level A) than by the other measures. Of the 96 songs

which begin on the twelfth or fifth above the keynote, 63 songs are old songs (see Table 3), giving

a confidence of 66%, which is only slightly above the proportion of old songs in the corpus (61%).

On the other hand, pattern ⟨firstMetricPos : accented ,modern⟩, listed at reference level A, is ranked

lower by confidence (level D) than any other measure, despite its confidence being higher than

expected given the prior probability of the class modern (39%): of the 144 songs starting with an

accented tone, 69 songs are modern songs (see Table 3), giving a confidence of 48%. In terms of

change in relative frequency from background to target class, the beginning on the twelfth or fifth

above the keynote shows a difference of only 8% (see Table 3: 0.35 to 0.43), leading to the lower

ranking by contrast as well as dependency and significance measures. In comparison, the beginning

with an accented note increases by 23% from older to more modern songs (see Table 3: 0.51 to

0.74), leading to the higher ranking by contrast as well as dependency and significance measures.

More generally, most of the patterns ranked high by confidence relate to class old.

Confidence differs from measures for contrasting, dependent, and significant patterns with re-

spect to measure property M1.2 in Table 4. Here the absolute numbers of pattern occurrences in

the target class and in the background remain the same, but their relative frequencies change: with

increasing n(C), and therefore decreasing n(¬C), the pattern’s relative frequency in the target class

P (X|C) decreases, while its relative frequency in the background P (X|¬C) increases. Thus again

the degree to which a pattern is over-represented in the target class relative to the background

decreases. While contrast, dependency, and significance measures decrease, confidence remains

constant (Table 4, column M1.2).

Contrast measures Support difference and growth rate directly compare pattern occurrence

in the target class and in the background, thus they capture changes in relative pattern frequency

between older and more modern Sioux songs. The two measures differ in their ranking of frequent

and infrequent patterns: for infrequent patterns a clear increase in relative frequency measured as

ratio (growth rate) is easier to achieve than when measured as difference (support difference). In

fact, contrast pattern discovery employing growth rate is specifically designed for also detecting

changes in data when patterns are rare (Dong and Li, 1999). For example, pattern ⟨tempoDrum :

slow ,modern⟩ is ranked higher by support difference (level A) than by growth rate (level B), while
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Table 4: Properties of interestingness measures (for details see text). ∗Direction of change for
over-represented patterns, i.e. for P (X|C) > P (X|¬C); opposite direction of change for under-
represented patterns. † For p-value, with lower values indicating higher interestingness, entries refer
to change in interestingness.
Pattern type Measure Measure properties

M1.1 M1.2 M2.1 M2.2

frequent coverage increases constant increases constant
support constant constant increases increases

characteristic sensitivity constant decreases increases constant
IC++ decreases decreases increases increases

contrasting support difference decreases decreases increases increases∗

growth rate decreases decreases constant increases∗

associative confidence decreases constant constant increases

dependent PS decreases decreases increases increases∗

interest decreases decreases constant constant
conviction decreases decreases constant increases∗

significant p-value decreases† decreases† increases† increases†

M1.1 Change with increasing P (X) when P (X ∧ C) and P (C) remain the same

M1.2 Change with increasing P (C) when P (X ∧ C) and P (X) remain the same

M2.1 Change with scaling the first row of the contingency table by a positive factor

M2.2 Change with scaling the first column of the contingency table by a positive factor

pattern ⟨metreChange : no ,modern⟩ is ranked higher by growth rate (level A) than by support

difference (level C). The feature tempoDrum : slow describes 69% of the modern and 52% of the old

songs which are recorded with drum (see Table 3). On the other hand, the feature metreChange : no

describes only 18 songs (7.5%) in the corpus, with nine songs in each of the two classes (6% and

10% respectively in the old and in the modern songs, see Table 3).

This difference between support difference and growth rate can be formally described with

reference to measure property M2.1 in Table 4. Scaling the first row of the contingency table

by a positive factor increases a pattern’s frequency in the corpus but preserves the ratio between

P (X|C) and P (X|¬C). Growth rate therefore remains constant; support difference, on the other

hand, increases for more frequent patterns (Table 4, column M2.1). In other words, for the same

growth rate value a larger difference between P (X|C) and P (X|¬C) is required at higher pattern

frequencies.

Dependency and significance measures Among the measures for dependent and sig-
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nificant patterns, the interest and conviction measures are more sensitive to deviations in in-

frequent patterns than the PS measure and p-value. Rewriting PS as weighted relative accu-

racy, P (X)× [P (C|X)− P (C)], more obviously exposes the measure’s bias towards frequent pat-

terns: in subgroup discovery, weighted relative accuracy is applied to discover distinctive patterns

which are as frequent as possible (Kavšek and Lavrač, 2006). Accordingly, the pattern ⟨lastRe-

Compass : lowest , old⟩ – involving feature lastReCompass : lowest observed for 87% of all songs (see

Table 3: 133 old and 76 modern songs, that is 209 of 240 songs) – is ranked higher by the PS

measure (level B) than by conviction (level C) and interest (level D). On the other hand, the

infrequent pattern ⟨metreChange : no ,modern⟩ is ranked higher by conviction and interest (level A)

than by PS (level C). In turn, conviction and interest differ in their interestingness ratings for

different class sizes: in mining imbalanced data sets, interest has been found more suitable to

discover patterns for the minority class than conviction (Abdellatif, Ben Hassine, and Ben Yahia,

2019). In the analysis of changes from older to more recent Teton Sioux songs the different bias

of the interest and conviction measures is reflected in the respective ratings of patterns such as

⟨compass : twelve or more tones , old⟩ and ⟨firstNoteReKey : octave ,modern⟩. Both mentioned pat-

terns occur in around 30% of songs in the target class and just over 20% of songs in the background

(see Table 3). In the first case, the target class old is the majority class (61%) in the corpus, while

in the second case the target class modern is the minority class (39%). The majority-class pattern

is ranked higher by conviction (level A) than by interest (level B), while the minority-class pattern

is ranked higher by interest (level A) than by conviction (level B).

In terms of formal measure properties, interest is invariant to scaling the first column of the

contingency table by a positive factor while conviction increases (Table 4, column M2.2). Scaling

the first column increases the size of the target class, both in terms of its absolute count and also,

with N remaining constant, in terms of its proportion in the corpus.

In summary, referring to the visual comparison of computational against reference interestingness

ratings (Figure 3), these differences between the computational measures and their properties are

reflected in high ranks (shown as dark blue cells) assigned to patterns at reference level A based on

differences in relative frequencies between target class and background (dark blue cells for e.g. p-

value, support difference, and PS); at reference level B biased towards infrequent contrast patterns

(dark blue cells for growth rate, conviction, and interest); at reference level C biased towards
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patterns for the majority class (dark blue cells for confidence and IC++); and at reference level D

based on pattern frequency without contrasting target class and background (dark blue cells for

coverage, support, and sensitivity).

4 Conclusions

In pattern mining, pattern interestingness measures distinguish potentially interesting from un-

interesting patterns. In this paper we have presented a strategy and case study of exploiting

interestingness measures and their properties to analyse patterns suggested by given music corpus

studies. The contribution of this work is threefold.

First, computational pattern evaluation can support the meta-analysis of extant music corpus

analyses. In the case of Densmore’s comparison between old and modern Teton Sioux songs, the

results of the computational analysis confirm Densmore’s interest in differences between the two

classes of songs – which is also reflected in the definition of the reference levels – complemented by

a potential slight preference for more frequent patterns: “The first important point of difference is

that the older songs show a much larger proportion having a range of 12 or more tones”, while in

“perhaps the least important of the tables [...] the groups show no marked differences” (Densmore,

1918, p. 24, our emphasis). The concluding sentences of Densmore’s summary refer to “contrasts

between the two groups” (Densmore, 1918, p. 25, our emphasis). Besides measures for contrasting

patterns, including growth rate or support difference (Dong and Li, 1999; Bay and Pazzani, 2001),

measures for dependent patterns, such as the PS measure and interest, have also been explicitly

used for contrast mining, the latter in combination with a statistical significance test (Webb, Butler,

and Newlands, 2003; Novak et al., 2009).

Second, the method can be useful in analysing ground-truth, or reference, patterns employed for

assessing pattern discovery algorithms. Quantitative studies of music pattern discovery using met-

rics such as precision and recall with respect to ground-truth patterns assess discovery algorithms

equally on all patterns in the ground-truth set, thus implicitly assuming all ground-truth patterns

to be of the same pattern type (e.g. van Kranenburg and Conklin, 2016, Nuttall et al., 2019 for

inter-opus pattern discovery in partitioned corpora; see also de Reuse and Fujinaga, 2019). An anal-

ysis of the ground-truth patterns by computational interestingness measures can provide insights

into the pattern types and the homogeneity or potential heterogeneity of the ground-truth pattern
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set. Existing studies on music pattern discovery algorithms have focused on sequential patterns;

the pattern evaluation strategy presented in this paper can be easily extended from global-feature

to sequential inter-opus patterns by defining a suitable pattern predicate (Conklin, 2010a). A chal-

lenge, however, lies in the definition of the ground-truth patterns: if score annotations only identify

patterns in the respective target class (e.g. van Kranenburg, Volk, and Wiering, 2012), pattern

interestingness measures which consider pattern counts in the background cannot be computed.

Third, insights from studying pattern interestingness measures and their behaviour in the con-

text of extant music corpus analyses can inform inductive pattern discovery, more specifically the

selection of pattern evaluation measures depending on e.g. desired pattern types, expected or re-

quired pattern frequency, or the class distribution in the corpus. Regarding Densmore’s studies,

computational pattern mining also supports extending analysis beyond Densmore’s single features

to feature-set patterns (Neubarth, Shanahan, and Conklin, 2018). The comparison of older and

more recent Sioux songs focuses on distinctive patterns, which can be discovered by contrast, de-

pendency, or significance measures, but other pattern types, such as characteristic or associative

patterns, may equally be of interest (Densmore, 1922, 1923).
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