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Introduction

Learning from samples

@ We could design an optimal classifier if we knew the prior
probabilities P (@;) and the class-conditional densities p (x|®;).

@ We rarely have this kind of complete knowledge about the
probabilistic structure of the problem.

o Unknown distributions.
e Samples.

@ The problem, then, is to find some way to use this information
to design or train the classifier.
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Introduction

Generative approach

@ One approach to this problem is to use the samples to estimate
the unknown probabilities and probability densities, and to use
the resulting estimates as if they were the true values.

e Making assumptions about the distributions makes the
problem easy:

o Assuming p(x|®;) follows a Gaussian distribution with mean u
and covariance ¥.

o We simplify the problem from estimating an unknown function
p(x|@;) to estimate the unkown parameters u and X.

http://www.ehu.es/ccwintco Duda et al. 2012-02-17 5 /31



Introduction

Parameter estimation

e Maximum Likelihood (ML) views the parameters as quantities
whose values are fixed but unknown.

e The best estimate of their value is defined to be the one that
maximizes the probability of obtaining the samples actually
observed.

@ Bayesian methods view the parameters as random variables
having some known a priori distribution.

o Observation of the samples converts this to a posterior density,
thereby revising our opinion about the true values of the
parameters.

o Maximum A Posteriori (MAP).

http://www.ehu.es/ccwintco Duda et al. 2012-02-17 6 /31
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Problem definition -

Suppose that we separate a collection of samples according to class, so that we have ¢
sets, Dy, ... D, with the samples in D; having been dravn independently according to
the probability law p(x|w;). We say such samples are i.i.d. — independent identically
distributed random variables. We assume that p(x|w;) has a known parametric form,
and is therefore determined uniquely by the value of a parameter vector ;. For
example, we might have p(x|w;) ~ N(g,, X;), where 8; consists of the components of
p; and X;. To show the dependence of p{x|u,1) on @ c:xphut ly, we write p(x|w;) as
Pl 1) Our problem is to use the information pruwdcd by the training samples
to obtain good estimates for the unknown parameter vectors 84, ..., 8. associated with
each category.

= = = E DA
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Problem simplification _

To simplify treatment of this problem, we shall assume that samples in D, give no
information about @; if i # j — that is, we shall assume that the parameters for the
different classes are functionally independent. This permits us to work with each class
separately, and to simplify our notation by deleting indications of class distinctions.
With this assumption we thus have ¢ separate problems of the following form: Use a

set D of training samples drawn independently from the probability density p(x|@) to
estimate the unknown parameter vector 6.

o = = = = 9ac
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Maximum Likelihood estimation

Maximum Likelihood

Suppose that 2 contains n samples x1,...,x, that were drawn
independently.

The likelihood p(2|0) of 6 with respect to the set of samples
2 is given by:

n

p(210) =[] p(x«|6)

k=1
e The maximum likelihood estimate of 6 is the value 6 that
maximizes p(Z2|0).
6 corresponds to the value of 6 that best agrees with or
supports the actually observed training samples.

http://www.ehu.es/ccwintco Duda et al. 2012-02-17 11 / 31
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Log-likelihood

o For analytical purposes, it is usually easier to work with the
logarithm of the likelihood than with the likelihood itself:

1(6)=Inp(2]0) = Z Inp(xk|0)

@ Since the logarithm is monotonically increasing, the 6 that
maximizes the log-likelihood also maximizes the likelihood:

6 = arg meax/(G) = argmgxp(@\@)

o If p(2|6) is a well behaved, differentiable function of 6, 6 can
be found by the standard methods of differential calculus:

n
Vol =) Volnp(x|6) =
k=1
http://www.ehu.es/ccwintco Duda et al. 2012-02-17 12 / 31
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Visual example
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Figure 3.1: The top graph show:
assumed to be drawn from a Gaus

eral training points in one dimension, known or
ian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figures shows the likelihood p(D|6) as a function of the mean. If
we had a very large number of training points, this likelihood would be very narrow.
The value that maximizes the likelihood is marked ; it also maximizes the logarithm
of the likelihood — i.e., the log-likelihood I(6), shown at the bottom. Note especially

that the likelihood lies in a different space from p(x(d), and the two can have different
functional forms.
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Gaussian log-likelihood

To see how maximum likelihood methods results apply to a specific case, suppose
that the samples are drawn from a multivariate normal population with mean g and
covariance matrix ¥. For simplicity, consider first the case where only the mean is
unknown. Under this condition, we consider a sample point x; and find

Lok = 1) S i — ) ()

1
In p(xi|p) = _ihl [(QW)E!\Z\] ~3

and

Vg In p(xi|p) = 71 (xi — ). (9)
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U estimate

Identifying 8 with p, we see from Eq. 9 that the maximum likelihood estimate for p
must satisfy

DM - ) =0, (10)
k=1

that is, each of the d components of f& must vanish. Multiplying by 3 and rearranging,
we obtain

fo= lth (11)

This is a very satisfying result. It says that the maximum likelihood estimate for
the unknown population mean is just the arithmetic average of the training samples
— the sample mean, sometimes written f, to clarify its dependence on the number
of samples. Geometrically, if we think of the n samples as a cloud of points, the
sample mean is the centroid of the cloud. The sample mean has a number of desirable
statistical properties as well, and one would be inclined to use this rather obvious
estimate even without knowing that it is the maximum likelihood solution.

http://www.ehu.es/ccwintco Duda et al. 2012-02-17 16 / 31
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Univariate case

In the more general (and more typical) multivariate normal case, neither the mean p
nor the covariance matrix X is known. Thus, these unknown parameters constitute
the components of the parameter vector 8. Consider first the univariate case with
01 =y and 0y = ¢2. Here the log-likelihood of a single point is

1 1
In p(x|6) = -3 In 2762 — 2—92(-’Ek —6,)? (12)

and its derivative is

9172(3:,;ﬂ — )
Vgl=Vgluplzx|d)=| T . (2r—61)° |- (13)
202 267
Applying Eq. 7 to the full log-likelihood leads to the conditions
= 1
S Loy =0 (14)
= P2
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u and X estimates for the univariate case

"1 " (2 — 0p)2
_ — + =0, 15
Sy e

where 01 and 0, are the maximum likelihood estimates for 61 and 6, respectively. By
substituting ji = 6;, 6% = 5 and doing a little rearranging, we obtain the following
maximum likelihood estimates for u and o2:

n

= %Zmﬂ (16)

and

http://www.ehu.es/ccwintco Duda et al. 2012-02-17 19 / 31
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u and X estimates for the multivariate case

While the analysis of the multivariate case is basically very similar, considerably
more manipulations are involved (Problem 6). Just as we would predict, though, the
result is that the maximum likelihood estimates for g and X are given by

p=ty (1)

and

$= z“: (xp — fu)(xp — f1)". (19)

Thus, once again we find that the maximum likelihood estimate for the mean
vector is the sample mean. The maximum likelihood estimate for the covariance
matrix is the arithmetic average of the n matrices (xj, — jt)(x, — ft)'. Since the true
covariance matrix is the expected value of the matrix (x — ) (x — )%, this is also a
very satisfying result.
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O estimate

The maximum likelihood estimate for the variance o? is biased; that is, the expected
value over all data sets of size n of the sample variance is not equal to the true
variance:”

n

£ ! Z(:}ci —)? = - 10'2 #a°. (20)

n n
i=1

We shall return to a more general consideration of bias in Chap. 7?2, but for the
moment we can verify Eq. 20 for an underlying distribution with non-zero variance,
a2, in the extreme case of n = 1, in which the expectation value €[] = 0 # ¢2. The

maximum likelihood estimate of the covariance matrix is similarly biased.
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Unbiased estimators

The general principle
The Gaussian case: unknown U
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Elementary unbiased estimators for o2 and ¥ are given by

1 n
— Z(.’L’i —2)? =o? and
) i=1
1« N -
C=-— > Gk — ) e — 1)’
) k=1

(21)

(22)

where C is the so-called sample covartance matriz, as explored in Problem 33. If
an estimator is unbiased for all distributions, as for example the variance estimator
in Eq. 21, then it is called absolutely unbiased. If the estimator tends to become
unbiased as the number of samples becomes very large, as for instance Eq. 20, then
the estimator is asymptotically unbiased. In many pattern recognition problems with
large training data sets, asymptotically unbiased estimators are acceptable.
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Given the sample D, Bayes’ formula then becomes

P(wi‘xw D) =

p(x|wi, D) P(wi|D)

o

) p(xwj, D)P(w)|D)

J

(23)

As this equation suggests, we can use the information provided by the training samples
to help determine both the class-conditional densities and the a priori probabilities.
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Simplification

Although we could maintain this generality, we shall henceforth assume that the
true values of the a priori probabilities are known or obtainable from a trivial calcu-
lation; thus we substitute P(w;) = P(w;|D). Furthermore, since we are treating the
supervised case, we can separate the training samples by class into ¢ subsets Dy, ..., D,
with the samples in D; belonging to w;. As we mentioned when addressing maximum
likelihood methods, in most cases of interest (and in all of the cases we shall consider),
the samples in D; have no influence on p(x|w;, D) if i # j. This has two simplifying
consequences. First, it allows us to work with each class separately, using only the
samples in D; to determine p(x|w;, D). Used in conjunction with our assumption that
the prior probabilities are known, this allows us to write Eq. 23 as

P(.’.{J,‘X, D) — p(x\wi, DI)P(wl) X (24)

c

ZIP(X wj, Dj)P(w;)
=

Second, because each class can be treated independently, we can dispense with need-
less class distinctions and simplify our notation. In essence, we have ¢ separate prob-
lems of the following form: use a set D of samples drawn independently according to
the fixed but unknown probability distribution p(x) to determine p(x|D). This is the
central problem of Bayesian learning.
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Parametric form

Although the desired probability density p(x) is unknown, we assume that it has a
known parametric form. The only thing assumed unknown is the value of a parameter
vector @. We shall express the fact that p(x) is unknown but has known parametric
form by saying that the function p(x|8) is completely known. Any information we
might have about @ prior to observing the samples is assumed to be contained in a
known prior density p(@). Observation of the samples converts this to a posterior
density p(@|D), which, we hope, is sharply peaked about the true value of .
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Unupervised density estimation

Note that we are changing our supervised learning problem into an unsupervised
density estimation problem. To this end, our basic goal is to compute p(x|D), which
is as close as we can come to obtaining the unknown p(x). We do this by integrating
the joint density p(x,8|D) over 8. That is,

p(x|D) = fp(x, a|D) de, (25)

where the integration extends over the entire parameter space. Now as discussed in
Problem 12 we can write p(x, 8|D) as the product p(x|@, D)p(@|D). Since the selection
of x and that of the training samples in D is done independently, the first factor is
merely p(x|@). That is, the distribution of x is known completely once we know the
value of the parameter vector. Thus, Eq. 25 can be rewritten as

p(x|D) = /p(x\&)p(e\D) de. (26)
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This key equation links the desired class-conditional density p(x|D) to the posterior
density p(6|D) for the unknown parameter vector. If p(8|D) peaks very sharply
about some value 8, we obtain p(x|D) = p(x|@), i.c., the result we would obtain by
substituting the estimate 6 for the true parameter vector. This result rests on the
assumption that p(x|@) is smooth, and that the tails of the integral are not important.
These conditions are typically but not invariably the case, as we shall see in Sect. 77.
In general, if we are less certain about the exact value of 8, this equation directs us to
average p(x|@) over the possible values of 6. Thus, when the unknown densities have
a known parametric form, the samples exert their influence on p(x|D) through the
posterior density p(@|D). We should also point out that in practice, the integration
in Eq. 26 is often performed numerically, for instance by Monte-Carlo simulation.
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