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1.  Introductory Material

The Context
Mathematical Modeling is the art of 
describing mathematically a world aspect.

Mathematical Modeling is instrumental for 
Control,
Decision-support,
Knowledge extraction,
Information enhancement, etc.



4

Due to the conventional measurement practice 
of “successive comparisons”, Mathematical 
Modeling is, typically, pursued in RN.

With the advent of computers, non-numeric 
data have proliferated in applications.
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One way for modeling based on non-numeric 
data is to transform them to numeric data in RN.

→ However, critical content may be lost.

Another way for modeling based on non-numeric 
data is to treat them beyond RN.

→ However, an enabling (mathematical) framework 
is currently missing.
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Fact

Popular types of data in applications are 
partially(lattice)-ordered.

For example,
• 0-D,1-D, 2-D,... Arrays of Real Numbers
• Logic Values
• A Set* Partitions
• Sets* in a Power-Set
• (Strings of) Symbols
*A Set may be a Relation R⊆A×B, e.g. a graph.
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Hypothesis

Order-Theory (or, equivalently, Lattice Theory) is 
an enabling framework for unified data modeling.

Two different ways of employing Lattice Theory:

1. “order-based” (it emphasizes semantics)

2. “algebra-based” (it emphasizes operations)
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State-of-the-Art

Computing in Lattices is employed, by “isolated”
research communities, in applications of

Logic and Reasoning
Mathematical Morphology
Formal Concept Analysis
Computational Intelligence
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Efforts to cross-fertilize Lattice Computing practices:

Kaburlasos VG, Ritter GX, Eds. (2007) Computational 
Intelligence Based on Lattice Theory. Springer, series: 
Studies in Computational Intelligence, 67.
Kaburlasos V, Priss U, Graña M, Εds. (2008) Proc. 
Lattice-Based Modeling Workshop (LBM 2008), 
Olomouc, The Czech Republic: Palacký Univ.

Kaburlasos VG, Guest Editor, Information Sciences, 
planned 2010 Special Issue entitled “Information 
Engineering Applications Based on Lattices”.
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In Lattice Computing, Intervals’ Numbers (INs) 
have emerged with a promising potential.
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2.  Intervals’ Numbers (INs)

IN F =                    , also denoted F =                 ,

is a set of intervals: 0<h1≤h2≤1 ⇒ F(h1)≥F(h2).
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IN F =                    represents a conventional 

interval [a,b].
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For a = b, IN F =                    represents

a real number.
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Based on the “resolution identity theorem” a IN 
may represent a fuzzy number.

A fuzzy number F can be represented, 
either by its membership function or, 
equivalently, by its (interval) α–cuts.

F
1
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IN representation of a pdf
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IN representation of a data samples population
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A IN is a mathematical object (a number) ―
Different information processing paradigms may 
interpret it differently.

The lattice (F,≤) of INs emerges as the Cartesian 
Product of lattices (Δ,≤) of generalized intervals.
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The lattice (Δ,≤) of generalized intervals

Generalized Intervals [a,b], at height h∈(0,1], 
can be either positive (a ≤ b) or negative (a > b)

“Overlapping” positive generalized intervals. “Non- overlapping” positive generalized intervals.
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“Overlapping” negative generalized intervals. “Non-overlapping” negative generalized intervals.

“Overlapping” positive and negative gen. ints.             “Non-overlapping” positive and negative gen. ints.

F∨G

F G

F∧G

-h

-h
F∧G

F∨G

F G

-h

h

-h

F

G

F∧G = G

F∨G = F

h

-h

h

-h

F

G

F∧G

F∨G

h

-h

h

-h



20

Interest focuses on positive generalized 
intervals, which give rise to INs.

The set Δ+ of positive generalized intervals is a 
cone in the linear space of generalized intervals.
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Definition (reminder)
Cone is a subspace C of a linear space such that 
for x1,x2∈C and c1,c2≥0 it follows (c1x1+c2x2)∈C.

(ε1) cone C:

Part of the plane between 
the lines (ε1) and (ε2)

x1

x2

(ε2)

0.8x1 + 1.4x2
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Let δ1,δ2∈Δ+ and c1,c2≥0. Then (c1δ1+c2δ2)∈Δ+.

Example 2[-1,0] + 5[1,2] = [3,10]

δ2

-1 10321

δ1 2δ1 + 5δ2
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A degree of inclusion of an interval [a,b]∈Δ+ in 
another interval [c,d]∈Δ+ can be defined by

either

or  

Inclusion Measure σ: Δ+×Δ+→[0,1]
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Examples
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Metric Distance dΔ: Δ×Δ→R≥0

A metric between generalized intervals can be 
defined by dΔ([a,b],[c,d]) = |a-c| + |b-d|.

Examples

dΔ([1,3],[2,4]) = |1-2| + |3-4| = 2
dΔ([1,3],[5,7]) = |1-5| + |3-7| = 8

1

54321 7
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The previous analysis has (implicitly) assumed
(1) positive valuation (strictly increasing) function v(x)=x, 

and
(2) dual isomophic (strictly decreasing) function θ(x)=-x.

Tunable non-linearities can be introduced, for 
alternative functions v(x) and θ(x), as follows.
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Moreover,

dΔ([a,b],[c,d]) = [v(θ(a∧c)) - v(θ(a∨c))] + [v(b∨d) – v(b∧d)]
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Example
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Extensions to the lattice (F,≤) of INs
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Metric, fuzzy lattice (F,≤) is a cone

Example
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3.  Conclusion

1. The presented tools are “unifying”. For instance, 
graphs can be processed by IN-computing on 
shortest paths.
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2. Popular Computational Intelligence algorithms 
can be extended from the Euclidean space RN

to the metric, fuzzy-lattice, cone (F,≤) so as to 
rigorously deal with “non-crisp” (input, etc.) data.
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3. The proposed technology may have a far-reaching 
potential for Human-Computer Interaction (HCI) 
based on disparate types of (non)numeric data.


