Advantages of using Lattice Theory in Computational Intelligence

Prof. Dr.Vassilis Kaburlasos Dept. of Industrial Informatics TEI of Kavala, Greece

Contents

- 1. Introductory Material 8 slides
- 2. Intervals' Numbers (INs) 20 Slides
- 3. Conclusion 3 slides

1. Introductory Material

The Context

Mathematical Modeling is the art of describing mathematically a world aspect.

Mathematical Modeling is instrumental for

- Control,
- Decision-support,
- Knowledge extraction,
- Information enhancement, etc.

- Due to the conventional measurement practice of "successive comparisons", *Mathematical Modeling* is, typically, pursued in R^N.
- With the advent of computers, non-numeric data have proliferated in applications.

 One way for modeling based on non-numeric data is to *transform* them to numeric data in R^N.

 \rightarrow However, critical *content* may be lost.

- Another way for modeling based on non-numeric data is to treat them beyond R^N.
- → However, an enabling (mathematical) framework is currently missing.

Fact

Popular types of data in applications are partially(lattice)-ordered.

For example,

- 0-D,1-D, 2-D,... Arrays of Real Numbers
- Logic Values
- A Set Partitions
- Sets* in a Power-Set
- (Strings of) Symbols

*A Set may be a Relation $R \subseteq A \times B$, e.g. a graph.

<u>Hypothesis</u>

 Order-Theory (or, equivalently, Lattice Theory) is an enabling framework for unified data modeling.

Two different ways of employing Lattice Theory:

- 1. "order-based" (it emphasizes semantics)
- 2. "algebra-based" (it emphasizes operations)

State-of-the-Art

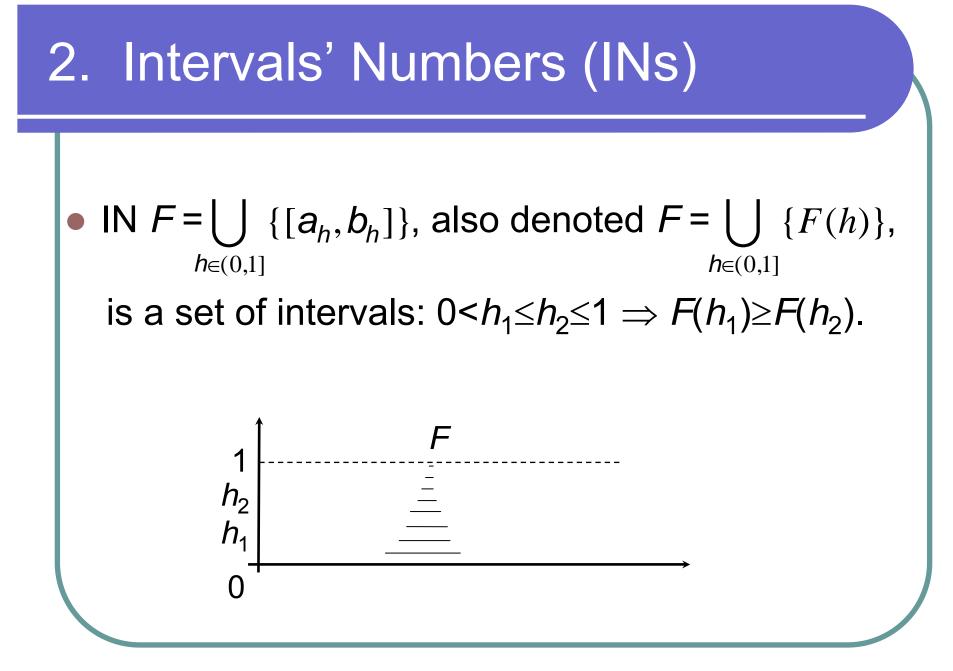
Computing in Lattices is employed, by "isolated" research communities, in applications of

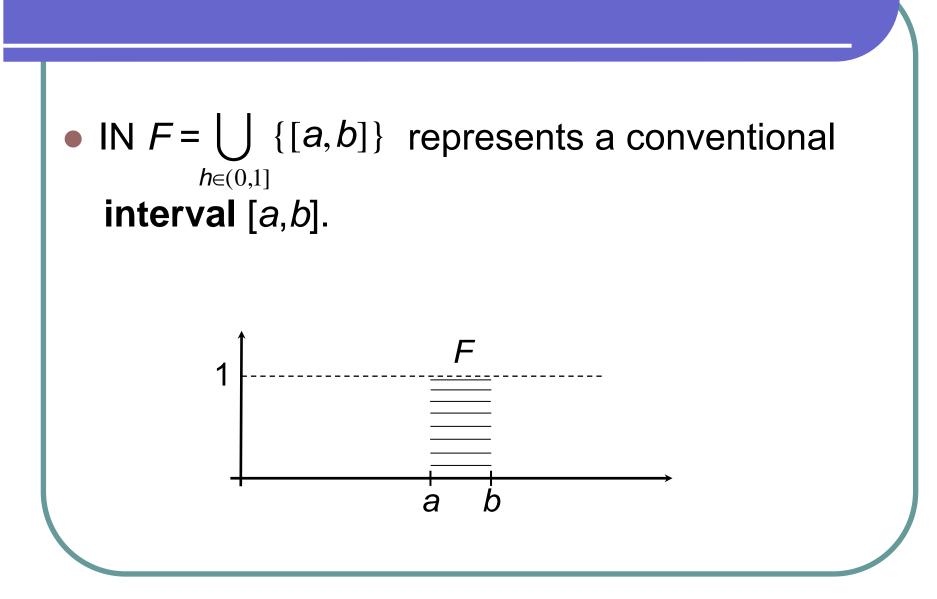
- Logic and Reasoning
- Mathematical Morphology
- Formal Concept Analysis
- Computational Intelligence

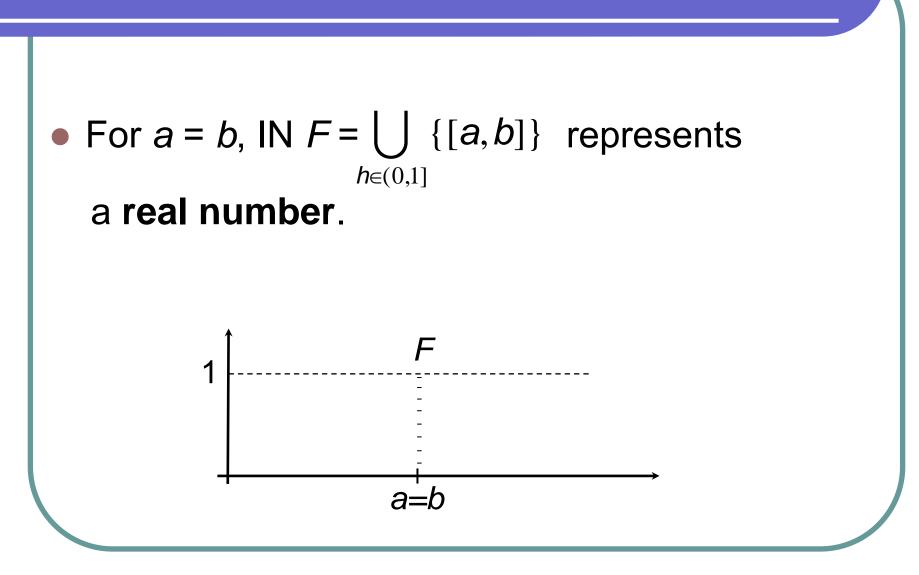
Efforts to cross-fertilize *Lattice Computing* practices:

- Kaburlasos VG, Ritter GX, Eds. (2007) <u>Computational</u> <u>Intelligence Based on Lattice Theory</u>. Springer, series: Studies in Computational Intelligence, 67.
- Kaburlasos V, Priss U, Graña M, Eds. (2008) Proc. <u>Lattice-Based Modeling Workshop</u> (LBM 2008), Olomouc, The Czech Republic: Palacký Univ.
- Kaburlasos VG, Guest Editor, Information Sciences, planned 2010 Special Issue entitled "Information Engineering Applications Based on Lattices".

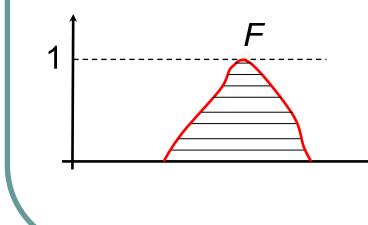
 In Lattice Computing, Intervals' Numbers (INs) have emerged with a promising potential.





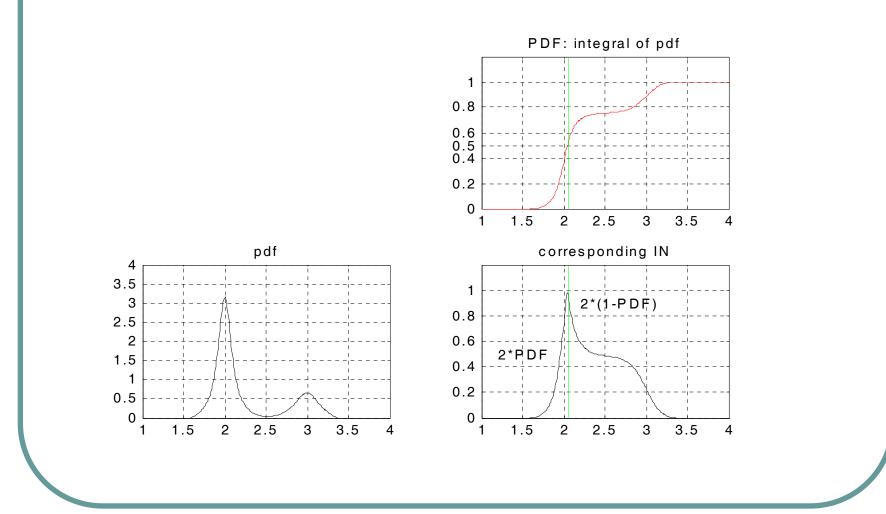


Based on the "resolution identity theorem" a IN may represent a fuzzy number.

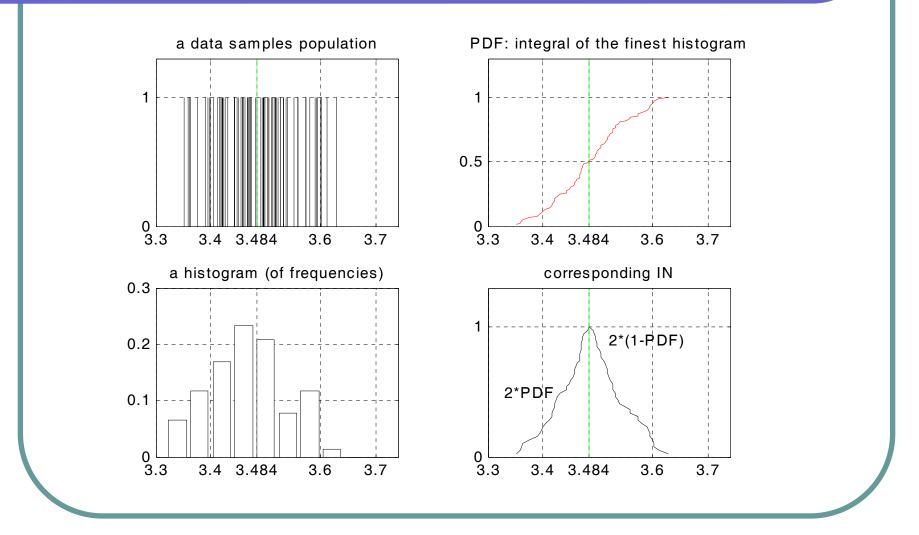


A fuzzy number *F* can be represented, either by its *membership function* or, equivalently, by its (interval) α -cuts.

IN representation of a *pdf*

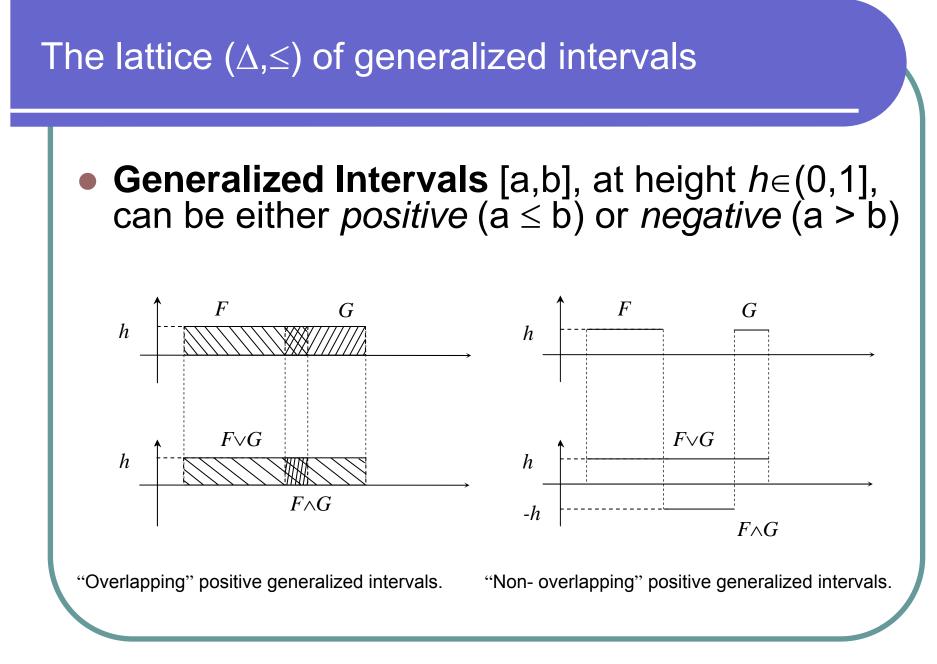


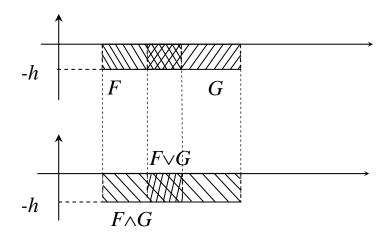
IN representation of a data samples population



 A IN is a mathematical object (a number) — Different information processing paradigms may interpret it differently.

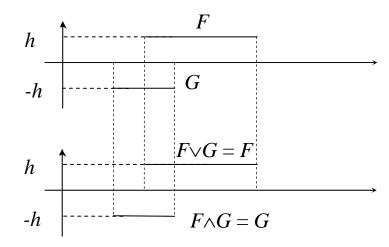
 The lattice (F,≤) of INs emerges as the Cartesian Product of lattices (∆,≤) of generalized intervals.

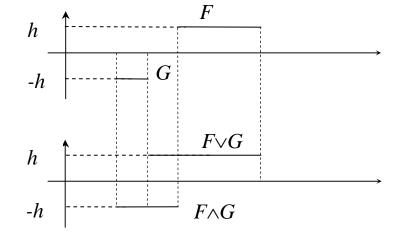




"Overlapping" negative generalized intervals.

"Non-overlapping" negative generalized intervals.





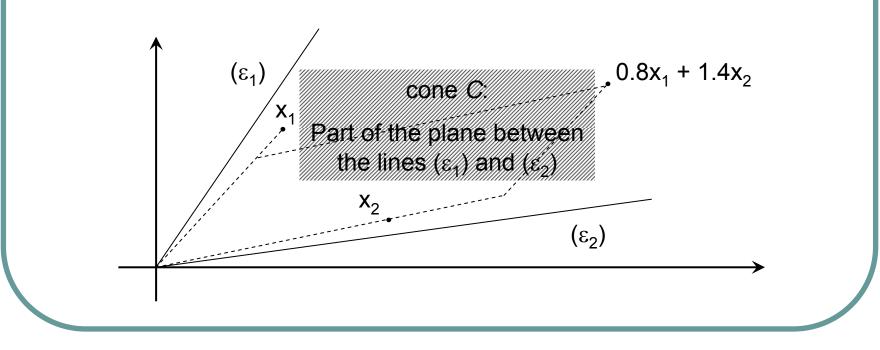
"Overlapping" positive and negative gen. ints.

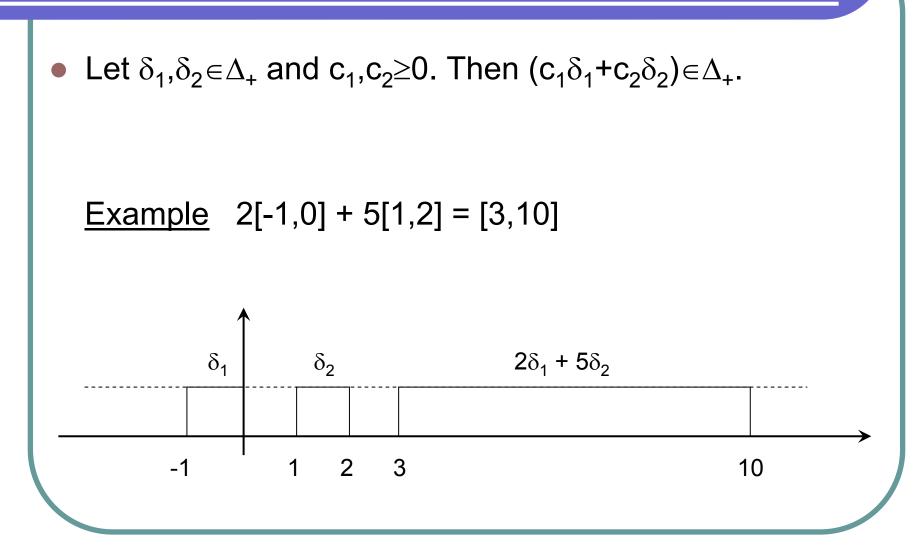
"Non-overlapping" positive and negative gen. ints.

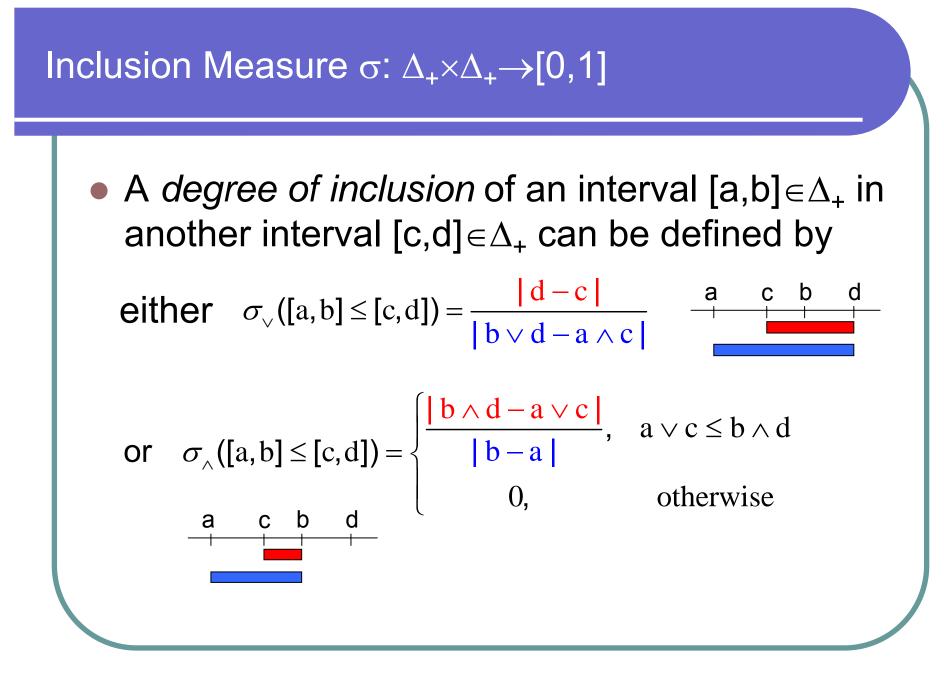
- Interest focuses on **positive** generalized intervals, which give rise to INs.
- The set ∆₊ of positive generalized intervals is a cone in the linear space of generalized intervals.

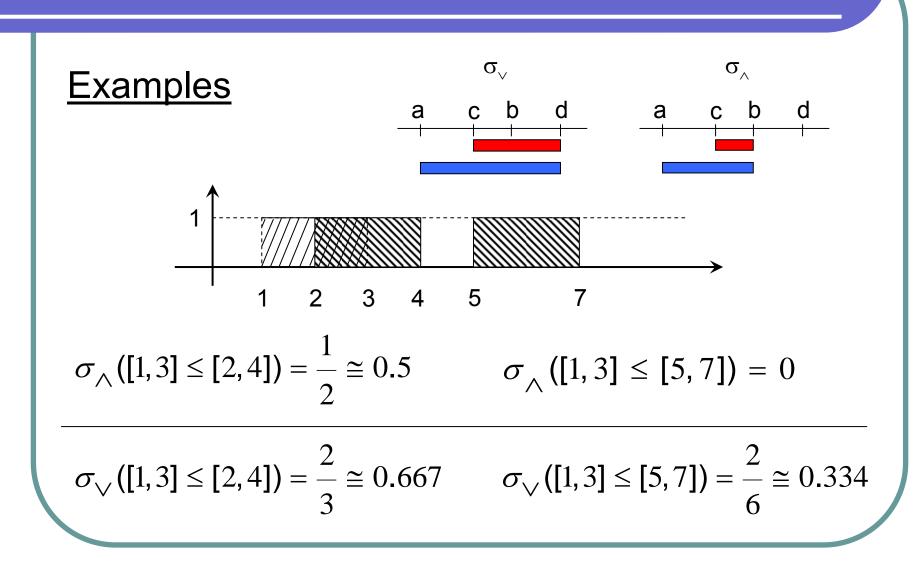
Definition (reminder)

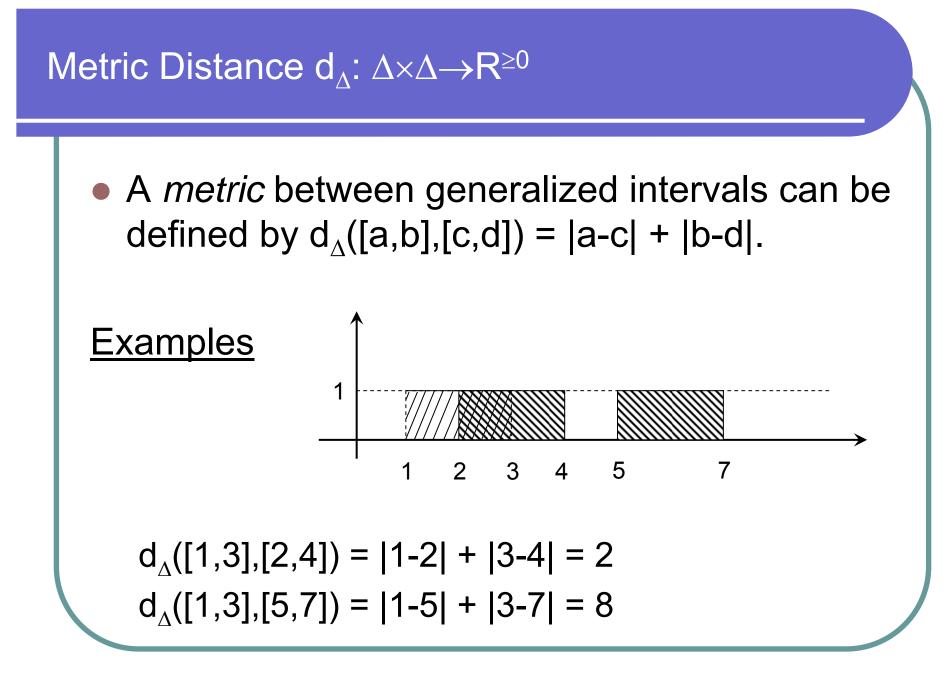
Cone is a subspace C of a linear space such that for $x_1, x_2 \in C$ and $c_1, c_2 \ge 0$ it follows $(c_1x_1+c_2x_2) \in C$.





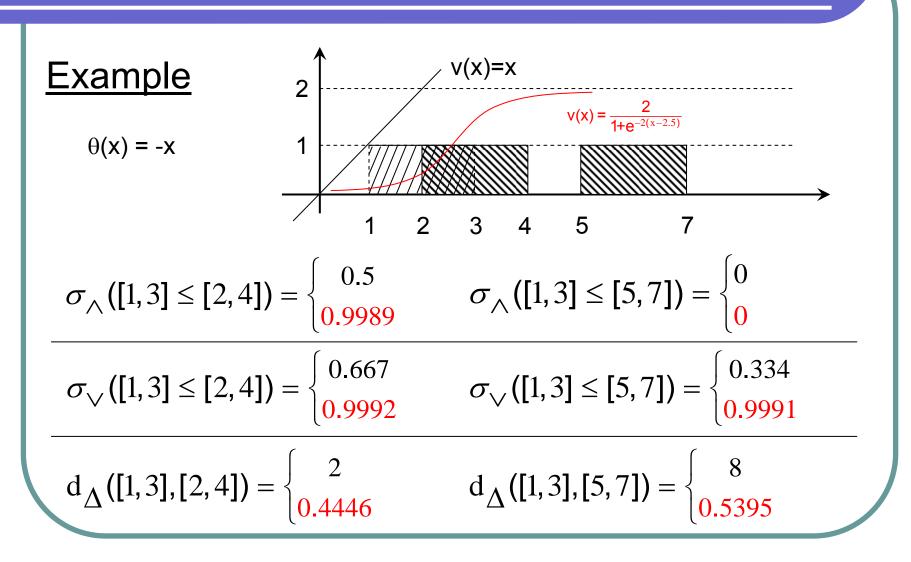






- The previous analysis has (implicitly) assumed
 (1) positive valuation (strictly increasing) function y(x)
- (1) positive valuation (*strictly increasing*) function v(x)=x,
- (2) **dual isomophic** (*strictly decreasing*) function $\theta(x)=-x$.
- Tunable non-linearities can be introduced, for alternative functions v(x) and $\theta(x)$, as follows.

•
$$\sigma_{\vee}([a,b] \leq [c,d]) = \frac{v(\theta(c)) + v(d)}{v(\theta(a \land c)) + v(b \lor d)}$$
•
$$\sigma_{\wedge}([a,b] \leq [c,d]) = \begin{cases} \frac{v(\theta(a \lor c)) + v(b \land d)}{v(\theta(a)) + v(b)}, & a \lor c \leq b \land d \\ 0, & \text{otherwise} \end{cases}$$
•
$$a \land c \land b \land d \\ 0, & \text{otherwise} \end{cases}$$
Moreover,
•
$$d_{\Delta}([a,b],[c,d]) = [v(\theta(a \land c)) - v(\theta(a \lor c))] + [v(b \lor d) - v(b \land d)]$$



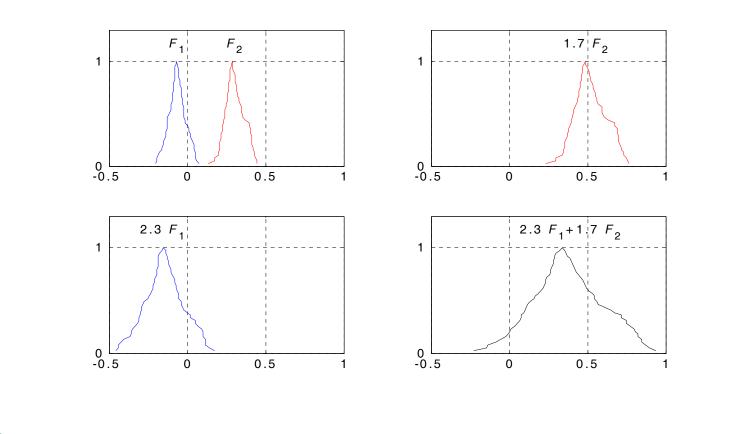
Extensions to the lattice (F,\leq) of INs

•
$$\sigma_{\wedge}(F_1 \le F_2) = \int_0^1 \sigma_{\wedge}(F_1(h) \le F_2(h)) dh$$

• $\sigma_{\vee}(F_1 \le F_2) = \int_0^1 \sigma_{\vee}(F_1(h) \le F_2(h)) dh$
• $d_F(F_1, F_2) = \int_0^1 d_{\Delta}(F_1(h), F_2(h)) dh$

Metric, fuzzy lattice (F, \leq) is a cone

Example



3. Conclusion

 The presented tools are "unifying". For instance, graphs can be processed by IN-computing on shortest paths. Popular Computational Intelligence algorithms can be extended from the Euclidean space R^N to the metric, fuzzy-lattice, cone (F,≤) so as to rigorously deal with "non-crisp" (input, etc.) data. The proposed technology may have a far-reaching potential for Human-Computer Interaction (HCI) based on disparate types of (non)numeric data.