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Problem Statement: Base Classi�ers Fusion

Using several base-classi�ers in an ensemble introduces a new
problem: how to fusion their outputs.

Typical approaches include:

Fixed rules. Examples: averaging or voting
Stacked generalization. How to fusion labels is learnt by a
second-level classi�er, which takes base-classi�ers' outputs as
its inputs.

All base-classi�ers' output are used to produce the �nal output

Maybe not all classi�ers are equally accurate in all parts of the
input space?
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Base-classi�er selection

Static selection: based on accuracy/diversity, a subset of
base-classi�ers is selected for all test instances

Dynamic selection: online selection, during classi�cation

Woods et al. propose to select the base-classi�ers with the
nearest training sets to the test instance. Too costly.
Kuncheva (2000) proposes to cluster inputs into high density
regions and then measure the accuracy of base-classi�ers in
each cluster. Areas of expertise might not match clusters.
Jacob et al. propose the use of gating system. As the
base-classi�ers learn, the gating network learns how to divide
the input space.
Ortega et al. propose the use of a referee for each
base-classi�er. Referees learn to discriminate in which areas
the associated classi�er classi�es properly.
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Proposals

Base classi�ers Dj , j = 1 . . .L already trained with the training
set

Validation set Val composed of x t , t = 1 . . .N

Two selection methods:

Referees: two-class classi�er with output in [0,1]
Gating: L-class classi�er with L classi�ers

pj (x) indicates in both cases the con�dence that base classi�er
Dj is the most accurate for test instance x ∈ Val
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Linear referees

Assumes that the expertise region is linearly separable

Sigmoid function. Referee parameters vj are optimized to
reduce the squared error
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Tree referees

More �exible than linear referees

where djc is the posterior probability predicted by Dj for the true
class of x ′(c), and 1(a) is a boolean function which is 1 if a is true,
0 otherwise.
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Decision Aggregation (DA)

, where Oi (x) is the overall output for class i , wj (x) is 1 if Dj is
among the n selected base classi�ers, 0 otherwise. y is the �nal
output.
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DA Scheme

Figure: Testing phase of the referee system
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Gating

Similar to mixture of experts but:

base classi�ers and gating system are trained with di�erent
sets of instances
base classi�ers are general and could be completely di�erent

Softmax function
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Figure: Testing phase of the gating-based systems
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Gating II

Another option is to weight each base classi�er

Classes correspond to classi�ers and class posteriors to weights
in voting
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Settings

Databases: 20 from UCI and Delve: australian, balance,
breast, car, cmc, credit, mushroom, nursery, optdigits,
pageblock, pendigits, pima, ringnorm, segment, spambase,
thyrioid, tictactoe, titanic, twonorm, yeast.
Validation: 1/3 as test set and 2/3 as training set. Then,
training set is resampled using 5x2 cross-validation to generate
ten training/validation folds. Tra is used to train the base
classi�ers and Val is randomly divided in val −A and val −B ,
which are respectively used to train the combiners and �netune
the subset size n in the combiners.(???)
21 base classi�ers are used: c45, gau, 1nn-7nn, ldt, log,
ml0-ml5, mlt, sm and sv0-sv4
Five di�erent selection methods are compared: linear referee
networks (rlp), referee trees (rdt), linear gating netwok (glp),
gating tree (gdt), class-independent version of the local
competence algorithm from Woods et al (cin) and a simple
vote over the L classi�ers (vote)
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Results I

Figure: optdigits database: (a) labeled classes 0,1 and 2 projected using
PCA and (b) correctly/incorrectly classi�ed instances using sv2
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Results II

Statistically signi�cant di�erences are determined using the
5x2 cv F test

Results are shown as number of databases in which an
algorithm obtained a win/ties/loss compared to any other with
95% con�dence
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