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1 Numerical integration methods for ordinary dif-
ferential equations

1.1 Introduction

We are interested in numerical methods for systems of ordinary differential
equations (ODEs) of the form

dy

dt
= f(y), f : U ⊂ Rd → Rd (1.1)

where t is the independent variable (“time”) and U is a nonempty open set
of Rd. Usually, U is called the phase space of (1.1) and f : U ⊂ Rd → Rd is
referred to as the vector field. We will assume throughout that the vector field
f is smooth in the sense that it has continuous derivatives of all orders.

Recall that the differential equation (1.1) supplemented with the initial
condition y(t0) = y0 has a unique solution y(t). Numerical integration methods
aim at obtaining approximations yk ≈ y(tk) at the time levels t1, t2, . . ., with
small step sizes hk = tk − tk−1. If a constant step size hk = h is considered,
then tk = kh for all k.

In these notes we focus on one-step methods to integrate initial-value prob-
lems for systems of differential equations (1.1). The simplest (one step) nu-
merical method for (1.1) is the so-called (explicit or forward) Euler method:
Consider the one-parameter family of maps ψh f : Rd → Rd defined as

ψh f (y) = y + hf(y). (1.2)

A sequence {y1, y2, . . .} of approximations to the values y(tk) of the solution
of (1.1) supplemented with the initial condition y(0) = y0 at times tk (k =
1, 2, . . .) is obtained in a step-by-step manner as

yk = ψhk f (yk−1), k = 1, 2, . . . (1.3)

The smaller the step-size h, the more accurate approximations. This is a
consequence of the fact that, for ỹ(h) := ψhf (y0), one has that

d

dh
ỹ(t) = f(ỹ(h)) + hR(y0, h),

where R(y0, h) := 1
h(f(y0) − f(y0 + hf(y0))) is uniformly bounded for suffi-

ciently small |h|. That is, ỹ(t) approximately satisfies the original differential
equation (1.1) for small values of time t = h.

In this sense, a method is of order n (n a positive integer), if for each fixed
y, there exists h0(y), C(y) > 0 such that, for all h ∈ [−h0(y), h0(y)],

|| ∂
∂h
ψh f (y)− f(ψh f (y))|| ≤ C(y)hn+1. (1.4)

From our preceding discussion, it is clear that Euler’s method is of order n = 1.
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Another simple example of a one-step integrator is the explicit trapezoidal
method (due to Runge), where

ψh f (y) = y +
h

2
(f(y) + f(y + hf(y))) (1.5)

is used in (1.3) instead of (1.2). It is not difficult to check that method (1.5)
is of order 2 (that is, (1.4) holds for n = 2).

1.2 Runge-Kutta methods

A Runge-Kutta (RK) method with s stages is specified by a RK tableau of real
constants

a11 · · · a1s
...

. . .
...

as1 · · · ass
b1 · · · bs

. (1.6)

When applied to the system (1.1), the method corresponding to (1.6) ad-
vances the numerical solution from time tk−1 to time tk = tk−1 + h through
the relation yk = ψh f (yk−1), where

ψh f (y) = y + h

s∑
i=1

bif(Yi), (1.7)

and the vectors Yi (the so-called internal stages) are determined by the rela-
tions

Yi = y + h
s∑
j=1

aijf(Yj), i = 1, . . . , s. (1.8)

If the matrix A is strictly lower triangular (i.e., if aij = 0 whenever i ≤ j),
the equations (1.8) provide a recursion for explicitly computing each Yi in
terms of the preceding internal stages:

Y1 = yn,
Y2 = yn + h a21f(Y1),
Y3 = yn + h a31f(Y1) + h a32f(Y2)

...

The method is then called explicit . The computation of one step of an explicit
Runge-Kutta (RK) method thus requires s evaluations of the function f .

For general matrices A, the method is implicit, and (1.8) provides a coupled
system of s×d algebraic equations for the s×d components of the stage vectors.
By the Implicit Function Theorem, given y0 ∈ U , there exists h0 > 0 and a
neighbourhood V of (y0, . . . , y0) ∈ Rs d such that the algebraic system (1.8) has
in V a unique solution that smoothly depends on h ∈ [−h0, h0].
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For the tableau
0

1
, (1.9)

the equation (1.8) reads Y1 = y and (1.7) is

ψh f = y + hf(Y1) = y + hf(y),

which is the explicit Euler formula (1.2). The RK method given by the tableau

0 0
1 0

1/2 1/2

corresponds to the explicit trapezoidal method (1.5).
The two examples of RK tableaux considered so far correspond to explicit

RK methods. The RK tableau

0 0
1/2 1/2

1/2 1/2

(1.10)

corresponds to the implicit trapezoidal rule

y∗ = ψh f (y) := y +
h

2
(f(Y1) + f(Y2)),

where Y1 = y, and Y1 ∈ Rd is implicitly defined as a function of h and y by

Y2 = y +
h

2
(f(Y1) + f(Y2)).

Given two RK methods specified by two different RK tableaux determining
the integration maps ψh f and ψ̄h f , they are equivalent if, when applied to an
arbitrary system (1.1) with Lipschitz continuous f : U ⊂ Rd → Rd, for each
y0 ∈ U , there exists h0 > 0 such that ψh f (y0) = ψ̄h f (y0) for each h ∈ (−h0, h0).

For instance, it is straightforward to check that, all the RK tableaux of the
one-parameter family

0 0
0 0

λ 1− λ
are equivalent to each other, and they are equivalent to the tableau (1.9). A
less trivial example of equivalent RK tableaux is given by the following three-
parameter family:

0 λ1 −λ1

1/2 λ2 1/2− λ2

1/2 λ3 1/2− λ3

1/2 λ4 1/2− λ4

It can be shown that the tableaux in that family are all equivalent to each other,
and that they are actually equivalent to the tableaux (1.10) corresponding to
the implicit trapezoidal rule.
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2 Algebraic theory of Runge-Kutta methods

2.1 The order conditions of RK methods

We now aim at deriving necessary and sufficient conditions for a RK method
to be of order n when applied to arbitrary (sufficiently smooth) systems of
ODEs (1.1).

In the sequel a s-stage RK method is a pair µ = (b, A) where A = (aij)
s
i,j=1

is a s × s real matrix, and b = (bi)
s
i=1 a row vector with real components,

typically represented as a RK tableau (1.6). We denote the set of RK methods
as RK.

A RK method µ = (b, A) is said to be of order n (n ≥ 1), if (1.4) holds for
the integration map ψh f (defined by (1.7)–(1.8)) associated to each smooth
vector field f : U ⊂ Rd → Rd.

Given a s-stage RK method µ = (b, A), for each i = 1, . . . , s, we denote as
µi the RK method

µi :=

a11 · · · a1s
...

. . .
...

as1 · · · ass
ai1 · · · ais

. (2.1)

Clearly, the integration map ψh f associated to the method µ = (b, A) is related
(for each ODE system (1.1)) to the integration maps iψh f associated to the
RK methods µi through the relation

ψh f (y) = y + h
s∑
i=1

bif(iψh f (y)). (2.2)

Given µ = (b, A) ∈ RK, n ≥ 1, and a smooth vector field f : U ⊂ Rd → Rd,
in order to check whether (1.4) holds, we need to expand both ψh f (y) and
f(ψh f (y)) as series in powers of h. From (2.2), and since iψh f (y) = y +O(h),
one gets that

ψh f (y) = y + h
( s∑
i=1

bi

)
f(y) +O(h2).

Hence, f(ψh f (y)) can be expanded as

f(ψh f (y)) = f(y) + f ′(y)(ψh f (y)− y) +O(h2)

= f(y) + h
( s∑
i=1

bi

)
f ′(y)(y) +O(h2).

Since the latter expansion is valid for the integration map ψh f (y) produced
by an arbitrary RK method µ = (b, A), this also holds for the integration map
iψh f of the RK method µi, that is

f(iψh f (y)) = f(y) + h
( s∑
j=1

aij

)
f ′(y)(y) +O(h2).
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By inserting that into (2.2), we in turn arrive at

ψh f (y) = y + h
( s∑
i=1

bi

)
f(y) + h2

( s∑
i,j=1

biaij

)
f ′(y)f(y) +O(h3).

Multivariate Taylor expansion of f(ψh f (y)) = f(z) at z = y gives

f(ψh f (y)) = f(y) + f ′(y)(z − y) +
1

2
f ′′(y)(z − y, z − y) +O(h3)

= f(y) + h
( s∑
i=1

bi

)
f ′(y)f(y) + h2

( s∑
i,j=1

biaij

)
f ′(y)f ′(y)f(y)

+
h2

2

( s∑
i=1

bi

)2
f ′′(y)(f(y), f(y)) +O(h3).

where f ′(y) represents the Jacobian matrix of f(y) with respect to y, and f ′′(y)
represent the second Fréchet derivative at y, so that f ′′(y)(f(y), f(y)) is the
vector obtained by letting f ′′(y) act on the pair (f(y), f(y)). That expansion
is of course valid for f(iψh f (y)) if the coefficients of the RK method µ = (b, A)
are replaced by those of µi. By inserting in (2.2) the expansions of f(iψh f (y))
obtained in this way, one gets an expansion of ψh f (y) with an additional power
of h. In order to write that conveniently, it will be useful to introduce some
notation. From now on, RRK denotes the set of functions u : RK → R.

Definition 2.1 Given a function u ∈ RRK, a new function [u] ∈ RRK can be
defined as

[u](µ) =
s∑
i=1

bi u(µi).

We denote by e the function e ∈ RRK defined by e(µ) = 1, ∀µ ∈ RK. Thus the
function [e] ∈ RRK is defined by [e](µ) =

∑s
i=1 bi, for each µ = (b, A) ∈ RK.

Using that notation, we have that

f(ψh f (y)) = f(y) + h [e](µ) f ′(y)f(y) + h2 [[e]](µ) f ′(y)f ′(y)f(y)

+
h2

2
([e](µ))2 f ′′(y)(f(y), f(y)) +O(h3),

and hence

f(iψh f (y)) = f(y) + h [e](µi) f
′(y)f(y) + h2 [[e]](µi) f

′(y)f ′(y)f(y)

+
h2

2
([e](µi))

2 f ′′(y)(f(y), f(y)) +O(h3),
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which inserted into (2.2) gives

ψh f (y) = y + h [e](µ) f(y) + h2
s∑
i=1

bi[e](µi) f
′(y)f(y)

+h3
s∑
i=1

bi[[e]](µi) f
′(y)f ′(y)f(y)

+
h3

2

s∑
i=1

bi[e](µi)
2 f ′′(y)(f(y), f(y)) +O(h4)

= y + h [e](µ) f(y) + h2 [[e]](µ) f ′(y)f(y)

+h3 [[[e]]](µ) f ′(y)f ′(y)f(y)

+
h3

2
[[e]2](µ) f ′′(y)(f(y), f(y)) +O(h4).

With such expansions of ψh f (y) and f(ψh f (y)) at hand, and using the
characterization (1.4) of methods of order n, one readily obtains that a RK
method µ = (b, A) ∈ RK is of order three if

[e](µ) = 1, [[e]](µ) =
1

2
[e](µ), [[[e]]](µ) =

1

3
[[e]](µ), [[e]2](µ) =

1

3
([e](µ))2,

or equivalently,

[e](µ) = 1, [[e]](µ) =
1

2
, [[[e]]](µ) =

1

6
, [[e]2](µ) =

1

3
.

A systematic derivation of conditions that guarantee that a method µ =
(b, A) is of order n can be obtained by generalizing the above procedure. In
order to do that, we consider the following sets of functions u ∈ RRK.

Definition 2.2 For n ≥ 1, consider the sets Tn ⊂ RRK recursively defined as
follows: T1 = {[e]}, and for each n ≥ 2,

Tn =
{

[u1 . . . um] : m ≥ 1, ui ∈ Tni and
m∑
i=1

ni = n− 1
}

We also denote T =
⋃
n≥1

Tn.

Observe that for each u ∈ Tn, u(µ) is a polynomial function on the entries
bi and aij in µ = (b, A). Actually, u is a function of homogeneous degree n in
the following sense: Given µ = (b, A) ∈ RK, consider for each λ ∈ R the new
method λµ := (λb, λA) ∈ RK.1 A function u ∈ RRK is of homogeneous degree
n if for all λ ∈ R, u(λm) = λnu(µ), and we write |u| = n in that case. We will

1If ψh f is the integration map (defined by (1.7)–(1.8)) produced by the method µ for a
smooth vector field f : U ⊂ Rd → Rd, then the integration map associated to the method λµ
is precisely ψλh f , that is the map obtained from ψh f by rescaling the time step h as λh.
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[e] [[e]] [[[e]]] [[e]2] [[[[e]]]] [[[e]2]] [[[e]][e]] [[e]3]

Table 1: Functions u ∈ T associated to rooted trees with up to four vertices

say that a function u ∈ RRK is homogeneous, if |u| = n for some non-negative
integer n. Obviously, |uv| = |u|+ |v| if u and v are functions on the set RK.

It was observed by Butcher that the set T can be identified with the set of
rooted trees. Indeed, one can associate the function [e] ∈ T1 to the rooted tree
with one vertex, and [u1 · · ·um] ∈ T (with u1, . . . , um ∈ T ) is associated to
the rooted tree that is obtained by grafting the root of the tree corresponding
to each u1, . . . , um to a new root. Obviously, |u| = n if the function u ∈ T is
associated to a rooted tree with n vertices.

The rooted trees with up to four vertices are displayed in Table 1 together
with their associated functions in

⋃4
n=1 Tn ⊂ RRK.

We can now state Butcher’s original result giving necessary and sufficient
order conditions for RK methods. A proof of that result is given in Subsec-
tion 2.3.

Theorem 2.3 (Butcher) A RK method µ ∈ RK is of order n if and only if

u(µ) =
1

u!
∀u ∈

n⋃
k=1

Tk, (2.3)

where [e]! = 1, and if u = [u1 · · ·um], with u1, . . . , um ∈ T ,

u! = u1! · · ·um!|u|.

2.2 The independence of order conditions

We will next show that, as a consequence of Theorem 2.5 below, the order
conditions (2.3) given in Theorem 2.3 are all independent, in the sense that
no system of algebraic equations having the same set of solutions has fewer
equations than (2.3). Furthermore, Theorem 2.5 implies that the set of func-
tions T ⊂ RRK can actually be identified with the set of rooted trees, that is,
that two functions u, v ∈ T associated to two different rooted trees are also
different as functions on the set RK of RK methods.

We first prove an auxiliary result.

Lemma 2.4 Given u, v ∈ RRK, if [u] = [v], then u = v.

Proof This is a consequence of the following: Given µ = (b, A) ∈ RK, then
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the method

µ′ =

a11 · · · a1s 0
...

. . .
...

...
as1 · · · ass 0
b1 · · · bs 0

0 · · · 0 1

is such that
∀u ∈ RRK, u(µ) = [u](µ′).

Theorem 2.5 (Butcher) Given arbitrary u1, . . . , uk ∈ T associated to k dis-
tinct rooted trees,

∀α ∈ Rk, ∃µ ∈ RK such that

 u1(µ)
...

uk(µ)

 = α. (2.4)

Proof We first make the following observations:

1. Given u1, . . . , uk ∈ T associated to k distinct rooted trees, (2.4) implies
that the functions

ul11 · · ·u
lk
k

for different k-tuples (l1, . . . , lk) of non-negative integers are linearly in-
dependent.

2. The set RK can be endowed with a vector space structure such that
each u ∈ T is a linear function u : RK → R. This is clearly achieved
by defining, for given (b′, A′), (b′′, A′′) ∈ RK and λ′, λ′′ ∈ R, the linear
combination λ′ (b′, A′) + λ′′ (b′′, A′′) as the RK method µ = (b, A) given
by

b =
(
λ′ b′ λ′′ b′′

)
, A =

(
A′ 0
0 Ā′′

)
.

Since each uj ∈ T is a linear function on the vector space RK, (2.4) is
equivalent to the linear independence of u1, . . . , uk.

We now prove by induction on n = maxi |ui| that the functions u1, . . . , uk ∈ T
associated to arbitrary k distinct rooted trees are linearly independent. The
statement trivially holds for n = 1, as in that case k = 1, u1 = [e]. Assume that
the statement holds whenever max(|u1|, . . . , |uk|) < n. Hence, the functions

ul11 · · ·u
lk
k , l1, . . . , lk ≥ 0,

are linearly independent provided that max(|u1|, . . . , |uk|) < n. Assume now
that there exists v1, . . . , vr ∈ T associated to r distinct rooted trees with
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max(|v1|, . . . , |vr|) = n that are linearly dependent, that is, ∃λ1, . . . , λr ∈ R
such that

0 =
r∑
i=1

λi vi. (2.5)

By definition of the set T , there exist u1, . . . , uk ∈ T , and lij ≥ 0 for i =

1, . . . , r, j = 1, . . . , k, such that vi = [uli11 · · ·u
lik
k ] for each i = 1, . . . , r. By

virtue of Lemma 2.4, we have that

0 =
r∑
i=1

λi vi =
[ r∑
i=1

λi u
li1
1 · · ·u

lik
k

]
=⇒ 0 =

r∑
i=1

λi u
li1
1 · · ·u

lik
k ,

which is in contradiction with the induction hypothesis as maxi |ui| < n.

Remark 2.6 Theorem 2.5 is also valid, as can be checked from its proof, with
RK replaced by the set of explicit RK tableaux (that is, the RK tableaux (b, A)
with strictly lower triangular matrices A).

2.3 Proof of necessary and sufficient order conditions

We next give some definitions and auxiliary results that we will use to prove
Theorem 2.3. Recall that the set T can be identified with the set of rooted
trees, and we have that for each u ∈ T with |u| > 1, there exist a unique m ≥ 1
and v1, . . . , vm ∈ T , unique up to permutations, such that u = [v1 · · · vm].

Definition 2.7 Given f : Rd → Rd, we define for each u ∈ T a smooth
map Fu : Rd → Rd (called the elementary differential of u) as follows. For
[e] = [e] ∈ T1, F[e] = f , and for u = [u1 · · ·um], where u1, . . . , um ∈ T ,

Fu(y) = f (m)(y)(Fu1(y), . . . , Fum(y)) ∀y ∈ U .

Definition 2.8 We consider for n ≥ 0 the sets Fn of functions on RK defined
as follows: F0 = {e}, and for n ≥ 1,

Fn =
{
u1 . . . um : m ≥ 1, ui ∈ Tni and

m∑
i=1

ni = n
}
.

We also denote F =
⋃
n≥0

Fn.

Recall that e ∈ RRK is defined by e(µ) = 1. From the proof of Theorem 2.5,
one gets that each u ∈ F can be uniquely factored in the form u = ul11 · · ·u

lk
k ,

where u1, . . . , uk ∈ T are distinct functions and l1, . . . , lk ≥ 1.
It is straightforward to check that each u ∈ Fn has homogeneous degree

n. Comparing the definition of the sets Tn and Fn−1, one sees that, for each
n ≥ 1, Tn = {[u] : u ∈ Fn−1}. Clearly,

F = {e} ∪
{
u1 . . . um : m ≥ 1, ui ∈ T

}
.
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|u| 1 2 3 3 4 4 4 4

u

Fu f f ′f f ′f ′f f ′′(f, f) f ′f ′f ′f f ′f ′′(f, f) f ′′(f ′f, f) f ′′′(f, f, f)

u! 1 2 6 3 24 12 8 4

σ(u) 1 1 1 2 1 2 1 6

Table 2: Elementary differentials Fu and the values of u! and σ(u) for rooted
trees u with up to four vertices

The set of functions F ⊂ RRK can be identified with the set of forests of rooted
trees. A forest is a collection of (possibly repeated) rooted trees.

Definition 2.9 We recursively define a positive integer for each u ∈ F , σ(u)
(the symmetry number of u) as follows: σ(e) = 1, σ([u]) = σ(u) if u ∈ F , and
if u1, . . . , um ∈ T are distinct functions and l1, . . . , lm ≥ 1,

σ(ul11 · · ·u
lm
m ) = l1! · · · lm!σ(u1)l1 · · ·σ(um)lm .

The elementary differentials Fu, and the values of u! and σ(u) associated
to rooted trees with four or less vertices are displayed in Table 2.

Proposition 2.10 Consider an ODE system (1.1) and the integration map
ψh f associated to an arbitrary RK method µ ∈ RK. Then it holds that, for
each y ∈ U , ψh f (y) can be expanded as follows,

ψh f (y) = y +
∑
u∈T

h|u|

σ(u)
u(µ)Fu(y), (2.6)

= y +
∞∑
n=1

hn
∑
u∈Tn

1

σ(u)
u(µ)Fu(y).

In addition, f(ψh f (y)) can be expanded as

f(ψh f (y)) = f(y) +
∑
v∈F

h|v|

σ(v)
v(µ)F[v](y). (2.7)

Proof We will first show that (2.6) formally implies (2.7). In order to do
that, we resort to the multivariate Taylor expansion of f(z) at z = y,

f(z) = f(y) +
∑
m≥1

1

m!
f (m)(y)(

m times︷ ︸︸ ︷
z − y, . . . , z − y). (2.8)
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Here, f (m)(y) is the mth Fréchet derivative of f at y. We replace z in (2.8) by
the expansion (2.6), and taking the multilinearity of f (m)(y) into account, we
obtain that f(z)− f(y) can be expanded as

∑
m≥1

∑
u1,...,um∈T

h|u1|+···+|um|

m!

u1(µ) · · ·um(µ)

σ(u1) · · ·σ(um)
f (m)(y)(Fu1(y), . . . , Fum(y))

and by the definition of elementary differentials Fu, we get that f(ψh f (y))
admits the expansion

f(y) +
∑
m≥1

∑
u1,...,um∈T

h|u1···um|

m!

(u1 · · ·um)(µ)

σ(u1) · · ·σ(um)
F[u1···um](y). (2.9)

Collecting the repeated terms, a term per v = u1 · · ·um ∈ F is obtained. If
v1, . . . , vk are the distinct rooted trees in {u1, . . . , um}, and the number of
rooted trees uj that coincide with vi is denoted by li, so that u1 · · ·um =

vl11 · · · v
lk
k , then the term corresponding to v = u1 · · ·um appears m!/(l1! · · · lk!)

times in (2.9). This shows, by virtue of the definition of σ(v) that f(ψh f (y))
can be expanded as (2.7).
Thus, if (2.6) holds up to terms of degree n in h for arbitrary RK methods
µ ∈ RK, then (2.7) also holds up to terms of degree n in h. Then, (1.7) implies
that (2.6) holds up to terms of degree n+ 1 in h.

For each n ≥ 1, let dn be the cardinality of the set T n := ∪nk=1Tk. Consider
a total ordering u1 < u2 < u3 < · · · of the set T such that, for each n ≥ 0,
Tn+1 = {udn+1, . . . , udn+1}. The following result can be proven by induction
on n.

Lemma 2.11 Given n ≥ 1, consider the polynomial vector field f : Rdn → Rdn
defined as follows: For y = (y1, . . . , ydn)T , f(y) = (f1(y), . . . , fdn(y))T where
f1(y) = 1, and for i ≥ 2, if ui = [ul1j1 · · ·u

lm
jm

] where uj1 , . . . , ujm ∈ T are
distinct and l1, . . . , lm ≥ 1, then

f i(y) =
1

(l1 + · · ·+ lm)!
(yj1)l1 · · · (yjm)lm .

The elementary differentials Fui, ui ∈ T n, corresponding to f evaluated at the
origin 0 ∈ Rdn satisfy

F jui(0) =

{
1 if j = i,
0 otherwise.

Proof of Theorem 2.3 Application of Proposition 2.10 and the character-
ization (1.4) of methods of order n lead to the following sufficient conditions
for order n,

[v](µ) =
1

k
v(µ) ∀v ∈ Fk−1, 1 ≤ k ≤ n. (2.10)

Lemma 2.11 implies that condition (2.10) is also necessary. Since by definition,
Tk = {[v] : Fk−1}, the required result follows by observing that, by virtue of
the recursive definition of u!, (2.10) is equivalent to (2.3).
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2.4 Composition of RK methods, rooted trees, and forests

We next define a composition in RK that is compatible (for each ODE (1.1))
with the composition of integration maps ψh f associated to RK methods.

Definition 2.12 Given a s-stage RK method µ = (b, A) ∈ RK and a s-stage
RK method µ′ = (b′, A′) ∈ RK, the composition µµ′ ∈ RK is the (s+ s′)-stage
RK method given by the Butcher tableau

a11 · · · a1s 0 · · · 0
...

. . .
...

...
. . .

...
as1 · · · ass 0 · · · 0
b1 · · · bs a′11 · · · a′1s′
...

. . .
...

...
. . .

...
b1 · · · bs a′s′1 · · · a′s′s′
b1 · · · bs b′1 · · · b′s′

.

Clearly, if ψh f and ψ′h f are the integration maps associated the RK meth-
ods µ and µ′ respectively, then the integration map associated to µµ′ is the
composition ψ′h f ◦ ψh f .

Proposition 2.13 Given an arbitrary function u ∈ RRK, for all µ, µ′ ∈ RK,

[u](µµ′) = [u](µ) + [uµ](µ′), (2.11)

where uµ ∈ RRK is defined as uµ(µ′) = u(µµ′) for all µ′ ∈ RK.

Proof We first note that, from Definition 2.12,

(µµ′)i =

{
µi if 1 ≤ i ≤ s,

µ′i−s µ if s+ 1 ≤ i ≤ s+ s′.

Given u ∈ RRK, by applying Definition 2.1 to [u] ∈ RRK we obtain

[u](µµ′) =

s∑
i=1

biu((µµ′)i) +

s′∑
i=1

b′iu((µµ′)s+i)

=

s∑
i=1

biu(µi) +

s′∑
i=1

b′iu(µµ′i)

=

s∑
i=1

biu(µi) +

s′∑
i=1

b′iuµ(µ′i),

and (2.11) follows from applying Definition 2.1 to [u](µ) and [uµ](µ′).

The identity (2.11) can be equivalently written as

[u]µ = [u](µ) e+ [uµ] (2.12)

13



which allows recursively writting formulae for u(µµ′) for u ∈ F , starting from
(e)µ = e. For instance,

[e]µ = [e](µ) e+ [e],

[[e]]µ = [[e]](µ) e+ [[e](µ) e+ [e]] = [[e]](µ) e+ [e](µ) [e] + [[e]],

([e]2)µ = ([e](µ) e+ [e])2 = [e](µ)2 e+ 2[e](µ) [e] + [e]2,

[[e]2]µ = [[e]2](µ) e+ [[e](µ)2 e+ 2[e](µ) [e] + [e]2]

= [[e]2](µ) e+ [e](µ)2 [e] + 2[e](µ) [[e]] + [[e]2],

[[[e]2]]µ = [[[e]2]](µ) e+ [[[e]2] e+ [e](µ)2 [e] + 2[e](µ) [[e]] + [[e]2]]

= [[[e]2]](µ) e+ [[e]2](µ) [e] + [e](µ)2 [[e]] + 2[e](µ) [[[e]]] + [[[e]2]].

or equivalently, rewriting uµ(µ′) back as u(µµ′) and representing each u ∈ T
by the corresponding rooted tree,

(µµ′) = (µ) + (µ′),

(µµ′) = (µ) + (µ) (µ′) + (µ′),(
(µµ′)

)2
=

(
(µ)
)2

+ 2 (µ) (µ′) +
(

(µ′)
)2
, (2.13)

(µµ′) = (µ) +
(

(µ)
)2

(µ′) + 2 (µ) (µ′) + (µ′),

(µµ′) = (µ) + (µ) (µ′) +
(

(µ)
)2

(µ′)

+2 (µ) (µ′) + (µ′).

The formulae in (2.13) for u(µµ′) can be interpreted in terms of the rooted

tree associated to u. For instance, u(µµ′) for the rooted tree u = is a sum
of terms of the form v(µ)w(µ′) where (v, w) ∈ F ×T is obtained from pruning
the original tree (where w is the rooted tree that remains after pruning, and
v corresponds to the pieces that are removed). In that example, the collection
of such (v, w) is

( , e), ( , ), ( , ), ( , ), ( , ), (e, ).

We will next make this precise in the general case.
The diagrams representing rooted trees in Table 1 can be identified with

partially ordered sets U of points in the plane (the vertices of U) having only
one minimal vertex (the root of U) and satisfying the following:

x, y, z ∈ U x < z, y < z =⇒ x < y or y < x. (2.14)

Actually, a rooted tree can be defined as an isomorphism class2 of finite par-
tially ordered sets satisfying (2.14) and having only one minimal vertex (the

2An isomorphism of partially ordered sets is a bijection of the sets that preserve their
partial ordering
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root). In turn, a forest of rooted trees can be defined as an isomorphism class
of finite partially ordered sets satisfying (2.14). Given two disjoint partially or-
dered sets V and W representing two forests v and w respectively, its (disjoint)
union U = V +W also represents a forest, which we denote by u = vw. Clearly,
any partially ordered set U satisfying (2.14) and having m > 1 minimal ver-
tices, can be uniquely decomposed as the disjoint union of m partially ordered
sets U1, . . . , Um representing rooted rees (i.e., satisfying (2.14) and having only
one minimal vertex), and in that case, U represents the forest u = u1 · · ·um.

Given a rooted tree v, one obviously obtains a forest u by removing the
root of v. We will write v = [u] in that case (thus mimicking the notation we
have used so far for the associated functions in RRK). Any rooted tree can
thus be represented as [u], where u is a uniquely determined forest of rooted
trees. Later on, we will make use of an additional operation on rooted trees
and forests, the so-called (left) Butcher product: Given a rooted tree v = [u]
(u a forest) and a forest w, we denote by w • v = [uw], that is, w • v is the
rooted tree of degree |v|+ |w| obtained by grafting each of the labeled rooted
trees in the forest w to the root of v.

Given a partially ordered set U , we will say that a pair (x, y) ∈ U × U
is comparable in U if either x < y or y < x. Given partially ordered subsets
V1, . . . , Vm of U , we write (V1 � · · · � Vm) ⊂ U if the following three conditions
are satisfied:

• each Vi is a partially ordered subset of U ,

• as a set, U is the disjoint union of V1, . . . , Vm,

• if (x, y) ∈ Vi × Vi+1 is comparable in U , then x > y.

Theorem 2.14 (Butcher) Given u ∈ F , let U be a partially ordered set
representing the forest associated to u. Then ∀(µ, µ′) ∈ RK ×RK,

u(µµ′) =
∑

(V�W )⊂U

v(µ)w(µ′) (2.15)

where the partially ordered sets V and W represent the forests associated to
the functions v and w respectively.

Proof We first observe that, using the notation in Proposition 2.13, (2.15)
can equivalently be written as

uµ =
∑

(V�W )⊂U

v(µ)w. (2.16)

We will prove by induction on n that (2.16) holds true for all u ∈ F with
|u| ≤ n. This trivially holds for n = 0, as F0 = {e}, and eµ = e, while e
corresponds to the empty forest, represented by the empty partially ordered
set ∅, which admits the unique decomposition (∅ � ∅) ⊂ ∅.
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Assume now that for all u ∈ F with |u| ≤ n − 1, (2.16) holds. Then (2.12)
implies that

[u]µ = [u](µ) e+
∑

(V�W )⊂U

v(µ) [w], (2.17)

where we have used that, by virtue of Definition 2.1, [·] : RRK → RRK is
linear. If U ′ is the partially ordered set representing [u], and x ∈ U ′ is the
root of U ′, then the partially ordered set U = U ′\{x} represents u, and the
pairs of partially ordered sets (V ′,W ′) 6= (U, ∅) such that (V ′ � W ′) ⊂ U ′ are
in one-to-one correspondence with the pairs (V,W ) such that (V � W ) ⊂ U ,
with V = V ′ and W = W ′\{x}. This together with (2.17) implies that

[u]µ =
∑

(V�W ′)⊂U ′
v(µ)w′.

We thus have that (2.16) is true for all u ∈ T with |u| ≤ n. Given u ∈ F\T with
|u| = n, consider u′, u′′ ∈ F\{e} such that u = u′u′′. If U is a partially ordered
set representing u, then U must be the disjoint union of two partially ordered
sets U ′ and U ′′ representing u′ and u′′ respectively. Then, by application of
the induction hypothesis, we have that

uµ =
∑

(V ′�W ′)⊂U ′
(V ′′�W ′′)⊂U ′′

v′(µ) v′′(µ)w′w′′,

which finally leads to (2.16) due to the following property of partially ordered
sets satisfying (2.14): Given two disjoint partially ordered sets U ′ and U ′′ and
U = U ′ + U ′′, if (V � W ) ⊂ U , then there exist unique partially ordered sets
V ′, V ′′,W ′,W ′′ satisfying that V = V ′ + V ′′, W = W ′ +W ′′, (V ′ �W ′) ⊂ U ′,
(V ′′ �W ′′) ⊂ U ′′.

2.5 The Butcher group

From now on, T and F will denote the set of rooted trees and the set of forests
of rooted trees respectively.

Following Butcher [2], we will define a product ∗ on the set RF of functions

α : F −→ R
u 7→ αu

that will endow RF with a unital (non-commutative) associative algebra struc-
ture closely related to the composition of RK methods.

Given µ, µ′ ∈ RK, consider α, β, γ ∈ RF such that, ∀u ∈ F ,

αu = u(µ), βu = u(µ′), γu = u(µµ′).

With that notation, (2.15) can be rewritten as γ = α ∗ β, where the product ∗
is defined next.
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Definition 2.15 Given α, β ∈ RF , α ∗ β ∈ RF is defined as follows: If U is a
partially ordered set representing a forest u ∈ F ,

(α ∗ β)u =
∑

(V�W )⊂U

αV βW , (2.18)

where αV = αv and βW = βw if V and W represent the forests v and w
respectively.

The product ∗ is well defined in RF (that is, (α ∗ β)u does not depend on the
partially ordered set U chosen as a representative of u). Indeed, if U and U ′ are
partially ordered sets representing the same forest u ∈ F , then (V � W ) ⊂ U
implies that (V ′ � W ′) ⊂ U ′, where the isomorphism from U to U ′ sends V
and W to V ′ and W ′ respectively.

The product ∗ endows the vector space RF with a unital associative algebra
structure with unit 11 ∈ RF defined as 11(e) = 1 and 11u = 0 if u ∈ F\{e}.
Observe that the associativity of ∗ is immediate from his definition, since

(α ∗ (β ∗ γ))u = ((α ∗ β) ∗ γ)u =
∑

(V1�V2�V3)⊂U

αv1βv2γv3 .

An important property of the product in Definition 2.15 is that, for each
u ∈ F , (α ∗ β − βeα − αeβ)u is a Z-linear combination of terms of the form
αvβw with max(|v|, |w|) < |u|, which allow proving results by induction on the
number of vertices |u| of the forest u.

For instance, one can easily prove that, given α ∈ RF , the equation α∗β = 11
can be uniquely solved for β ∈ RF provided that αe 6= 0. This proves that the
subset {α ∈ RF : αe 6= 0} ⊂ RF is a group under the product ∗. Such a
group contains an important subgroup, the Butcher group:

Proposition 2.16 (Butcher) The subset of RF

G = {α ∈ RF : αe = 1, ∀u, v ∈ F αuv = αuαv}, (2.19)

is a group under the product ∗ with identity element 11.

Proof It is sufficient to prove that G is a subgroup of {α ∈ RF : αe 6= 0}.
Indeed, one can prove that α ∗ β ∈ G if α, β ∈ G by following the argument
used at the end of the proof of Theorem 2.14.

Obviously, each element α ∈ G is uniquely determined by its values αu for
u ∈ T , so that, as a set, G can be identified with the set of functions RT .

We end this subsection by stating two fundamental properties of the prod-
uct (2.18):

P1 The restriction to T of α ∗ β − βeα depends linearly on the restriction
to T of β. This is a consequence, according to Definition 2.15, of the
fact that, if U is a partially ordered set representing a rooted tree u, and
(V �W ) ⊂ U with W 6= ∅, then W necessarily represents a rooted tree.

17



P2 Given β ∈ RF with βe = 0 (and in particular, β = α − 11 with α ∈ G),
(β∗n)u = 0 provided that u ∈ F with |u| < n. Indeed, in that case,

(β∗n)u =
∑

(V1�···�Vn)⊂U

βV1 · · ·βVn

where U is a partially ordered set representing a rooted tree u, but since
|u| < n, some of the Vj must necessarily be the empty partially ordered
set (thus representing the empty forest e), which implies that (β∗n)u = 0.

2.6 Equivalence classes of RK methods

Recall that two RK methods µ = (b, A), µ′ = (b′, A′) may be equivalent (Sub-
section 1.2) in the sense of producing for each system (1.1) exactly the same
numerical solution for sufficiently small step-sizes (provided that f is Lipschitz
continuous).

Proposition 2.10 implies that, if µ, µ′ ∈ RK are equivalent, then u(µ) =
u(µ′) for all u ∈ T . Actually, as shown by Butcher [2] (see also [3]), the reverse
also holds true.

Given a RK method µ ∈ RK, let us as consider

µ̂ : F −→ R
u 7→ u(µ).

(2.20)

Then, the set of equivalence classes of RK methods can be identified with the
set

GRK = {µ̂ : µ ∈ RK} ⊂ RF . (2.21)

It is clear that the set GRK ⊂ RF of equivalence classes of RK methods is
contained in G. Actually, as shown in [2], GRK is a subgroup of G.

Moreover, Theorem 2.5 implies that GRK is dense in G, with the structure
of a topological group determined by the neighbourhood basis {Un}n≥1 at
11 ∈ G given by Un = {α ∈ G : αu = 0 if u ∈ Tk with k ≤ n}. (Furthermore,
U1 ⊂ U2 ⊂ · · · are normal subgroups of G.)

2.7 Bibliographical comments

Essentially all the results in Section 2 are due to Butcher [2]. Butcher’s original
proof of Theorem 2.14 makes use of a different (although equivalent) recursion
based on the Butcher product w • v of two rooted trees v and w defined in
Subsection 2.4 (in Butcher’s original work, v · w denotes what we write as
w • v). The recursive formula (2.12) (written with a different notation) can be
found in [7, 4] as an equivalent formulation of Butcher’s original recursion. In
Butcher’s original definition of the product (2.18), subsets of a particular large
partially ordered set is used instead of arbitrary partially ordered sets.
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3 B-series and related formal expansions

In [19], it is observed that there are integration methods other than RK meth-
ods (for instance, multiderivative Runge-Kutta methods) that admit expan-
sions that generalize those in Proposition 2.10: the so-called B-series (i.e.,
Butcher series). Working with B-series allows working directly with equiva-
lence classes of Runge-Kutta methods and other one-step methods. The B-
series expansion of one step of such a method is a series in powers of h that
is convergent for sufficiently small h in the case of real analytic vector fields
f . In addition, B-series that do not necessarily correspond to the expansion
of actual integration methods (and may not converge even in the real analytic
case) have proven to be very useful in the analysis of numerical methods for
ODEs.

3.1 B-series

Following [19], we define for each α ∈ RT ∪{e} a formal series as follows.

Definition 3.1 (Hairer and Wanner) Given a vector field f of an ODE
(1.1), the B-series associated to α ∈ RT ∪{e} is defined as

Bhf (α, y) = αe y +
∑
u∈T

h|u|

σ(u)
αu Fu(y). (3.1)

We will drop the subindex hf from Bhf (α, y) when there is no ambiguity.
With that notation, Proposition 2.10 can be restated as follows: the inte-

gration map ψhf (y) of an arbitrary RK method µ ∈ RK can be expanded as a
B-series Bhf (α, y), where for each u ∈ T ∪ {e}, αu = u(µ) (and in particular,
αe = 1), and f(ψhf (y)) can be expanded as a B-series Bhf (β, y), where βe = 0,
and for each u ∈ T , with u = [v], v ∈ T , βu = v(µ).

Given two RK methods µ, µ′ ∈ RK and their composition µµ′ ∈ RK,
consider their corresponding B-series B(α, y), B(β, y), and B(γ, y), that is,
for each u ∈ T ∪ {e}, αu = u(µ), βu = u(µ′), γu = u(µµ′) (in particular,
αe = βe = γe = 1), then we must formally have that

B(β,B(α, y)) = B(γ, y).

Theorem 2.14 states that, using the notation introduced in Definition 2.15, for
each u ∈ T ∪ {e}, γu = (α ∗ β)u, where for each forest v ∈ F , αv = v(µ), that
is

αu1···um = αu1 · · ·αum , if v = u1 · · ·um ∈ F . (3.2)

(Recall that, according to Property P2 in Subsection 2.5, the values αv and
βw for (v, w) ∈ F × (T ∪{e}) are required to determine all the values (α ∗β)u,
u ∈ T ∪ {e}.)

Furthermore, Theorem 2.5 implies that, for arbitrary α, β ∈ RT ∪{e} with
αe = βe = 1,

B(β,B(α, y)) = B(α ∗ β, y) (3.3)
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where α ∈ RT ∪{e} is extended to α ∈ G ⊂ RF by (3.2). Observe that (3.2)
defines a bijection from the set {α ∈ RT ∪{e} : αe = 1} to G.

Observe that 11 ∈ G corresponds, as expected, to the B-series representing
the identity map, that is, B(e, y) ≡ y. Formula (3.3) shows that a B-series
Bhf (α, y) (for a given vector field f) defines a homomorphism from the group
G to the group of near-to-identity formal maps ψh(y) = y+hg1(y)+h2g2(y)+· · ·
in Rd (with smooth maps gn : Rd → Rd).

The composition formula (3.3) can also be extended to the case βe 6= 1
leading to the following result. A direct proof (that does not make use of the
results in Section 2) was given in the original paper [19]. An alternative direct
proof of a more general results (Theorem 3.9) will be given in Subsection 3.3.

Theorem 3.2 (Hairer and Wanner) Given two B-series B(α, y) and B(β, y),
where α, β ∈ RT ∪{e} with αe = 1, (3.3) formally holds, where α ∗ β ∈ RF is
given by (2.18) and (3.2).

3.2 Backward error analysis, the exponential, and the loga-
rithm

The problem of standard backward error analysis of numerical integration
methods for ODEs can be stated as follows: Given α ∈ G representing an
integration method that, when applied to the ODE (1.1) with solution y(t),
provides the approximations yn ≈ y(hn) at t = nh in a step-by-step manner
as

yn+1 = Bhf (α, yn), n = 0, 1, 2, . . . , (3.4)

determine a modified ODE of the form

dỹ

dt
= f̃(ỹ;h), ỹ(0) = y0, (3.5)

(which is expected to be a perturbation of the ODE (1.1) parameterized by
the discretization parameter h), whose solution ỹ(t) satisfies that ỹ(nh) = yn
for all n, or equivalently,

ỹ(nh) = Bhf (α∗n, y0), n = 0, 1, 2, . . . (3.6)

Let us assume that such a modified equation exists, and admits an expan-
sion in powers of h of the form

f̃(ỹ;h) = f̃1(ỹ) + hf̃1(ỹ) + h2f̃2(ỹ) + · · ·

In that case, application of polynomial interpolation with nodes t = nh, n =
0, . . . , N (for an arbitrarily high positive integer N) gives an interpolant PN (t)
of the solution ỹ(t) of the modified equation (3.5) having a B-series expansion
PN (t) = Bhf (γ[N ](t/h), y0), where ∀u ∈ T , γ[N ](τ)u is the unique polynomial
of degree N in τ satisfying that

γ[N ](n)u = (α∗n)u for n = 0, 1, . . . , N. (3.7)
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Application of Newton’s forward finite difference formula for the interpolating
polynomial gives

γ[N ](τ) = 11 +
N∑
n≥1

τ(τ − 1) · · · (τ − n+ 1)

n!
(α− 11)∗n.

Standard error analysis of polynomial interpolation shows that the series in
powers of h of ỹ(t) and PN (t) coincide up to terms of degree N in h. By
considering arbitrarily high N , one gets that

ỹ(t) = Bhf (γ(t/h), y0), (3.8)

where

γ(τ) = 11 +
∑
n≥1

τ(τ − 1) · · · (τ − n+ 1)

n!
(α− 11)∗n. (3.9)

Observe that γ(τ) is well defined as a function in RF , because αe = 11 implies
that ((αe − 11)∗n)u = 0 whenever |u| < n (Property P2 in Subsection 2.5).

If ỹ(t) given by (3.8)–(3.9) is the solution of an autonomous ODE (3.5),
then the right-hand side of (3.5) can be recovered from the expansion (3.8) of
its solution ỹ(t) as

f̃(y0;h) =
d

dt
ỹ(t)

∣∣∣∣
t=0

=
d

dt
Bhf (γ(t/h), y0)

∣∣∣∣
t=0

,

that is,

f̃(y;h) = h−1Bhf (β, y) (3.10)

= β f(y) + hβ f ′(y)f(y) + · · ·

where the coefficients βu for u ∈ T are given by the formula

β =
d

dτ
γ(τ)

∣∣∣∣
τ=0

=
∑
n≥1

(−1)n+1

n
(α− 11)∗n, (3.11)

or equivalently,

βu =
d

dτ

∣∣∣∣
τ=0

γ(τ)u =

|u|∑
m=1

(−1)m+1

m

∑
(Vm�···�V1)⊂U

αV1 · · ·αVm , (3.12)

where in the inner summation only non-empty posets V1, . . . , Vm are consid-
ered. For instance,

β = α ,

β = α − 1

2
α2,

β = α − α α +
1

3
α3,

β = α − α α +
1

6
α3.
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We thus have that β = log(α), or equivalently, α = exp(β), where the mutually
reciprocal operators log and exp are defined as follows:

Definition 3.3 Given α ∈ RF with αe = 1, log(α) ∈ RF is defined as

log(α) =
∑
n≥1

(−1)n+1

n
(α− 11)∗n.

Given β ∈ RF with βe = 0, exp(β) ∈ RF is defined as

exp(β) = 11 +
∑
n≥1

1

n!
β∗n.

Though defined as infinite series, log(α) and exp(β) are well defined as func-
tions in RF , because αe = 11 (resp. βe = 0) implies that ((αe − 11)∗n)u = 0
(resp. (β∗n)u = 0) whenever |u| < n. (Property P2 in Subsection 2.5.)

Summing up, we have seen that if the formal solution ỹ(t) of a modified
equation (3.5) satisfies (3.6), then the right-hand side of (3.5) is given as the
B-series (3.10) where β = log(α). We will next show that the solution ỹ(t)
of such a modified equation actually satisfies (3.6): Substitution of ỹ(t) =
Bhf (γ(t/h), y0) in (3.5) and application of Theorem 3.2 gives

d

dt
Bhf (γ(t/h), y0) =

1

h
Bhf (γ(t/h) ∗ β, y0), Bhf (γ(0), y0) = y0,

or equivalently,

Bhf (
d

dτ
γ(τ), y0) = Bhf (γ(τ) ∗ β, y0), Bhf (γ(0), y0) = y0,

which will hold true if γ(τ) satisfies the ODE

d

dτ
γ(τ) = γ(τ) ∗ β, γ(0) = 11, (3.13)

whose solution is γ(τ) = exp(τβ). Hence, ỹ(t) = Bhf (γ(t/h), y0) with γ(τ) =
exp(τ log(α)) (which can be expanded as (3.9)) is the solution of the modified
equation (3.5) with (3.10) and β = log(α). We finally have that (3.6) holds
true as exp(n log(α)) = α∗n for all n ∈ Z.

Obviously, the right-hand side of (1.1) can be written as h−1Bhf (δ , y),
where δ ∈ g is defined as δu = 1 if u = and δu = 0 otherwise. Thus the exact
solutions y(t) of (1.1) admits the expansion y(t) = Bhf (γ(t/h), y(0)), where
γ(τ) = exp(τ δ ) is the solution of the ODE (3.13) with β = δ , that is, for
each u ∈ T with u = [v], v ∈ F ,

d

dτ
γ(τ)u = γ(τ)v, γ(0)u = 0,

which leads to γ(τ)u = exp(τδ )u = τ |u|/u!, where the factorial u! of the rooted
tree u is defined as in Theorem 2.3.
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The fact that β = α implies that (3.5) will be a perturbation of size
O(h) of the original ODE (1.1) provided that α = 1. More generally, (3.5)
will be a perturbation of size O(hr) of the original ODE (1.1) if and only if
αu = exp(δ )u = 1/u! for all u ∈ T with |u| ≤ r, that is, if α ∈ G corresponds
to a method of order r for the original ODE (1.1).

Unfortunately, the series in powers of h defining the right-hand side (3.10)
of the modified ODE (3.5) is in general divergent, even when the B-series
expansion (3.4) of the integration method is convergent (for real analytic f ,
and sufficiently small h). For rigorous results based on modified equations, one
has to consider a truncated version, and estimate the differences between the
numerical solution and the solution of the truncated modified ODE.

3.3 Series of linear differential operators

Let ψhf (y) be one step of an integration method applied to the ODE (1.1) that
admits a B-series expansion ψhf (y) = Bhf (α, y) for some α ∈ G. Assume that
we want to expand the composition of ψhf with a smooth function g ∈ C∞(Rd),
that is, we want the expansion in powers of h of g(Bhf (α, y)). Proceeding as in
the proof of Proposition 2.10 when showing that (2.6) implies that f(ψhf (y))
admits the expansion (2.7), one readily gets that g(Bhf (α, y)) can be expanded
as

g(y) +
∑

v=u1···um∈F\{e}

h|v|

σ(v)
αv g

(m)(y)(Fu1(y), . . . , Fum(y)), (3.14)

where the summation goes over all non-empty forests v ∈ F\{e}, and for
each such forest, v = u1 · · ·um is its unique decomposition in rooted trees
u1, . . . , um ∈ T .

This motivates us to make the following definitions.

Definition 3.4 Given a smooth vector field f , the elementary differential op-
erator Xu associated to a forest u ∈ F is an operator acting on smooth
functions g ∈ C∞(Rd) defined as follows: If u = e, then Xe g = g, and if
u = u1 · · ·um, where u1, . . . , um ∈ T , then the function Xu g is defined for
each y ∈ Rd as

Xu g(y) = g(m)(y)(Fu1(y), . . . , Fum(y)),

where the elementary differentials Fv associated to rooted trees v are given in
Definition 2.7.

In particular, X g(y) = g′(y)f(y), and thus X is the Lie derivative along the
smooth vector field f .

Definition 3.5 Given a smooth vector field f , to each α ∈ RF we associate
the formal series Shf (α) of differential operators acting on smooth functions
g ∈ C∞(Rd) given as

Shf (α) =
∑
u∈F

h|u|

σ(u)
αuXu.
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With Definition 3.4, we clearly have that, if u ∈ F , then the ith component
of the elementary differential F[u] associated to the rooted tree [u] can be
obtained as the action of Xu on the ith component of f , that is, F i[u] = Xuf

i.

(Alternatively, F i[u] = X[u]ei, where ei denotes the ith coordinate function, that

is, ei(y) = yi.) We thus have that, for each α ∈ G,

Bhf (α, y) = y + hShf ([α]∗)f(y), (3.15)

where [α]∗ ∈ RF is determined from the values αu for u ∈ T as

([α]∗)v = α[v] for each v ∈ F . (3.16)

Observe that, if α ∈ GRK , that is, if ∃µ ∈ RK such that ∀u ∈ F , αu = u(µ),
then ([α]∗)u = [u](µ).

In what follows, we will assume that the vector field f is fixed, and will
often drop the subindex hf from the notation. From the discussion at the
beginning of the subsection, we have the following basic result:

Proposition 3.6 For each α ∈ G and each g ∈ C∞(Rd),

g(B(α, y)) = S(α)g(y).

We thus have that a series of differential operators S(α) for α ∈ G can be
identified with a B-series B(α, y) that represents a near-to-identity map (recall
that αe = 1 if α ∈ G). From Proposition 3.6, we have that, for arbitrary
g1, g2 ∈ C∞(Rd),

S(α)g1g2 = (S(α)g1) (S(α)g2) if α ∈ G. (3.17)

We will next see that, while in the B-series context, α ∗ β does not make
sense for arbitrary α, β ∈ RF , it does in terms of series of differential operators.
We will first state the following auxiliary result concerning the product ∗ in
Definition 2.15.

Proposition 3.7 Given α, β ∈ RF ,

[α ∗ β]∗ = βe [α]∗ + α ∗ [β]∗. (3.18)

We omit the proof of Proposition 3.7 because of its similarity to the proof of
Theorem 2.14. Observe that, in the case where α, β ∈ GRK , (that is, ∃µ, µ′ ∈
RK such that ∀u ∈ F , αu = u(µ) and βu = u(µ)) (3.18) reduces to (2.11)
(with (α ∗ β)u = u(µµ′) for all u ∈ F).

Lemma 3.8 For each α ∈ RF and each N ≥ 1, there exist α1, . . . , αmN ∈ G
and λ1, . . . , λmN ∈ R such that,

αu =

mN∑
j=1

λj α
j
u, for all u ∈ F with |u| ≤ N.
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Theorem 3.9 For each α, β ∈ RF ,

S(α)S(β) = S(α ∗ β). (3.19)

Proof We will prove by induction on N ≥ 1 that, for all (α, β) ∈ RF × RF ,

S(α)S(β)g − S(α ∗ β)g = O(hN+1). (3.20)

By virtue of Lemma 3.8, and by bilinearity of both ∗ and the composition of
linear differential operators, it is then enough to prove (3.20) for α, β ∈ G.
According to Proposition 3.6, if α, β ∈ G, then

S(α)S(β)g(y)− S(α ∗ β)g(y) = g(B(β,B(α, y)))− g(B(α ∗ β, y)), (3.21)

and thus we have to prove that, for all (α, β) ∈ G × G,

B(β,B(α, y))−B(α ∗ β, y) = O(hN+1),

but according to (3.15) and Proposition 3.6,

B(β,B(α, y))−B(α ∗ β, y) = S(α)B(β, y)− y − hS([α ∗ β]∗)f(y)

= hS([α]∗)f(y) + hS(α)S([β]∗)f(y)− hS([α ∗ β]∗)f(y).

By induction hypothesis, S(α)S([β]∗) = S(α ∗ [β]∗) +O(hN ), and thus,

B(β,B(α, y))−B(α ∗ β, y) = hS([α]∗ + α ∗ [β]∗ − [α ∗ β]∗)f(y) +O(hN+1)

and the required result is obtained by virtue of Proposition 3.7.

We thus have that (3.5) defines an algebra homomorphism from the algebra
RF to the algebra E [[h]], where E denotes the algebra of endomorphisms of
C∞(Rd). In particular, Shf (e) is the identity operator. We also have that
Shf (exp(β)) = exp(Shf (β)) (resp. Shf (log(α)) = log(Shf (α))) if βe = 0 (resp.
if αe = 1).

The following is a consequence of (3.17) and Lemma 3.8.

Proposition 3.10 For each α ∈ RF ,

S(α)g1g2 =
∑

(u,v)∈F×F

h|u|+|v|

σ(u)σ(v)
α(uv) (Xug1) (Xvg2).

3.4 The Lie algebra of the Butcher group

We next introduce the Lie algebra g = log(G) of the Butcher group G.

Proposition 3.11 Given β ∈ RF , the following statements are equivalent:

• exp(β) ∈ G.

• For all u, v ∈ F ,
βuv = 11uβv + βu11v. (3.22)
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• there exists a curve γ : R→ G such that

γ(0) = 11,
d

dt
γ(t)

∣∣∣∣
t=0

= β. (3.23)

Clearly, (3.22) is equivalent to

βe = 0, βu1···um = 0, if u1, . . . , um ∈ T . (3.24)

Hence, as in the case of G, each β ∈ g is uniquely determined by its values βu
for u ∈ T .

Given a vector field f , for each β ∈ g, Shf (β) is a derivation of the algebra
C∞(Rd), i.e.,

Shf (β)g1g2 = (Shf (β)g1) g2 + g1 (Shf (β)g2) if β ∈ g. (3.25)

That is, Shf (β) is (the Lie operator of) a vector field. The equality (3.25)
follows from (3.17) by considering a curve γ(τ) in G satisfying (3.23). This can
also be shown directly from the definition of Shf (β) by taking into account
that, if β ∈ g, then βu = 0 for all u ∈ F\T , so that

Shf (β)g(y) =
∂

∂y
g(y)Bhf (β, y).

Proposition 3.11 implies that g is a Lie subalgebra of the Lie algebra RF with
bracket [α, β] = α ∗ β − β ∗ α. Thus, the restriction of Shf to g defines a
homomorphism from the Lie algebra g to the Lie algebra of (formal series of)
vector fields.

3.5 The pre-Lie algebra structure on g

We next show that the Lie algebra g has a pre-Lie algebra structure. A nice
exposition on pre-Lie algebras can be found in [?].

It will be useful to consider the projection π : RF → g given by π(β)u = 0
for each u ∈ F\T , and π(β)u = βu for each u ∈ T . Observe that the restriction
of π to G is (as the restriction to G of the logarithm) a bijection from G to g.

Property P1 in Subsection 2.5 implies that g has a leftH∗-module structure,
with H∗ ⊗ g→ g defined as follows.

Definition 3.12 Given α ∈ H∗ and β ∈ g,

α · β := π(α ∗ β).

We use the symbol � to denote the restriction to g⊗g of that H∗-module map.
Thus, given β, β′, β′′ ∈ g,

β � (β′ � β′′) = β · (β′ · β′′) = (β ∗ β′) · β′′. (3.26)

Since g is a Lie algebra under the bracket [β, β′] = β ∗ β′ − β′ ∗ β, defined
for β, β′ ∈ g, we have that π([β, β′]) = [β, β′], and thus

∀β, β′ ∈ g, β � β′ − β′ � β = [β, β′]. (3.27)
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Proposition 3.13 The vector space g with the restriction to g⊗ g of � has a
left pre-Lie algebra structure.

Proof According to the definition of left pre-Lie algebra, we have to prove
that, given β, β′, β′′ ∈ g,

(β � β′ − β′ � β) � β′′ = β′ � (β � β′′)− (β′ � β) � β′′.

Indeed, given β, β′, β′′ ∈ g, taking into acount (3.27) and (3.26),

(β � β′ − β′ � β) � β′′ = [β, β′] � β′′

= (β′ ∗ β − β ∗ β′) · β′′

= (β′ ∗ β) · β′′ − (β ∗ β′) · β′′

= β′ � (β � β′′)− β � (β′ � β′′).

Proposition 3.14 If α ∈ H∗ and β ∈ g, then

B(α · β, y) = S(α)B(β, y).

In particular, if α, β ∈ g, then B(α� β, y) = ∂
∂yB(β, y) ·B(α, y).

Proof It follows from Theorem 3.9, since for each γ ∈ H∗, the ith compoment
of B(γ) = B(π(γ)) coincides with the action of S(γ) on the ith coordinate
function ei ∈ C∞(Rd), the required result is equivalent to

S(α ∗ β)ei = S(α)S(β)ei, i = 1, . . . , d.

This shows that, given a smooth vector field f , the definition of the B-series
Bhf (β, ·) for each β ∈ g determines a homomorphism from the left pre-Lie
algebra g to the left pre-Lie algebra of (formal series of) smooth vector fields
in Rd: Recall that the binary operation � endowing the vector space of smooth
vector fields in Rd (given as maps f : Rd → Rd) with a left pre-Lie algebra
structure is defined as (f � g)(y) = ∂

∂yg(y) · f(y), that is, f � g is the action
on g of the Lie operator associated to f .

The next result gives a characterization of Lie algebras that are obtained
in this way from a left pre-Lie algebra structure.

Proposition 3.15 Given a Lie algebra L, consider its universal enveloping
algebra U(L). The vector space L can be endowed with a left pre-Lie algebra
operation � : L ⊗ L → L such that for all `, `′ ∈ L,

[`, `′] = `� `′ − `′ � `

if and only if L has a left U(L)-module structure. In that case, � is the
restriction to L ⊗ L of the left-module map U(L)⊗ L → L.
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Proof Clearly, the existence of a left U(L)-module structure of L can be
replaced in the statement of Proposition 3.15 by the existence of a triplet
(A, ν, ·), where A is an associative algebra, ν : L → A is a monomorphism of
Lie algebras, and · : A ⊗ L → L is a left A-module structure map. The ’if’
part of the statement can be proven as Proposition 3.13. The ’only if’ part
is obtained by considering A as the algebra of endomorphisms of the left pre-
Lie algebra L, the canonical left A-module structure of L, and the injection
ν : L → A defined as ν(`) · `′ = ` � `′, and proving that ν is a Lie algebra
morphism. Indeed, by definition of ν and the left pre-Lie algebra condition,
we have that

ν([`, `′]) · `′′ = (`� `′ − `′ � `) � `′′

= `� (`′ � `′′)− `′ � (`� `′′)

= ν(`) · (ν(`′) · `′′)− ν(`′) · (ν(`) · `′′)
= [ν(`), ν(`′)] · `′′.

Let us consider the vector space g0 of elements in g with finite support, or
equivalently,

g0 = {β ∈ g : ∃N ≥ 1 such that βu = 0 if |u| ≥ N}. (3.28)

Clearly, g0 is a left pre-Lie subalgebra of g. The set T of rooted trees can be
identified with the basis {δu : u ∈ T } of g0, where for each u ∈ T ,

(δu)v =

{
σ(u) if v = u

0 otherwise,
(3.29)

where the normalization factor σ(u) is determined for each u ∈ T in Defini-
tion 2.9. We thus have that, for each β ∈ g0,

β =
∑
u∈T

βu
σ(u)

δu.

A left pre-Lie algebra structure is determined for the set RT of linear
combinations or rooted trees by identifying each δu with the rooted tree u. It
can be shown that the pre-Lie algebra g0 is generated by δ and also, that

δu � δv =

|v|∑
i=1

δwi

where each wi is the rooted tree obtained by grafting the rooted tree u to the
ith vertex of v. This is precisely the left pre-Lie algebra of rooted trees as
introduced by Chapoton [8], who proves the following fundamental result:

Theorem 3.16 The left pre-Lie algebra g0 of rooted trees is the free left pre-
Lie algebra in one generator.

In Subsection 4.3 below, an alternative to the original proof in [8] is given in
Theorem 4.3.
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3.6 Bibliographical comments

A direct proof of Theorem 3.2 based on the Fàa di Bruno formula was given
in the original paper [19]. The construction of modified equation for general
B-series methods is originally due to Hairer [20]. The formula (3.12) for the
coefficients of the modified equations is closely related to the one originally
introduced in [20]. An alternative approach to recursively compute the coef-
ficients β(u) and γ(u) from the ODE (3.13) supplemented by the condition
γ(1) = α was considered in [5], which only makes use of the formula (2.18) of
composition of B-series. The interpolatory argument adopted in Subsection 3.2
was introduced in [26], and explicit expressions for log(α)u in terms of rooted
trees are given in [27] and [9]. The linear differential operators Xu were first
considered in the context of Runge-Kutta methods by Merson [25]. They can
also be found later on in [17], [26, 27]. In [12] and [11] series of such differential
operators are successfully applied to study preservation properties of integra-
tion methods that can be expanded as B-series. In [8], the left pre-Lie algebra
structure on the linear span of rooted trees is studied, and it is shown that it
is the free left pre-Lie algebra in one generator (see Theorem 3.16 below).

4 Hopf algebras of rooted trees

Clearly, all the material in Subsection 2.5 would be valid if the set RF of
functions had been replaced by the set RF of maps from F to an arbitrary
commutative algebra R. In particular, this gives a group structure G(R)
on the set of maps α : F → R satisfying that αuv = αuαv. In this sense,
the Butcher group is actually an affine group scheme G(·), a functor from
commutative algebras to groups. The category of group schemes is equivalent
to the category of commutative Hopf algebras [?]: Given a group scheme G(·),
there exists a commutative Hopf algebra H such that G(R) is the group of
algebra maps from H to R with the convolution product as group law. The
coproduct in H can be obtained by dualizing the group law of the affine group
scheme G(·). Applying this to the particular case of Butcher’s affine group
scheme gives rise to a commutative Hopf algebra H on the vector space of
linear combinations of forests of rooted trees.

As an alternative construction of H, the algebra R[T ] of functions on RK
generated by T (each u ∈ T viewed as a function in RRK as defined in Sec-
tion 2) can be endowed with a commutative Hopf algebra structure derived
from the semigroup structure of the set of RK methods. This can be done by
observing that the results in Subsection 2.4 imply that the algebra R[T ] is a
subbialgebra of the bialgebra of representative functions [21] of the semigroup
RK. (In particular, the coassociativity of the coproduct in H comes as a di-
rect consequence of the associativity of the composition of RK methods.) The
existence of the antipode is guaranteed, in this context, by the conilpotency of
the coproduct.

There is another important Hopf algebra associated to the Butcher group
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G, the dual Hopf algebra [28] H◦ of H. The Butcher group G coincides with
the group G(H◦) of group-like elements of H◦. The Lie algebra g of the group
G is the Lie algebra P (H◦) of primitive elements of H◦.

4.1 The commutative Hopf algebra of rooted trees

The preceeding discussion leads to a commutative Hopf algebra structure on
the vector space spanned by the set F of forests. As an algebra, it is just the
algebra R[T ] of polynomials in the commuting indeterminates u ∈ T (with
the empty forest e as the unit), or equivalently, the symmetric algebra S(V)
over the vector space V spanned by the set of rooted trees T . The bijection
F → T that gives the rooted tree [u] for each forest u induces an isomorphism
of vector spaces B : S(V)→ V, where B(u) = [u] for each u ∈ F .

The coproduct
∆ : H → H⊗H

u 7→ ∆(u)

is defined by determining ∆(u) for each u ∈ F as follows: If U is a partially
ordered set representing a forest u ∈ F ,

∆(u) =
∑

(V�W )⊂U

v ⊗ w (4.1)

= u⊗ e+ e⊗ u+
∑

(V�W )⊂U
V,W 6=∅

v ⊗ w,

where V and W represent the forests v and w respectively. The coassociativity
(which can be seen as a consequence of the associativity of the composition of
RK methods), can be directly checked from the definition of ∆(u) for u ∈ F
(exactly like the associativity of the group law of G): For each u ∈ F ,

(∆⊗ idH) ◦∆(u) = (idH ⊗∆) ◦∆(u) =
∑

(V1�V2�V3)⊂U

v1 ⊗ v2 ⊗ v3.

The counit 11 : H → R is defined by setting 11(e) = 1 and 11(u) = 0 for all
u ∈ F\{e}. The antipode s(u) can be defined for each u ∈ H by

s(u) = −u−
∑

(V�W )⊂U
V,W 6=∅

v ⊗ s(w)

= −u+
∑
m≥2

(−1)m
∑

(V 1�V2�Vm)⊂U
V1,...,Vm 6=∅

v1 ⊗ · · · ⊗ vm.

It is obvious from the definition of the coproduct of ∆ that, as a coalgebra, H is
conilpotent (i.e., connected), that is to say, for each u ∈ H such that 11(u) = 0,
there exists an n ≥ 0 such that ∆

n
(u) = 0, where ∆(u) = ∆(u)−u⊗ e− e⊗u,

and ∆
n+1

= (∆
n ⊗ idH) ◦∆.
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Clearly, the Hopf algebra H is compatible with the grading H =
⊕

n≥0Hn,
where each homogeneous component Hn is spanned by the set Fn of forests
with n vertices. Thus, H has a graded connected Hopf algebra structure.

Next result is a dual version of (2.12) (and also of (3.18)).

Proposition 4.1 (Kreimer) Consider the linear map L : H ⊗ H → H ⊗ V
defined as L(u⊗ v) = u⊗ [v] for each u, v ∈ F . Then, for each u ∈ H,

∆([u]) = [u]⊗ e+ L(∆(u)) (4.2)

Proof If U ′ is the partially ordered set representing [u], and x ∈ U ′ is the
root of U ′, then the partially ordered set U = U ′\{x} represents u, and the
pairs of partially ordered sets (V ′,W ′) 6= (U, ∅) such that (V ′ � W ′) ⊂ U ′ are
in one-to-one correspondence with the pairs (V,W ) such that (V � W ) ⊂ U ,
with V = V ′ and W = W ′\{x}. This implies that

∆([u]) =
∑

(V�W ′)⊂U ′
v ⊗ w′ = [u]⊗ e+

∑
(V�W )⊂U

v ⊗ [w].

4.2 The dual algebra H∗ and the dual Hopf algebra H◦

Given a linear form α ∈ H∗, we denote as 〈α, u〉 the value of α at u ∈ H.
When u ∈ F , we will keep the notation 〈α, u〉 = αu. The coalgebra structure
of H induces an associative unital algebra structure on the algebraic dual H∗
of H, with the multiplication ∗ given by

〈α ∗ β, u〉 = 〈α⊗ β,∆(u)〉,

where, as usual, H∗ ⊗ H∗ is considered as a subspace of (H ⊗ H)∗ (that is,
given α, β ∈ H∗, α⊗ β ∈ (H⊗H)∗ is defined as 〈α⊗ β, u⊗ v〉 = 〈α, u〉 〈β, v〉).

Clearly, the algebra H∗ coincides with the algebra structure on RF defined
in Subsection 2.5.

Given α ∈ H∗, consider ∆(α) ∈ (H⊗H)∗.

〈∆(α), u⊗ v〉 = 〈α, uv〉.

LetH◦ be the subalgebra ofH∗ consisting of α ∈ H∗ such that ∆(α) ∈ H∗⊗H∗.
Following Sweedler [28], we have that H◦ has a cocommutative Hopf algebra
structure. The group of group-like elements

G(H◦) = {α ∈ H◦ : ∆(α) = α⊗ α}

ofH◦ (or equivalently, the group of characters ofH) coincides with the Butcher
group G. The Lie algebra of primitive elements

P (H◦) = {β ∈ H◦ : ∆(β) = β ⊗ 11 + 11⊗ β}
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of H◦ (or equivalently, the Lie algebra of infinitesimal characters of H) coin-
cides with the Lie algebra g of the Butcher group, which as shown in Subsec-
tion 3.5, has actually a left pre-Lie algebra structure.

Observe that the notation introduced in (3.16) corresponds to the dualiza-
tion [·]∗ : H∗ → H∗ of [·] : H → H given by

〈[α]∗, u〉 = 〈α, [u]〉, for each u ∈ H.

The Lie (and pre-Lie) subalgebra g0 of g considered in Subsection 3.5 is the
Lie algebra of primitive elements of the graded dual Hopf algebra Hgr∗ ⊂ H◦
of H. The dual basis of the basis { 1

σ(u) u : u ∈ F} of H is {δu ∈ H∗ : u ∈ H},
where each δu is defined by (3.29). Clearly, one has that,

∀u ∈ F , [δ[u]]∗ = δu.

The following result can be proven from the definitions of δu, the product ∗,
and the H∗-module map ·.

Proposition 4.2 For each u ∈ F and v ∈ T ,

δu · δ = δ[u],

δv ∗ δu = δvu +

|u|∑
i=1

δwi ,

where the forests wi are obtained by grafting the rooted tree v to each of the
vertices of the forest u.

By the Cartier-Milnor-Moore theorem, the Hopf algebra Hgr∗ is isomorphic to
the universal enveloping Hopf algebra U(g0) of the Lie algebra g0 (defined in
(3.28)).

4.3 B-series and series of differential operators revisited

Recall that, given a left pre-Lie algebra P with pre-Lie operation �, Proposi-
tion 3.15 guarantees the existence of a left U(P)-module structure on P such
that, for each p, p′ ∈ P, p� p′ = ν(p) · p′, where ν is the canonical monomor-
phism of Lie algebras from P to U(P).

Theorem 4.3 Given a left pre-Lie algebra P, for each element p ∈ P, there
exists a unique pre-Lie algebra morphism Bp : g0 → P and a unique Hopf
algebra morphism Sp : U(g0) → U(P) such that Bp(δ ) = p and for each
α ∈ Hgr∗, β ∈ g0,

Sp(α) ·Bp(β) = Bp(α · β), ∀(α, β) ∈ Hgr∗ × g0 (4.3)

Sp(β) = ν(Bp(β)), ∀β ∈ g0. (4.4)

Furthermore, if P is a graded left pre-Lie algebra P =
⊕

n≥1 Pn (which induces
a grading of the Hopf algebra U(P)) and p ∈ P1, then Sp and Bp are compatible
with the grading of Hgr∗, P, and U(P).
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Proof If there exists a pre-Lie algebra morphism Bp : g0 → P such that
Bp(δ ) = p, then by the universal property of Hgr∗ = U(g0), there exists a
unique algebra morphism Sp : U(g0)→ U(P) such that (4.4). In order to prove
(4.3), it is clearly enough to check it for α = β1 ∗ · · ·∗βr, where β1, . . . , βr ∈ g0:

Sp(α) ·Bp(β) = Sp(β1) · (Sp(β2) · · · (Sp(βr) ·Bp(β)) · · · )
= Bp(β1) � (Bp(β2) � · · · (Bp(βr) �Bp(β)) · · · )
= Bp(β1 � (β2 � · · · (βr � β) · · · ))
= Bp(β1 · (β2 · · · · (βr · β) · · · ))
= Bp(α · β).

If such Bp and Sp exist, then according to Proposition 4.2, for each u ∈ F and
v ∈ T ,

Bp(δ
[u]) = Bp(δ

u · δ ) = Sp(δ
u) · p, (4.5)

Sp(δ
vu) = Sp(δ

v) ∗ Sp(δu)−
|u|∑
i=1

Sp(δ
wi), (4.6)

where the forests wi (determined as in Proposition 4.2) have the same number
m of connected components as the forest u. This allows to prove by induc-
tion on m + |u| (where u = u1 · · ·um, u1, . . . , um ∈ T ) that Sp(δ

u), u ∈ F ,
are uniquely determined from (4.4)–(4.6). In turn, (4.5) determines uniquely
Bp(δ

v), v ∈ T . We thus have the uniqueness of Sp and Bp. We next show
that Sp and Bp uniquely determined by (4.4)–(4.6) actually satisfy the required
conditions.
Proposition 4.2 and (4.6) imply that Sp is an algebra morphism. This, together
with (4.5) imply that (4.3) holds true. The map Bp being a pre-Lie algebra
morphism is a consequence of (4.5), since for α, β ∈ g0,

Bp(α� β) = Bp(α · β)

= Sp(α) ·Bp(β)

= ν(Bp(α)) ·Bp(β)

= Bp(α) �Bp(β).

In order to prove that Sp is a Hopf algebra morphism, we have to check that

Hgr∗ Sp→ U(P)
∆→ U(P) ⊗ U(P) and Hgr∗ ∆→ Hgr∗ ⊗ Hgr∗ Sp⊗Sp→ U(P) ⊗ U(P)

coincide. But both are algebra morphisms from Hgr∗ to U(P) ⊗ U(P) whose
restriction to g0 coincide, and thus the universal property of Hgr∗ = U(g0)
gives the required result. It is straightforward to check that, in case P is a
graded Lie algebra, Bp and Sp are compatible with the gradings of Hgr∗, P,
and U(P).

Theorem 4.4 Given a left pre-Lie algebra P that is compatible with a decreas-
ing filtration and complete with respect to it, let Ū(P) be the complete universal
enveloping algebra of the Lie algebra P. Then for each element p ∈ P, there
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exists a unique filtered pre-Lie algebra morphism Bp : g→ P and a unique fil-
tered algebra morphism Sp : H∗ → Ū(P) such that Bp(δ ) = p, and (4.3)–(4.4)
holds for each α ∈ H∗, β ∈ g.

As a consequence of the last statement in Theorem 4.4, we have that the re-
striction to G = G(H◦) of Sp defines a morphism of topological groups from
G = exp(g) to exp(P) (with the topology induced by their decreasing filtra-
tions).

Consider the left pre-Lie algebra P of series of smooth vector fields in
Rd of the form hf1 + h2f2 + · · · , where each fj is a smooth vector field in
Rd. The complete universal enveloping algebra Ū(P) can be realized as the
completion of the graded algebra of endomorphisms parametrized by h gener-
ated by derivations of the form hn g(y) ∂

∂yj
, where n ≥ 1, j ∈ {1, . . . , d}, and

g ∈ C∞(Rd). We have seen in Subsection 3.5 that, given a smooth vector field
f , the definition of B-series Bhf (β) := Bhf (β, ·) for each β ∈ g determines a
morphism from the left pre-Lie algebra g to the left pre-Lie algebra P satis-
fying that Bh f (δ ) = hf . Theorem 4.4 implies that such a pre-Lie algebra
morphism Bhf : g → P satisfying Bhf (δ ) = hf is unique. We have also
seen that the map Shf : H∗ → Ū(P) defined in Subsection 3.3 is an algebra
morphism and satisfies (4.3)–(4.4), and thus coincides with the unique algebra
map Sp, p = hf , given by Theorem 4.4.

Furthermore, if α ∈ H◦ with

∆(α) =
m∑
j=1

βj ⊗ γj ,

then, for each (u, v) ∈ F × F ,

αuv = 〈α, uv〉 = 〈∆α, u⊗ v〉 =
m∑
j=1

(β[j])u ⊗ (γ[j])v,

and thus, by virtue of Proposition 3.10, we have that for all g1, g2 ∈ C∞(Rd),

Shf (α)g1g2 =
m∑
j=1

(
Shf (β[j])g1

) (
Shf (γ[j])g2

)
.

4.4 A universal property of the commutative Hopf algebra of
rooted trees

Consider the vector space V = R T . The restriction to V of ∆− (idH ⊗ e) is a
linear map ρ : V → H ⊗ V. (The coassociativity of ∆ implies that ρ is a left
H-comodule map.)

Definition 4.5 Following [23], we say that a commutative Hopf algebra H̃ is
a combinatorial right-sided Hopf algebra if the following conditions hold:
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• As a coalgebra, H̃ is conilpotent.

• As an algebra, H̃ is freely generated by a subspace Ṽ having a left H̃-
comodule structure with comodule map ρ̃ : Ṽ → H̃ ⊗ Ṽ satisfying that
∆̃(v) = v ⊗ ẽ+ ρ̃(v).

The following result is a dual version of Theorem 4.3

Proposition 4.6 Let H̃ be a commutative combinatorial right-sided Hopf al-
gebra and let Ṽ be the corresponding vector space Ṽ. Given a linear form
η̃ : Ṽ → R, there exists a unique Hopf algebra morphism φ : H̃ → H such that

φ(Ṽ) ⊂ V and η̃ = η ◦ φ,

where η : V → R is given by η( ) = 1, η(u) = 0 if |u| > 1.

The following result allows constructing the Hopf algebra morphism φ in
Proposition 4.6 in a recursive way.

Proposition 4.7 Under the assumptions of Proposition 4.6, the following di-
agram commutes

Ṽ ρ̃−→ H̃ ⊗ Ṽ
φ ↓ ↓ φ⊗ η̃
V [·]←− H

4.5 The substitution law

Given a B-series Bhf (α, y), it is of interest to study how this B-series is trans-
formed if hf is substituted by hf̃(y) = Bhf (β, y), where β ∈ g. As shown
in [9], [10],

Bhf̃ (α, y) = Bhf (β ? α, y),

where the coefficients (β ? α)u for u ∈ T are given as polynomials in βv and
αw.

More generally, one may be interested in studying the series of differential
operators Shf̃ (α) (α ∈ H∗) under the substitution hf̃(y) = Bhf (β, y).

Proposition 4.8 Given β ∈ g and hf̃ = Bhf (β, y), for each α ∈ H∗,

Bhf̃ (α, y) = Bhf (β ? α, y), Shf̃ (α) = Shf (β ? α),

where β ? α ∈ H∗ is determined as follows: ∀u ∈ H,

〈β ? α, u〉 = 〈α, φ(u)〉,

where φ : H → H is the algebra map given by Proposition 4.6 with H̃ = H,
Ṽ = U , and η̃(u) = βu for each u ∈ T .

Hence, φ : H → H is recursively determined with the help of Proposition 4.7
as follows: For each u ∈ T ,

φ(u) = βu [e] +
∑

(V�W )⊂U
V,W 6=∅

βw [φ(v)].
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4.6 Bibliographical comments

The commutative Hopf algebra of rooted treesH was first identified by Dür [14],
who realized that Butcher’s group [2] was an affine group scheme, and as such,
was equivalent to a commutative Hopf algebra. In [16], Grossman and Larson
constructed a commutative Hopf algebra HGL of rooted trees related to the lin-
ear differential operators in Subsection 3.3, which was eventually shown [15, 18]
to be the graded dual ofH (that is the universal enveloping algebra of g0, hence
a Hopf subalgebra of the dual Hopf algebraH◦). Later on, Connes and Kreimer
rediscovered the commutative Hopf algebra H in the context of renormaliza-
tion in quantum field theory [22, 13]. Brouder [1] seems to be the first author
to note the relationship of Kreimer’s work with Butcher’s theory. The substi-
tution law in Subsection 4.5 was first considered (in the context of numerical
integrators expanded as B-series) in [9] (see also [10]). A bialgebra and a Hopf
algebra associated to the substitution law ? (with coproduct obtained by du-
alizating ?) is studied in [6]. Proposition 4.6 can be obtained by combining
Chapoton’s result [8] (that says that the pre-Lie algebra on the linear span of
rooted trees is the free pre-algebra on one generator) and Loday and Ronco’s
Theorem 5.8 in [23]. Proposition 4.7 is to our knowledge new. Proposition 4.8
can be seen as a dualization of a recursion for the dual of ? found in [6, ?].
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