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Contributions of Lattice Computing to Medical Image Procesing

by
Darya Chyzhyk

Submitted to the Department of Computer Science and Artificial Intelligence, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

Abstract

This Thesis is developed along two main axis: The exploration of new computational
solutions based on the novel paradigm of Lattice Computing. The application to
medical image data in order to obtain new image processing methods, or computed
aided diagnosis systems based on image biomarkers. he proposal of Lattice Comput-
ing encompasses all computational constructions involving the use of Lattice Theory
results and/or operators. In this Thesis, this ambitious scope is reduced to three fields
of development of algorithms: Lattice Associative Memories, Dendritic Computing,
and Multivariate Mathematical Morphology. Specifically, Lattice Auto-associative
Memories play a role in the development of a Lattice Independent Component Anal-
ysis (LICA) proposed as a lattice based alternative to the well known Independent
Component Analysis (ICA) approach, and in the definition of a reduced ordering in
an approach to define a Multivariate Mathematical Morphology. These issues have
been tackled in this Thesis from an application point of view: the diverse tools are
applied to several kinds of medical image data. From the medical image processing
point of view, the Thesis works on features of anatomical MRI for computer aided
diagnosis of Alzheimer’s disease, on resting state fMRI of Schizophrenia patients,
and on CTA data for Abdominal Aortic Aneurysm. Keywords: Medical Image Pro-
cessing, Lattice Computing, Dendritic Computing, Lattice Independent Component
Analysis, Active Learning, Ensemble classifiers.
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Chapter 1

Introduction

This Chapter provides a general introduction to the Thesis, giving a motivation in
Section 1.1, an overview of the Thesis contents and contributions in Section 1.2,
the publications obtained along the Thesis works in Section 1.3, and finally, the
structure of the Thesis in Section 1.4.

1.1 Motivation

This Thesis is developed along two main axis:

• The exploration of new computational solutions based on the novel paradigm
of Lattice Computing [40] .

• The application to medical image data in order to obtain new image process-
ing methods, or computed aided diagnosis systems based on image biomark-
ers.

1.1.1 Lattice Computing

The proposal of Lattice Computing encompasses all computational constructions
involving the use of Lattice Theory results and/or operators. In this Thesis, this
ambitious scope is reduced to three fields of development of algorithms: Lattice
Associative Memories, Dendritic Computing, and Multivariate Mathematical Mor-
phology. Specifically, Lattice Auto-associative Memories play a role in the devel-
opment of a Lattice Independent Component Analysis (LICA) proposed as a lattice

1



2 CHAPTER 1. INTRODUCTION

based alternative to the well known Independent Component Analysis (ICA) ap-
proach, and in the definition of a reduced ordering in an approach to define a Mul-
tivariate Mathematical Morphology. These issues have been tackled in this Thesis
from an application point of view: the diverse tools are applied to several kinds of
medical image data.

Lattice based Neural Networks (LNNs) - although not yet recognized as main-
stream in machine learning - have become an integral part of artificial neural net-
work theory [58, 60]. One reason for this is their simplicity and fast learning
methods and another is due to their successful applicability in several disciplines
[90, 59, 47, 45, 23, 24]. Dendritic Computing refers to the construction using Lat-
tice operators of Single Layer Neural Networks. The work on Dendritic Comput-
ing deals with new algorithms and improvements over already proposed algorithms
found in the literature, also demonstrated over medical image data. The departure
point of our work has been the realization that reported algorithms have excelent
function approximation performance, they are able to approach exactly any func-
tional relationship between the data, but not so good generalization performance,
that is, they degrade on testing data. Therefore, we have combine Dendritic Com-
puting with other computational approaches, such as LICA, including ensamble
realizations.

1.1.2 Medical Image Processing

Alzheimer’s Disease computer aided diagnosis Many classification experiments
in this Thesis are carried out on an specific dataset that was built to explore the re-
alization of computer aided diagnosis systems for Alzheimer’s Disease on the basis
of features extracted from anatomical MRI brain volumes. The feature extraction
process and the details of the population are given in Appendix A. The results ob-
tained have limited value as demonstrators of the feasibility of such computer aided
diagnosis systems, however the dataset is valuable as a benchmark dataset because
we have already applied a large variety of algorithms over it. Besides, we have also
used the same collection of MRI volumes to test alternative ways to perform Voxel
Based Morphometry (VBM).

fMRI data We have used synthetic fMRI data for the exploration of the LICA
approach compared with competing ICA approaches. Besides, in a more realis-
tic setting, we have make studies on resting state fMRI data from a population of
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healthy controls and Schizophrenia patients with and without auditory hallucina-
tions. We have found some discriminant information following the LICA approach.
Also, the Multivariate Mathematica Morphology approach has been useful to find
discriminant connectivity information.

CTA image segmentation The specific problem is the development of classi-
fiers to perform Computed Tomography Angiography (CTA) image segmentation
for Abdominal Aortic Aneurysm (AAA) patients. Te classifiers are tailored to
each volume by an Active Learning process, which uses the Boostratped Dendritic
Computing as the base classifier. Application of the approach requires the defini-
tion of appropriate image features, as well as a classification uncertainty measure
that guides the addition of samples to the training set.

The specific contributions of the approach proposed in this Thesis relative to
the state of the art of AAA thrombus segmentation algorithms are: (1) the need
for human intervention in the selection of samples and labeling is reduced to a
minimum by Active Learning, (2) the BDC allows quick learning and adaptation
as well as the definition of an appropriate uncertainty measure, (3) there is no
requirement of a priori information or geometric models, (4) feature extraction
does not require sophisticated data processing, (5) the adaptation of the classifier to
new data does not require skillful data processing, only picking the most uncertain
voxels over a data visualization.

1.2 Overview of the Thesis Contributions

Dendritic computing Dendritic Computing is based on the concept that den-
drites are the basic building blocks for a wide range of nervous systems. Dendritic
Computing has been proved to achieve perfect approximation of any data distribu-
tion, which guarantees perfect accuracy training. However, we found great perfor-
mance degradation when tested on conventional k-fold cross-validation schemes.
In order to improve generalization we have followed various paths:

• Modifying the hyperbox by a reduction factor, which relaxes perfect approx-
imation to obtain some improvement in the testing phase.

• Performing appropriate combination with data transformations, specifically
with the LICA approach and a kernelization of the data.
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• Composing a collection of weak Dendritic Classifiers into and ensemble by
majority voting, with we call Boostraped Dendritic Computing.

As part of the collaboration with professor Ritter, we have also explored the feasi-
bility of building robust associative memories based on Dendritic Computing lay-
ers, testing them on a collection of heavily corrupted images.

LICA The Lattice Independent Component Analysis (LICA) [46, 45] consists of
two steps. Firts it selects Strong Lattice Independent (SLI) vectors from the in-
put dataset using an incremental algorithm, such as the Incremental Endmember
Induction Algorithm (IEIA) [43]. Second, because of the conjectured equivalence
between SLI and Affine Independence [93], it performs the linear unmixing of the
input dataset based on these endmembers1. Therefore, the approach is a mixture
of linear and nonlinear methods. We assume that the data is generated as a convex
combination of a set of endmembers which are the vertices of a convex polytope
covering some region of the input data. This assumption is similar to the linear
mixture assumed by the ICA approach, however LICA does not impose any prob-
abilistic assumption on the data. The endmembers discovered by the IEIA are
equivalent to the General Linear Model (GLM) design matrix columns, and the
unmixing process is identical to the conventional least squares estimator so LICA
is a kind of unsupervised GLM whose regressor functions are mined from the input
dataset. If we try to stablish correspondences to the Independent Component Anal-
ysis (ICA), the LICA endmembers correspond to the unknown sources and the
mixing matrix is the one given by the abundance coefficients computed by least
squares estimation. LICA is unsupervised, as ICA, and it does not impose any a
priori assumption on the data, thus avoiding “double dipping” effects biasing the
results. We have applied LICA to analysis of synthetic fMRI data [42, 45], to Voxel
Based Morphometry of structural MRI [25], and to resting state fMRI functional
connectivity detection.

Multivariate Mathematical Morphology Multivariate Mathematical Morphol-
ogy aims to extend the definitions and results of Mathematical Morphology which
have proven successful in gray scale images to images whose pixels are high di-
mensional vectors, such as functional Magnetic Resonance Images. A fundamental

1The original works were devoted to unsupervised hyperspectral image segmentation, therefore
the use of the name endmember for the selected vectors.
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issue in Multivariate Mathematical Morphology is the definition of a convenient
ordering over the multivariate data space ensuring that ensuing morphological op-
erators and filters are mathematically consistent. A recent technique consists in
using the outputs of two-class classifiers trained on the data to build meaningful
reduced orderings. These two classes are defined as background and foreground
classes corresponding to target and background features of the data. We have in-
troduced several approaches to define reduced supervised orderings based on the
recall error of the Lattice Auto-Associative Memories (LAAM), measured by the
Chebyshev distance. Foreground supervised orderings use one set of training data
from a foreground class, whilst background/foreground supervised orderings use
two training data sets, one for each relevant class. We work on the definition of Lat-
tice Computing approach to identify functional networks in resting state fMRI data
(rsfMRI) looking for biomarkers of cognitive or neurodegenerative diseases. We
provide results showing that the approach may allow to find brain networks with
quite different connectivities that are even amenable to supervised classification
experiments.
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1.4 Contents of the Thesis

The contents of the Thesis are organized as follows:
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1. Chapter 2 provides a review of Lattice Computing fundamentals that are
being used in the remainder of the Thesis, mostly basic results about Lattice
Auto-associative Memories and Dendritic Computing approaches.

2. Chapter 3 provides results of Dendritic Computing approaches on a variety
of applications. Specifically, we discuss several enhancements of the single
lattice neurong with dendritic computing by introducing shrinking hyper-
boxes, kernel LICA preprocessing and ensembles. The methods are applied
to Alzheimer’s Disease classification and CTA image segmentaion. Finally,
a novel autoassociative memory is proposed.

3. Chapter 4 reports results on the application of LICA on three case stud-
ies: Voxel Based Morphometry (VBM) of a subset of the OASIS database,
a selection of synthetic fMRI data, and a resting state fMRI database also
described in Appendix A.

4. Chapter 5 provides some results on Multivariate Mathematical Morphology
applied to resting state fMRI. Specifically, the work tries to find some image
biomarkers for Schizophrenia patients, with and without auditory halluci-
nations. Multivariate Mathematical Morphology is built on top of Lattice
Auto-associative Memory recall, as a Lattice Computing extension to the
supervised reduced ordering approaches.

5. Chapter 6 recalls some conclusions from the cross section of the contents of
the Thesis.

6. Appendix A provides the description of the databases that are used for the
computational experiments along the Thesis, specifically, the Alzheimer’s
Disease, Schizophrenia and Abdominal Aortic Aneurysm databases, which
exemplify diverse image modalities. It also provides some introduction to
the diverse data modalities, and some techniques such as VBM.



Chapter 2

Lattice Computing fundamentals

In this Chapter we gather Lattice Computing miscelanea definitions relevant to var-
ious chapters in the Thesis. The main aim is to provide a short review of definitions
and results that would allow the smooth reading of ensuing chapters, identifying
the main contributions of the Thesis. The contents of the Chapter are as follows:
Section 2.1 provides basic definitions from Lattice Theory. Section 2.2 provides
a review of Lattice Associative Memories, with an emphasis in the definition of
Lattice Independence which is relevant for subsequent sections. Section 2.3 pro-
vides the basic definitions of Dentritic Computing classifier systems. Section 2.4
introduces the Lattice Independent Component Analysis (LICA). Section 2.5 pro-
vides the description of an endmember induction algorithm used in some of the
experiments in the Thesis.

2.1 Lattice Theory

George Davis Birkhoff along with his son, Garrett Birkhoff, made a long stand-
ing major contribution to the development of Lattice Theory [13]. Their articles
and books have been in its time the encyclopedia of Lattice Theory, containing
the building block definitions as well as reflecting relations with different fields of
mathematics and other sciences. The richness and diversity of their ideas have cer-
tainly contributed to our ability to look at the science on the other side stimulating
the application of lattice theory to solve real life problems. In this review chapter,
we use actual notation and definitions from [90] [48] [91].

Definition 1. A relation ≤ on a set X is called a partial order on X if and only

9
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if for every x, y, z ∈ X the reflexivity, antisymmetry and transitivity are satisfied
Table 2.1.

A partially ordered is totally ordered set if it satisfies linearity property.

Definition 2. A lattice is a partially ordered set L such that for any two elements
x, y,∈ L, in f{x,y} and sup{x,y} exist. If L is a lattice, then we define x∧ y =

in f{x,y} and y∧ x = sup{x,y}.

A sublattice of a lattice L is a subset X of L such that for each pair x, y,∈ X we
have that x∧ y ∈ X and y∧ x ∈ X .

A lattice L is sais to be complete if and only if for each of its subset X in f{x,y}
and sup{x,y} exist. We define the symbols

�
X = in f X and

�
X = supX .

Lemma 3. Let P be a partially ordered set in wich
�

H
�

H exist for all H ⊆ P,
Then P is a complete lattice.

Let H ⊆ X , x ∈ X . Than x is an upper bound of H, if h ≤ a for all h ∈ H. And
upper bound x of H is the least upper bound of H or supremum of H if, for any
upper bound y of H, we have x ≤ y. We shall write x = sup{x,y}, or x =

�
X . The

concept of lower bound and greatest lower bound or infinum are similarity defined;
the latter is denoted by in f H or

�
H. We will use this notation x∧y= in f{x,y} and

y∧ x = sup{x,y} and also call ∨ join and ∧ meet. In latteces, they are both binary
operations, which means that they can be applied to a pair of elements x, y,∈ L
to produce again the element of L. It should be noted that they are idempotent,
commutative and associative Table 2.1.

Lattices have special elements called the top � and bottom ⊥. The top is the
unique greatest upper bound, whereas the bottom is the unique least lower bound.

2.2 Lattice Associative Memories

The concept of an associative memory is a fairly intuitive one as it is based on the
observation that an associative memory seems to be one of the primary functions of
the brain. We easily associate the face of a friend with that of the friend’s name, or
a name with a telephone number. For this reason artificial neural networks (ANNs)
that are capabable of storing several types of patterns and corresponding associa-
tions are referred to as associative memories. Such memories retrieve stored asso-
ciations when presented with corresponding input patterns. An associative memory
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Ordering
Order ≤

Reflexivity For all x, x ≤ x
Antisymmetry if x ≤ y and y ≤ x then x = y

Transitivity if x ≤ y and y ≤ z then x ≤ z
Linearity For all x,y, x ≤ y, y ≤ x

Operations
Join ∨
Meet ∧

Idempotency x∨ x = x
x∧ x = x

Commutativity x∨ y = y∨ x
x∧ y = y∧ x

Associativity (x∨ y)∨ z = x∨ (y∨ z)
(x∧ y)∧ z = x∧ (y∧ z)

Absorption x∧ (x∨ y) = x∨ (x∧ y) = x
Distributivity x∧ (y∨ z) = (x∧ y)∨ (x∧ z)

x∨ (y∧ z) = (x∨ y)∧ (x∨ z)
Translation if x ≤ y, then a+ x+b ≤ a+ y+b

Table 2.1: Lattice distinctive feature
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is said to be robust in the presence of noise if presented with a corrupted version of
a prototype input pattern it is still capable of retrieving the correct association.

The work on Lattice Associative Memories (LAM) stems from the consider-
ation of the bounded lattice ordered group (blog) (R±∞,∨,∧,+,+�) as the alter-
native to the algebraic field (R,+, ·) commonly used for the definition of Neural
Network algorithms. Here R denotes the set of real numbers, R±∞ the extended
real numbers, ∧ and ∨ denote, respectively, the binary max and min operations,
and +, +� denote addition and its dual operation. In our current context addition is
self-dual. If x∈R±∞, then its additive conjugate is x∗ =−x. For a matrix A∈Rn×m

±∞
its conjugate matrix is given by A∗ ∈ Rn×m

±∞ , where each entry a∗i j = [A∗]i j is given
by a∗i j = (a ji)

∗ .

The LAM were first introduced in [87, 89] as Morphological Associative Mem-
ories, a name still used in recent publications [113], but we follow the terminology
introduced in [93, 98] in the general framework of Lattice Computing.

2.2.1 Definitions

Given a set of input/output pattern pairs (X ,Y ) =
��

xξ ,yξ
�

;ξ = 1, ..,k
�

, a linear
heteroassociative neural network based on the pattern’s cross correlation is built up
as

W = ∑
ξ

yξ ·
�

xξ
��
. (2.1)

Mimicking this constructive procedure [89, 87] proposed the following con-
structions of Lattice Heteroassociative Memories (LHAM):

WXY =
k�

ξ=1

�
yξ ×

�
−xξ

��
�

and MXY =
k�

ξ=1

�
yξ ×

�
−xξ

��
�
, (2.2)

where × is any of the ∨� or ∧� operators. Here ∨� and ∧� denote the max and
min matrix product [89, 87]. respectively defined as follows:

C = A ∨� B = [ci j]⇔ ci j =
�

k=1,...,n

�
aik +bk j

�
, (2.3)

C = A ∧� B = [ci j]⇔ ci j =
�

k=1,...,n

�
aik +bk j

�
. (2.4)

If X = Y then the LHAM memories are Lattice Autoassociative Memories
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(LAAM). Conditions of perfect recall by the LHAM and LAAM of the stored pat-
terns proved in [89, 87] encouraged research. In the continuous case, the LAAM
is able to store and recall any set of patterns, that is: WXX ∨� X = X = MXX ∧� X
holds for any continuous X . However, this result holds when we deal with noise-
free patterns. Research on robust recall [85, 92, 87] based on the so-called kernel
patterns lead to the notion of morphological independence, in the erosive and dila-
tive sense, and finally to the definition of Lattice Independence and Strong Lattice
Independence.

2.2.2 Lattice Independence

Definition 4. Given a set of vectors X =
�

x1, ...,xk�⊂ Rn a linear minimax com-
bination of vectors from this set is any vector x ∈Rn

±∞ which is a linear minimax
sum of these vectors:

x = L
�

x1, ...,xk
�
=

�

j∈J

k�

ξ=1

�
aξ j +xξ

�
,

where J is a finite set of indices and aξ j ∈ R±∞ ∀ j ∈ J and ∀ξ = 1, ...,k.
The linear minimax span of vectors

�
x1, ...,xk�= X ⊂Rn is the set of all linear

minimax sums of subsets of X , denoted LMS
�
x1, ...,xk� .

Now we are able to define the notions of lattice dependence.

Definition 5. Given a set of vectors X =
�

x1, ...,xk� ⊂ Rn, a vector x ∈Rn
±∞ is

lattice dependent if and only if x ∈ LMS
�
x1, ...,xk�. The vector x is Lattice In-

dependent if and only if it is not lattice dependent on X . The set X is said to be
Lattice Independent if and only if ∀λ ∈ {1, ...,k} , xλ is Lattice Independent of
X\

�
xλ�=

�
xξ ∈ X : ξ �= λ

�
.

The definition of Lattice Independence supersedes earlier definitions [99] of
erosive and dilative morphological independence. This definition of lattice de-
pendence is closely tied to the study of the LAAM fixed points when they are
interpreted as lattice transformations, as stated by the following theorem.

The following definition introduces a matrix property needed to refine the idea
of lattice independence.

Definition 6. A set of vectors X =
�

x1, ...,xk�⊂ Rn is said to be max dominant if
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and only if for every λ ∈ {1, ...,k} there exists and index jλ ∈ {1, ...,n} such that

xλ
jλ − xλ

i =
k�

ξ=1

�
xξ

jλ − xξ
i

�
∀i ∈ {1, ...,n} .

Similarly, X is said to be min dominant if and only if for every λ ∈ {1, ...,k} there
exists and index jλ ∈ {1, ...,n} such that

xλ
jλ − xλ

i =
k�

ξ=1

�
xξ

jλ − xξ
i

�
∀i ∈ {1, ...,n} .

The expressions that compound this definition appeared in the early theorems
about perfect recall of Morphological Associative Memories [89, 87]. Their value
as an identifiable property of the data has been discovered in the context of the
formalization of the relationship between Strong Lattice Independence, defined
below, and the Affine Independence of classical linear analysis.

Definition 7. A set of Lattice Independent vectors
�

x1, ...,xk� ⊂ Rn is said to
be Strongly Lattice Independent (SLI) if and only if X is max dominant or min
dominant or both.

As said before, min and max dominance are the conditions for perfect recall in
LAM. Per construction, the column vectors of LAAM are diagonally min or max
dominant, depending of their erosive or dilative nature, therefore they will be SLI,
if they are Lattice Independent. We recall that a set of vectors X = {x1, . . . ,xM} is
said to be Linearly Independent if the unique solution to the equation ∑M

i=1 aixi = 0
is given by ai = 0 for all i ∈ {1, . . . ,M} . A set X is an Affine Independent set if
the solution to the simultaneous equations ∑M

i=1 aixi = 0 and ∑M
i=1 ai = 0 is given by

ai = 0 for all i ∈ {1, . . . ,M} . Therefore, Linear Independence is a necessary con-
dition for Affine Independence but not viceversa. A set of M Affine Independent
points defines a simplex, so that if we find it then we can assume the Linear Mixing
Model to perform data unmixing, such as done in Section 2.4.

Conjecture 8. [93, 90] If X =
�

x1, ...,xk� ⊂ Rn is SLI then X is Affine Indepen-
dent.

This conjecture (stated as theorem in [90, 91]) is the key result relating the lin-
ear analysis based on the Linear Mixing Model and the non-linear lattice analysis.
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If true, it means that the construction of the LAAM provides the starting point for
obtaining sets of Affine Independent vectors that could be used as Lattice Inde-
pendent Sources for the unmixing algorithms as done in the Lattice Independent
Component Analysis of Section 2.4.

Theorem 9. [93] Let X =
�

x1, ...,xk� ⊂ Rn and let W and its dual M be the set
of vectors consisting of the columns of the matrix WXX and its dual MXX . Let F(X)

denote the set of fixed points of the LAAM constructed from set X. There exist
V ⊂ W and N ⊂ M such that V and N are SLI and F (X) = F (V ) = F (N) or,
equivalently, WXX =WVV and MXX = MNN.

The key idea of this theorem is that it is possible to built a set of SLI vec-
tors from the column vectors of a LAAM. Taking into account that the column
vectors of a LAAM are diagonally max or min dominant (depending on the kind
of LAAM), it suffices to find a subset which is lattice independent. It also uses
the fact that a subset of a set of max or min dominant vectors is also min or max
dominant. The constructive proof of the theorem provides algorithms to find these
sets of SLI. It removes iteratively the detected lattice dependent column vectors.
Detection lies in the fact that WXX =WWW =WVV and MXX = MMM = MNN when
the vectors removed from W or M to obtain V or N are lattice dependent on the
remaining ones.

2.2.3 Perfect recall

The following theorems about conditions for LAM and LAAM perfect recall were
establised in [89]

Theorem 10. Let (X ,Y ) denote the associate sets of pattern vectors pairs. When-
ever exist perfect recall memories A and B such that A ∨� xξ = yξ and B ∧� xξ = yξ

for ξ = 1, ...,k, then
A ≤WXY ≤ MXY and ∀ξ , WXY ∨� xξ = yξ = MXY ∧� xξ .

Here WXY is the least upper bound of all perfect recall memories involving the
∨� operation and MXY is the greatest lower bound of all perfect recall memories
involving the ∧� operation.

Theorem 11. WXY is a perfect recall memory for the pattern association
�
xλ ,yλ�

if and only if each row of the matrix
�
yλ +

�
xλ�∗

�
−WXY contains a zero entry.
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Similary, MXY is a perfect recall memory for the pattern pair
�
xλ ,yλ� if and only

if each row of the matrix MXY −
�
yλ +

�
xλ�∗

�
contains a zero entry.

If X = Y then WXX and MXX are called Lattice Auto-Associative Memories
(LAAM). Since:

wii =
k�

ξ=1

�
xξ

i − xξ
i

�
= 0 =

k�

ξ=1

�
xξ

i − xξ
i

�
= mii,

the diagonals of the memories WXX and MXX consist complitelly of zeros. The
following Corollary is concluded from Theorem 11.

Corollary 12. WXY ∨� xξ = xξ = MXY ∧� xξ for each ξ = 1, ...,k.

Therefore, if we can obtain an erosive LAM with perfect recall, then there is a
corresponding dilative LAM that has perfect recall property.

2.2.4 Lattice Approximation

The natural way to deal with approximation in the Lattice Computing framework
is to use the Chebyshev distance [113] given by the greatest componentwise abso-
lute difference between two vectors, it is denoted ς (x,y) and can be computed as
follows: ς (x,y) = (x∗ ∨� y)∨(y∗ ∨� x). The Chebyshev-best approximation of c by
f (x) subject to x ∈ S, is the minimization of ς ( f (x) ,c) subject to x ∈ S.

Theorem 13. [113] Given B ∈ Rm×n and c ∈ Rm, a Chebyshev-best solution to
the approximation of c by B ∨� x subject to the constraint B ∨� x < c is given by
x# = B∗ ∧� c and x# is the greatest such solution.

In our incremental algorithm ILSIA we will need to solve the unconstrained
minimization problem

minς (B ∨� x,c) ,

in order to decide if the input vector is already well approximated by a fixed point
of the LAAM constructed from the selected enmembers.

Theorem 14. [113]Given B ∈ Rm×n and c ∈ Rm, a Chebyshev-best solution to
the approximation of c by B ∨� x is given by µ + x# where µ is such that 2µ =

ς
�
B ∨� x#,c

�
=
�
B ∨� x#�∗ ∨� c.
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Figure 2.1: Terminal branches of axonal fibers originating from the presynaptic
neurons make contact with synaptic sites on dendritic branches of Mj.

This theorem has resulted in enhanced robust recall for LAAM under general
noise conditions, compared with other Associative Memories proposed in the lit-
erature. It has also been applied to produce a lattice based nearest neighbor classi-
fication scheme with good results on standard benchmark classification problems.
In fact, we use this approximation for the definition of the LAAM-based reduced
ordering that provides a Lattice Computing based Multivariate Mathematical Mor-
phology in Chapter 5.

2.3 Dendritic computing

First we recall a very general definition of Dendritic Lattice models of ANN, of
which the single layer dendritic network is a salient example, due to its simplicity,
which is introduced next.

2.3.1 The Dendritic Lattice Based Model of ANNs

Roughly speaking, a lattice based neural network is an ANN in which the basic
neural computations are based on the operations of a lattice ordered group. By
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Figure 2.2: General multi-layer structure of a dendritic network

a lattice ordered group we mean a set L with an associated algebraic structure
(L, ∨, ∧,+), where (L, ∨, ∧) is a lattice and (L,+) is a group with the property
that every group translation is isotone Table 2.1 . Given the set O = {∨, ∧,+} of
lattice goup operations, then the symbols ⊕ and ⊗ will mean that ⊕,⊗∈O but are
not explicitly specified lattice operations. Similarly, symbols of form

�
and

�
will

denote lattice operations derived from the operations ⊕ and ⊗, respectively. For
example,

�n
i=1 ai = a1 ⊕a2 ⊕ · · · ⊕an. Hence, specifying ⊕ = ∨, then

�n
i=1 ai =�n

i=1 ai = a1 ∨a2 ∨ · · · ∨an.
In the dendritic model of ANNs, a finite set of presynaptic neurons N1, . . . , Nn

provides information through its axonal arborization to the dendritic trees of some
other finite set of postsynaptic neurons M1, . . . , Mm. The dendritic tree of a postsy-
naptic neuron Mj is assumed to consist of a finite number of branches d j1, . . . , d jKj

which contain the synaptic sites upon which the axonal fibers of the presynaptic
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neurons terminate. The strength of the synapse on the kth dendritic branch d jk

(k ∈ {1, . . . , K( j)}) which serves as a synaptic site for a terminal axonal branch
fiber of Ni is denoted by w�

i jk and is also called its synaptic weight. The superscript
� is associated with the postsynaptic response that is generated within and in close
proximity of the synapse. Specifically, �= 0 and �= 1 denote an inhibitory or ex-
citatory postsynaptic response, respectively. It is possible for several axonal fibers
to synapse on the same or different synaptic sites on a given branch d jk, with the
former case implying that w�

i jk = w�
h jk. The total response (or output) of d jk to the

received input at its synaptic sites is given by

τ j
k (x) = p jk

�

i∈I(k)

�

�∈L (i)

[(−1)1−�
�

xi +w�
i jk

�
], (2.5)

where x = (x1, . . . ,xn) ∈ Ln with Ln denoting the n-fold cartesian product of L,
xi ∈ L denotes the information propagated by Ni via its axon and axonal branches,
L (i) ⊆ {0,1} corresponds to the postsynaptic response generated at the synaptic
region to the input received from Ni, and I(k)⊆ {1, . . . ,n} corresponds to the set of
all presynaptic neurons with terminal axonal fibers that synapse on the kth dendritic
branch of Mj. The value p jk ∈ {−1,1} marks the final signal outflow from the kth
branch as inhibitory if p jk = −1 and excitatory if p jk = 1. The value τ j

k (x) is
passed to the cell body of Mj and the state of Mj is a function of the combined
values received from its dendritic structure and is given by

τ j(x) = p j

Kj�

k=1
τ j

k (x), (2.6)

where Kj denotes the total number of dendritic branches of Mj and p j = ±1 de-
notes the response of the cell to the received input. Here again p j = −1 means
rejection (inhibition) and p j = 1 means acceptance (exitation) of the received in-
put. Figure 2.3.1 illustrates the neural pathways from the presynaptic neurons to
the postsynaptic neuron Mj. Figure 2.3.1 illustrates a dendritic network.

2.3.2 Dendritic computing on a single layer

The prime example of a lattice ordered group is the set R of real numbers together
with the binary operations of the maximum (∨) and minimum (∧) of two numbers
and the group operation of addition, denoted by (R, ∨, ∧,+). A single layer mor-
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Algorithm 2.1 Dendritic Computing learning algorithm based on elimination.

Training set T =
��

xξ ,cξ

�
xξ ∈ Rn,cξ ∈ {0,1} ;ξ = 1, . . . ,m

�
, C1 =

�
ξ : cξ = 1

�
, C0 =

�
ξ : cξ = 0

�

1. Initialize j = 1, I j = {1, . . .n}, Pj = {1, . . . ,m}, Li j = {0,1},

w1
i j =−

�

cξ=1
xξ

i ; w0
i j =−

�

cξ=1
xξ

i , biologically∀i ∈ I

2. Compute response of the current dendrite D j, with p j = (−1)sgn( j−1):

τ j

�
xξ
�
= p j

�

i∈I j

�

l∈Li j

(−1)1−l
�

xξ
i +wl

i j

�
, ∀ξ ∈ Pj.

3. Compute the total response of the neuron:

τ
�

xξ
�
=

j�

k=1
τk

�
xξ
�

; ξ = 1, . . . ,m.

4. If ∀ξ
�

f
�

τ
�

xξ
��

= cξ

�
the algorithm stops here with perfect classification

of the training set.

5. Create a new dendrite j = j+1, I j = I� = X = E = H = Ø, D =C1

6. Select xγ such that cγ = 0 and f (τ (xγ)) = 1.

7. µ =
�

ξ �=γ

��n
i=1

���xγ
i − xξ

i

��� : ξ ∈ D
�
.

8. I� =
�

i :
���xγ

i − xξ
i

���= µ,ξ ∈ D
�

; X =
��

i,xξ
i

�
:
���xγ

i − xξ
i

���= µ,ξ ∈ D
�

.

9. ∀
�

i,xξ
i

�
∈ X

(a) if xγ
i > xξ

i then w1
i j =−(xξ

i +µ), Ei j = {1}

(b) if xγ
i < xξ

i then w0
i j =−(xξ

i −µ), Hi j = {0}

10. I j = I j
�

I�; Li j = Ei j
�

Hi j

11. D� =
�

ξ ∈ D : ∀i ∈ I j,−w1
i j < xξ

i <−w0
i j

�
. If D� = Ø then goto step 2, else

D = D� goto step 7.
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Figure 2.3: A single output single layer Dendritic Computing system.

phological neuron endowed with dendrite computation based on lattice algebra was
introduced in [99]. Figure 2.3 illustrates the structure of a single output class single
layer Dendritic Computing system, where D j denotes the dendrite with associated
inhibitory and excitatory weights

�
w0

i j,w
1
i j

�
from the synapses coming from the

i-th input neuron. It is the meaning of Dendritic Computing classifier all across the
Thesis. Thus, for example, eqn.2.5 could assume the form

τ j
k (x) = p jk

�

i∈I(k)

�

�∈L (i)

(−1)1−�
�

xi +w�
i jk

�
, (2.7)

where x = (x1, . . . ,xn) ∈ Rn, and xi ∈ R, while eqn.2.6 could be of form

τ j(x) = p j

Kj

∑
k=1

τ j
k (x). (2.8)

Alternatively, the response of the j-th dendrite may be specified as follows:

τ j

�
xξ
�
= p j

�

i∈I j

�

l∈Li j

(−1)1−l
�

xξ
i +wl

i j

�
, (2.9)
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where l ∈ L ⊆ {0,1} identifies the existence and inhibitory/excitatory character
of the weight, Li j = Ø means that there is no synapse from the i-th input neuron
to the j-th dendrite; p j ∈ {−1,1} encodes the inhibitory/excitatory response of
the dendrite. It has been shown [99] that these dendritic models have powerful
approximation properties. The total response of the neuron is given by:

τ (xi) = f

�
J�

j=1
τ j (xi)

�
,

where f (x) is the Heaviside hardlimiter function. A constructive algorithm obtains
perfect classification of the train dataset using J dendrites.

In fact, [99] showed that this model is able to approximate any compact region
in higher dimensional Euclidean space to within any desired degree of accuracy.
They provide a constructive algorithm which is the basis for the present paper. The
hard-limiter function of step 3 is the signum function. The algorithm starts build-
ing a hyperbox enclosing all pattern samples of class 1, that is, C1 =

�
ξ : cξ = 1

�
.

Then, the dendrites are added to the structure trying to remove misclasified patterns
of class 0 that fall inside this hyperbox. In step 6 the algorithm selects at random
one such misclassified patterns, computes the minimum Chebyshev distance to a
class 1 pattern and uses the patterns that are at this distance from the misclassified
pattern to build a hyperbox that is removed from the C1 initial hyperbox. In this
process, if one of the bounds is not defined, Li j �= {0,1}, then the box spans to
infinity in this dimension. One of the recent improvements [10] consists in con-
sidering rotations of the patterns obtained from some learning process. Then, the
response of the dendrite is given by:

τ j

�
xξ
�
= p j

�

i∈I j

�

l∈Li j

(−1)1−l
�

R
�

xξ
�

i
+wl

i j

�
,

where R denotes the rotation matrix. The process of estimating R can be very time
consuming, it is a local process performed during steps 7 to 10 of the learning
process of algorithm 2.1.

2.4 Lattice Independent Component Analysis (LICA)

In the domain of remote sensing hyperspectral image processing, a Linear Mixing
Model (LMM) is assumed to perform so-called linear unmixing of the data on
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the basis of a collection of endmembers [39, 61, 31, 30, 67] (akin to the GLM
regressors and ICA independent sources).

The LMM can be expressed as follows:

x =
M

∑
i=1

aiei +w = Ea+w,

where x is the d-dimension pattern vector corresponding to the fMRI voxel time
series vector, E is a d ×M matrix whose columns are the d-dimensional vectors,
when these vectors are the vertices of a convex region covering the data they are
called endmembers ei, i = 1, ..,M, a is the M-dimension vector of linear mixing
coefficients, which correspond to fractional abundances in the convex case, and w
is the d-dimension additive observation noise vector. The linear mixing model is
subjected to two constraints on the abundance coefficients when the data points fall
into a simplex whose vertices are the endmembers, all abundance coefficients must
be non-negative

ai ≥ 0, i = 1, ..,M

and normalized to unity summation

M

∑
i=1

ai = 1.

Under these circumstances, we expect the vectors in E to be affinely independent
and that the convex region defined by them includes all the data points. Once the
endmembers have been determined, the unmixing process is the computation of
the matrix inversion that gives the coordinates of the point relative to the convex
region vertices. The simplest approach is the unconstrained least squared error
(LSE) estimation given by:

�a =
�
ET E

�−1 ET x.

Even when the vectors in E are affinely independent, the coefficients that result
from this estimation do not necessarily fulfill the non-negativity and unity normal-
ization. Ensuring both conditions is a complex problem.

We call Lattice Independent Component Analysis (LICA) the following ap-
proach:

1. Induce from the given data a set of Strongly Lattice Independent (SLI) vec-
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tors. These vectors are taken as a set of affine independent vectors, Because
of the equivalence between SLI and Affine Independence [93, 90]. The ad-
vantages of this approach are (1) that we are not imposing statistical as-
sumptions, (2) that the algorithm is one-pass and very fast because it only
uses comparisons and addition, (3) that it is unsupervised and incremental,
and (4) that it detects naturally the number of endmembers.

2. Apply the unconstrained least squares estimation to obtain the mixing ma-
trix. The detection results are based on the analysis of the coefficients of
this matrix. Therefore, the approach is a combination of linear and lattice
computing: a linear component analysis where the components have been
discovered by non-linear, lattice theory based, algorithms.

Endmember induction LICA uses some Endmember Induction Algorithm to
extract the Lattice Independent Sources (LIS). In this some works we apply the
Incremental Endmember Induction Algorithm (IEIA) [43, 45]. In some other
works, the Incremental Lattice Source Induction Algorithm (ILSIA). The ILSIA is
a greedy incremental algorithm that passes only once over the sample. It starts with
a randomly picked input vector and tests each vector in the input dataset to add it to
the set of LIS. It is an improved formulation of the Endmember Induction Heuristic
Algorithm proposed in [43] based on the equivalence between Strong Lattice Inde-
pendence and Affine Independence [93]. There are two conditions for SLI: Lattice
Independence and max/min dominance. Lattice Independence is detected based on
results on fixed points for Lattice Autoassociative Memories (LAM) [91, 93, 113],
and max/min dominance is tested using algorithms inspired in the ones described
in [118]. Besides, it uses of Chebyshev best approximation results [113] in order
to reduce the number of selected vectors.

There are other methods [43, 93, 90] based on LAAM to obtain a set of SLI
vectors. However these methods produce initially a large set of LIS that must be
reduced somehow, either resorting to a priori knowledge or to selections based on
Mutual Information or other similarity measures. We think that the way the ILSIA
the candidate SLI vectors are discarded on the basis of the best approximation in
the Chebyshev distance sense is more natural.
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2.5 Incremental Lattice Source Induction Algorithm (IL-
SIA)

The algorithm described in this section evolves from the Endmember Induction
Heuristic Algorithm introduced in [? ]. It is grounded in the formal results on
continuous LAAM reviewed in the previous section. The dataset is denoted by
Y =

�
y j; j = 1, . . . ,N

�
∈ Rn×N and the set of LIS induced from the data at any

step of the algorithm is denoted by X =
�

x j; j = 1, . . . ,K
�
∈Rn×K . The number of

LIS K will vary from the initial value K = 1 up to the number of LIS found by the
algorithm, we will skip indexing the set of LIS with the iteration time counter. The
algorithm makes only one pass over the sample as in [? ]. The auxiliary variables
s1,s2,d ∈ Rn serve to count the times that a row has the maximum and minimum,
and the component wise differences of the lattice source and input vectors. The ex-
pression (d == m1) denotes a vector of 0 and 1, where 1 means that corresponding
component of d is equal to the scalar value m1.

The algorithm goal is to produce sets of SLI vectors extracted from the input
dataset. Assuming the truth of conjecture 8 the resulting sets are Affine Indepen-
dent, and they define convex polytopes that cover some (most of) the data points
in the dataset. To ensure that the resulting set of vectors are SLI, we first ensure
that they are Lattice Independent in step 3(a) of Algorithm 2.2 by the application
of theorem ??: each new input vector is applied to the LAAM constructed with
the already selected LIS. If the recall is perfect, then it is lattice dependent on the
LIS, and can be discarded. If not, then the new input vector is a candidate to be
included in the LIS. We test in step 3(c) the min and max dominance of the set of
LIS enlarged with the new input vector. We need to test the whole enlarged lattice
source set because min and max dominance are not preserved when adding a vec-
tor to a set of min/max dominant vectors. Note that to test Lattice Independence
we need only to build WXX because the set of fixed points is the same for both
kinds of LAAM, i.e. F (WXX) = F (MXX) . However, we need to test both min and
max dominance because SLI needs one of them or both to hold. This part of the
algorithm is an adaptation of the procedure proposed in [118].

If SLI is the only criteria to include input vectors in the set of LIS, then we
end up detecting a large number of LIS, so that there will be little significance of
the abundance coefficients because many of the LIS will be closely placed in the
data space. This is in fact the main inconvenient of the algorithms proposed in [?
93] that use the columns of a LAAM constructed from the data as the SLI vector
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set, after removing lattice dependent vectors. To reduce the set of LIS selected we
apply the results on Chebyshev-best approximation from theorem 14 discarding
input vectors that can be well approximated by a fixed point of the LAAM con-
structed from the current set of LIS. In step 3(b) this approximation of a candidate
is tested before testing max/min dominance: if the Chebyshev distance from the
best approximation to the input vector is below a given threshold, the input vector
is considered a noisy version of a vector which is lattice dependent on the current
set of LIS. Note that ILSIA that always produces the vertices of simplexes that lie
inside the data cloud, so that enforcing the non-negative and normalization condi-
tions of LMM may be impossible for sample data points lying outside the simplex.
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Algorithm 2.2 Incremental Lattice Source Induction Algorithm (ILSIA)
1. Initialize the set of LIS X = {x1} with a randomly picked vector in the input

dataset Y .

2. Construct the LAAM based on the strong lattice independent (SLI) vectors:
WXX .

3. For each data vector yj;j=1,. . .,N

(a) if yj = WXX ∨� yj then y j is lattice dependent on the set of LIS X , skip
further processing.

(b) if ς
�
WXX ∨�

�
µ +x#� ,y j

�
< θ , where x# = W ∗

XX ∧� y j and µ =
1
2
��

WXX ∨� x#� ∨� y j
�
, then skip further processing.

(c) test max/min dominance to ensure SLI, consider the enlarged set of LIS
X � = X ∪

�
y j
�

i. µ1 = µ2 = 0
ii. for i = 1, . . . ,K +1

iii. s1 = s2 = 0
A. for j = 1, . . . ,K +1 and j �= i

d = xi −x j; m1 = max(d); m2 = min(d).
s1 = s1 +(d == m1), s2 = s2 +(d == m2).

B. µ1 = µ1 +(max(s1) == K) or µ2 = µ2 +(max(s2) == K).
iv. If µ1 = K + 1 or µ1 = K + 1 then X � = X ∪

�
y j
�

is SLI, go to 2
with the enlarged set of LIS and resume exploration from j+1.

4. The final set of LIS is X .
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Chapter 3

Dendritic Computing

This Chapter contains several approaches to enhance the performance of the single
neuron lattice model with dendritic computation (SNLDC). It also includes work
performed under the supervision of prof. Gerhard X. Ritter while staying at the
University of Florida, consisting in experiments with a novel associative memory
based on Dendritic Computing. The contents of the Chapter are as follows: Sec-
tion 3.1 gives an introduction to the contents of the chapter. Section 3.2 discusses
the shrinking hyperbox approach. Section 3.3 describes the hybridization of the
SNLDC with kernel and LICA transformation of the data. Section 3.4 introduced
the Bootstrapped Dendritic Computation (BDC). Section 3.5 presents image seg-
mentaion with active learning of BDC. Section 3.6 introduces a novel associative
memory based on Dendritic Computation. Finally, section 3.7 gives the conclu-
sions of the Chapter.

3.1 Introduction

Dendritic Computing (DC) [10, 97, 99, 98, 96] was introduced as a simple, fast,
efficient biologically inspired method to build up classifiers for binary class prob-
lems, which could be extended to multiple classes. Specifically the single neuron
lattice model with dendrite computation (SNLDC), has been proved to compute a
perfect approximation to any data distribution [95, 99]. However it suffers from
over-fitting problems. Cross-validation experiments result in very poor perfor-
mance. We found that SNLDC showed high sensitivity but very low specificity in
a 10-fold cross-validation experiment. We atribute this to the fact that the learning

29
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algorithm always tries to guarantee the good classification of the class 1 samples.
We have followed three ways to enhance the SNLDC performance:

1. We propose to apply a reduction factor on the size of the hyperboxes cre-
ated by the SNLDC learning algorithm. The results show a better balance
between sensitivity and specificity, increasing the classifier accuracy.

2. We perform some data transformations, aiming to have a better data repre-
sentation for the application of the SNLDC. Specifically, the best results are
obtained with a combination of the kernel aproach and the LICA over the
original data.

3. Bootstrapped Dendritic Classifiers (BDC) is an ensemble of weak Dendritic
Classifiers trained combining their output by majority voting to obtain im-
proved classification generalization performance. Weak Dendritic Classifiers
are trained on bootstrapped samples of the train data setting a limit on the
number of dendrites. There is no additional data preprocessing. The BDC is
also tested in the framework of active learning for image segmentation in a
collaboration with Josu Maiora and Borja Ayerdi.

Finally, we use the Dendritic Computation approach to build a novel associative
memory with enhanced robustness against noise.

Applications One target application of our work is the classification of Alzheimer’s
Disease (AD) patients from brain magnetic resonance imaging (MRI) scans. We
have worked over a dataset of MRI features extracted from a subset of the OASIS
database, as described in Appendix A. Figure 3.1 shows the pipeline summarizing
the processes performed up to the classification with the DC system. Computed
performance measures are Accuracy, Sensitivity and Specificity. Accuracy is com-
puted as the ratio of correct classifications. Sensitivity is computed as the ratio of
true positives to the total number of positive samples. Specificity is computed as
the ratio of the true negatives to the total number of negative samples.

The other application is the segmentation of the thrombus in CTA images of
Abdominal Aortic Aneurysm (AAA), also explained in Appendix A. The perfor-
manc measure is the true positive ratio of the segmentation of the whole volume
from a training set extracted from a single slice. Training is performed in an active
learning strategy, to minimize the number of selected labeled samples needed to
build the classifier.



3.2. OPTIMAL HYPERBOX SHRINKING IN DENDRITIC COMPUTING 31

Figure 3.1: Pipeline of the process performed, including VBM, feature extraction
and classification by DC

3.2 Optimal Hyperbox shrinking in Dendritic Computing

In this work we propose to modify the basic strategy of hyperbox definition in DC
introducing a factor of reduction of these hyperboxes. We obtain a big increase
in classification performance applying with this schema over a database of fea-
tures extracted from Magnetic Resonance Imaging (MRI) including Alzheimer’s
Disease (AD) patients and control subjects.

3.2.1 DC classification system

We try to produce a better trade-off between the classification specificity and sen-
sitivity by shrinking the boundaries of the box created by the algorithm to exclude
the region occupied by a misclassified item of class 0. We define a shrinking fac-
tor α ∈ [0,1) that affects the size of the box created to exclude a region of space
from the initial hyperbox that encloses all items of class 1. This shrinking factor is
introduced in step 9 of the algorithm 3.1. The effect of this strategy can be appre-
ciated comparing figures 3.2 and 3.3. In figure 3.2 we show the boxes generated
by the original learning algorithm. Objects of class 1 correspond to crosses. In
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Algorithm 3.1 Dendritic Computing learning algorithm based on elimination with
shrinking factor α .

Training set T =
��

xξ ,cξ

�
xξ ∈ Rn,cξ ∈ {0,1} ;ξ = 1, . . . ,m

�
, C1 =

�
ξ : cξ = 1

�
, C0 =

�
ξ : cξ = 0

�

1. Initialize j = 1, I j = {1, . . .n}, Pj = {1, . . . ,m}, Li j = {0,1},

w1
i j =−

�

cξ=1
xξ

i ; w0
i j =−

�

cξ=1
xξ

i , biologically∀i ∈ I

2. Compute response of the current dendrite D j, with p j = (−1)sgn( j−1):

τ j

�
xξ
�
= p j

�

i∈I j

�

l∈Li j

(−1)1−l
�

xξ
i +wl

i j

�
, ∀ξ ∈ Pj.

3. Compute the total response of the neuron:

τ
�

xξ
�
=

j�

k=1
τk

�
xξ
�

; ξ = 1, . . . ,m.

4. If ∀ξ
�

f
�

τ
�

xξ
��

= cξ

�
the algorithm stops here with perfect classification

of the training set.

5. Create a new dendrite j = j+1, I j = I� = X = E = H = Ø, D =C1

6. Select xγ such that cγ = 0 and f (τ (xγ)) = 1.

7. µ =
�

ξ �=γ

��n
i=1

���xγ
i − xξ

i

��� : ξ ∈ D
�
.

8. I� =
�

i :
���xγ

i − xξ
i

���= µ,ξ ∈ D
�

; X =
��

i,xξ
i

�
:
���xγ

i − xξ
i

���= µ,ξ ∈ D
�

.

9. ∀
�

i,xξ
i

�
∈ X

(a) if xγ
i > xξ

i then w1
i j =−(xξ

i +α ·µ), Ei j = {1}

(b) if xγ
i < xξ

i then w0
i j =−(xξ

i −α ·µ), Hi j = {0}

10. I j = I j
�

I�; Li j = Ei j
�

Hi j

11. D� =
�

ξ ∈ D : ∀i ∈ I j,−w1
i j < xξ

i <−w0
i j

�
. If D� = Ø then goto step 2, else

D = D� goto step 7.
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Figure 3.2: Resulting boxes of the original DC learning on a synthetic 2D dataset

figure 3.2 we show the boxes generated by the learning algorithm with shrinking
factor α = 0.8. It can be appreciated the shrinking algorithm creates more boxes
bounding more closely the class 0 items allowing for better generalization of the
class 1 results.

3.2.2 Experimental results

For each shrinking parameter value we have performed a 10-fold cross-validation
approach, testing more than 50 partitions of the data to obtain each performance
estimation. The summary of the best results is presented in Table 3.1 and Figure
3.4 where it can be appreciated that the baseline DC has a poor specificity and a
high sensitivity. DC systematically produces low ratios of false negatives, however
it produces a large ratio of false positives. Per construction, it is biased towards the
positive class C1. In fact, the main improvement introduced by the shrinking hyper-
box approach is an increase in specificity. The DC based approaches have a much
higher sensitivity, but their worse specificity degrades their accuracy performance.
Varying the shrinking factor α we obtain varying trade-offs between specificity
and sensititivity, decreasing the latter while increasing the former. The best results
are obtained with α = 0.8. In this case the sensitivity is comparable to the results
from previous experiments on the same database [37], while the specificity is still
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Figure 3.3: Resulting boxes of the DC algorithm with shrinking factor α = 0.8.

below the results for state of art approaches.

3.3 Hybrid Dendritic Computing with Kernel-LICA

In this Section we explore the use of Lattice Independent Component Analysis
(LICA) and the Kernel transformation of the data as an appropriate feature extrac-
tion that improves the generalization of SLNDC classifiers. Training is performed
by Algorithm 3.1 on the transformed data. First we will review some ideas abotu

Figure 3.4: DC result varing α and α = 0
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α Accuracy Sensitivity Specificity
0 58 94 23

0.5 60 81 40
0.53 59 77 42
0.55 64 85 44
0.57 63 83 43
0.6 62 81 44

0.63 64 83 45
0.65 69 83 54
0.67 64 78 49
0.7 64 79 49

0.73 65 79 52
0.75 65 78 51
0.77 67 78 56
0.8 69 81 56

0.83 66 76 55
0.85 62 73 51
0.87 63 74 52
0.9 63 74 51

0.93 66 74 57
0.95 65 73 57
0.97 61 69 53

Table 3.1: Summary of best results of validation experiments over AD MSD feature
database. Firs row corresponds to the original DC algorithm[99].
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Kernel approaches to classification.

3.3.1 Kernel Aproaches.

The kernel transformation has been found very useful in statistics and pattern
recognition applications [108]. A kernel is a function

κ (x,z) = �φ (x) ,φ (z)� , (3.1)

for all x,z ∈ X , where X ⊆ Rn is the input pattern space, and φ is a mapping into
an (inner product) feature space F

φ : X → F. (3.2)

Kernel functions make possible the use of feature spaces with an exponential or
even infinite number of dimensions without explicitly computing the features. They
are combined with other algorithms as a preprocessing step of the data. In the liter-
ature they have allowed to extend linear efficient solutions to non-linear problems.
For instance, consider the linear regression problem of finding the linear function
g(x) = �w,x� that best interpolates a given training set S = {(x1,y1) , . . . ,(xm,ym)}
with yi ∈R, solved minimizing the function f (x,y) = |y−�w,x�| by the well know
least squares solution w = (XX�)−1 X�y, where X is the matrix composed of all
the sample input vectors, and y the vector composed of all the labels in the sam-
ple. The non-linear extension can be obtained considering a transformation of the
sample into the feature space Ŝ = {(φ (x1) ,y1) , . . . ,(φ (xm) ,ym)} . The function to
be minimized is f (x,y) = |y−�w,φ (x)�|. Using a dual approach, the predictive
function is reformulated as g(x) = y� (G−λ I)−1 k, where G = XX� with entries
Gi j =

�
φ (xi) ,φ (x j)

�
, and k contains the values ki = �φ (xi) ,φ (x)� . That is, all

computations can be performed on the values of the kernel functions, solving the
problem with the same procedure employed to solve the linear problem. The kernel
matrix G is the central structure of all the kernel based approaches. For instance,
Principal Component Analysis (PCA) of the kernel matrix can be interpreted (with
some corrections [108]) as a PCA of the data in feature space. Applying the same
kind of heuristic, we perform also the LICA over the kernel matrix. The obtained
success would indicate the need to examine more closely this approach. Finally,
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Figure 3.5: The experimental exploration.

we define the Gaussian kernel that will be used in the experiments:

κ (x,z) = exp
�
−�x− z�2 /2σ2

�
. (3.3)

3.3.2 Experimental results

Figure 3.1 describes the combinations of systems that we have tested over the AD
versus controls database of feature vectors. Each of the possible paths in the graph
from the OASIS data up to the classification results corresponds to a combination
of systems tested. For each combination we have explored the corresponding pa-
rameters in a systematic way, using a 10-fold cross-validation approach, repeated
more than 50 times to obtain each performance estimation value in the figures and
tables. The 10-fold crossvalidation creates a random partition into ten equally sized
subsets of the sample, then each subset in turn is considered as the test data while
the remaining data samples are used to build the classifier. Performance measures
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are computed as the average of the performances obtained in all repetitions of the
training and testing process. Of course, the given values always refer to the test
sample data partition, not to the training.

We tested the application of Principal Component Analysis (PCA) to the di-
mensional reduction of the data previous to DC, the application of LICA to the
same end, the transformation of the data with a Gaussian kernel previous to DC or
to the application of PCA or LICA. The lower path in figure 3.5 corresponds to the
kernel-LICA approach. In the experiments we explored the effect of the diverse
parameters. For PCA we computed transformations with up 10 eigenvectors, ac-
counting for 99% of the accumulated eigenvalues. For LICA we tested values in
the ranges α ∈ [0.01,0.09]

�
[0.1,0.9]

�
[1,10] with corresponding uniform sam-

pling in these intervals. The Gaussian kernel parameter was computed as σ = 10k

with k = [−3,1] sampled uniformly in this interval.
In figure 3.6 we plot the result of PCA-DC as a function of the number of

eigenvectors. The average accuracy best result is obtained with one eigenvector
and decreases dramatically after that. Figure 3.7 shows the plot of the LICA-DC
results as a function of the α parameter that determines the number of endmem-
bers. The best results are for the higher values, which imply less endmembers.
Figure 3.8 shows the plot of the DC average accuracy when applied to the Gaus-
sian Kernel transformation of the data with varying σ parameter. The kernel trick
seems to work against the DC giving systematically poor results, regardless of the
value of its σ parameter. The results of the combination of the Gaussian kernel and
PCA are shown in figure 3.9 as surface depending on the number of eigenvectors
selected and the value of the σ parameter. It can be appreciated the results are
highly sensitive to the kernel parameter, low values giving better results. Overall
the kernel PCA-DC transformation improves the results of the PCA-DC combina-
tion, although the best result is lower for the Kernel PCA-DC than for the PCA-DC.
Finally, figure 3.10 shows the results of the combination of the Gaussian kernel
preprocessing with the LICA feature extraction for DC. Values improve with low
values of σ and moderate α . Both 3D surface responses in figures 3.9 and 3.10
have embedded the flat surface corresponding to the baseline DC result of 58% ac-
curacy. Therefore the observed peaks correspond to parameter combinations where
the combination of systems improves the baseline DC.

Figure 3.11 presents a summary plot of the results of all the approaches tested
against the value of their respective parameters. The plot shows that some of the
approaches do not improve in any case the baseline Dendritic Computing result.



3.3. HYBRID DENDRITIC COMPUTING WITH KERNEL-LICA 39

Figure 3.6: PCA-DC results as a function of the number of eigenvectors.

Figure 3.7: LICA-DC results as a function of the noise filter parameter α .

Figure 3.8: DC applied to Gaussian Kernel transformation of the data.
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Figure 3.9: Kernel-PCA-DC results varying σ and the number of eigenvectors.

Figure 3.10: Kernel-LICA-DC results varying σ and α .



3.3. HYBRID DENDRITIC COMPUTING WITH KERNEL-LICA 41

Figure 3.11: Comparative plot of the accuracy of all the approaches tested, the
meaning of the parameter axis depends on the approach as illustrated in figures
3.6, 3.7, 3.8, 3.9, and 3.10.

Method NE α σ Accuracy Sensitivity Specificity
DC - - - 58 94 23

PCA - DC 1 - - 68.25 85.5 51
LICA - DC 1 7 - 72 88 56
Kernel - DC - - 0.2512 55 98 12

Kernel - PCA - DC 8 - 0.0794 66.5 96 37
Kernel - LICA - DC 3 2 0.5012 74.25 96 52.5

Table 3.2: Summary of best results of validation experiments over AD feature
database.

The best result is obtained when we apply LICA to a Gaussian kernel transforma-
tion of the data. Also we found that the bare application of LICA to the data gives
better results than PCA, which only improves DC when reducing the data to one
coefficient. The summary of the best results is presented in Table 3.2 where it can
be appreciated that the baseline DC has a poor specificity and a high sensitivity. DC
systematically produces low ratios of false negatives, however it produces a large
ratio of false positives. Per construction, it is biased towards the positive class C1.
In fact, the main improvement introduced by the tested approaches is an increase
in sensitivity. Comparing with previous results on this same database [37, 101],
we find that the Support Vector Machine (SVM) approach obtains comparable val-
ues of sensitivity and specificity. The DC based approaches have a much higher
sensitivity, but their worse specificity degrades their accuracy performance.
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3.4 Bootstrapped Dendritic Classifiers

The pioneering ensemble classifier was the Random Forest (RF) algorithm pro-
posed in [15] that encompasses bagging [14] and random decision forests [4]. RF
became popular due to its simplicity of training and tuning while offering a similar
performance to boosting. Bootstrapped Dendritic Classifiers (BDC) is an ensemble
of weak Dendritic Classifiers [10, 99, 98], introduced in Chapter 2, trained combin-
ing their output by majority voting to obtain improved classification generalization
performance. Weak Dendritic Classifiers are trained on bootstrapped samples of
the train data setting a limit on the number of dendrites. There is no additional data
preprocessing. This section explores classification performance and the sensitiv-
ity to the number of classifiers and the number of dendrites on the classification
of Alzheimer’s Disease (AD) patients, comparing with previous results obtained
on the same feature database obtained from the OASIS database, described in Ap-
pendix A.

3.4.1 BDC definition

The Bootstrapped Dendritic Classifiers (BDC) is a collection of DCs,

C(x;ψ j), j = 1, ...,N,

where ψ j are independent identically distributed random vectors whose nature de-
pends on their use in the classifier construction. Each DC classifier casts a unit
vote for the most popular class of input x. Given a dataset of n samples, a boot-
strapped training dataset is used to train DC C(x;ψ j). The independent identically
distributed random vectors ψ j determine the result of bootstrapping. In conven-
tional RF they also determine the subset of data dimensions d̂ such that d̂� d on
which each tree is grown, here we are not dealing with this kind of DC randomiza-
tion, which will be studied elsewhere. The main parameters for the experimental
evaluation of the BDC are the number of trees and the maximum depth of each den-
dritic lassifier given by the maximum number of dendrites allowed. Limiting the
number of dendrites is a kind of regularizaiton that weakens the classifier. Finally,
Algorithm 3.2 specifies the crossvalidation scheme applied in the experiments.
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Algorithm 3.2 Crossvalidation scheme for the training of the BDC
Let be X = {x1, . . . ,xn} input data xi ∈Rd , and Y = {y1, . . . ,yn} the input data class
lables yi ∈ {0,1}.
N is the number of DC classifiers

1. for i=1:10 (crossvalidation folds)

(a) select disjoint train Xe =
�

xe
i1 , . . . ,x

e
in−n/10

�
⊂ X , Y e =

�
ye

i1 , . . . ,y
e
in−n/10

�
⊂ Y and test Xt =

�
xt

i1 , . . . ,x
t
in/10

�
⊂ X ,

Y t =
�

yt
i1 , . . . ,y

t
in/10

�
⊂ Y datasets .

(b) For j = 1 : N (construct of classifiers)

i. Bootstrap a train dataset Xeb =
�

xeb
i1 , . . . ,x

eb
in−2n/10

�
⊂ Xe, Y eb =

�
yeb

i1 , . . . ,y
eb
in−2n/10

�
⊂ Y e. Out-of-bag error may be computed on

the remaining training data and test Xe −Xeb, Y e −Y eb, disjunc-
tions.

ii. Apply DC to train classifier Cj : Rd → {0,1} on
�
Xeb,Y eb�.

(c) end for. Optionally compute out of bag error

(d) Crossvalidation test, For each x ∈ Xt

i. compute C1 (x) , . . . ,CN (x)
ii. Majority voting, class y = 0 if

��� j
��Cj (x) = 0

��� >��� j
��Cj (x) = 1

���

(e) compute accuracy, sensitivity and specificity statistics

2. end fold i
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3.4.2 Experimental results

We report the average accuracy, sensitivity and specificity of ten repetitions of 10-
fold cross-validation of the BDC developed for AD detection computed over the
OASIS dataset explained in Appendix A. The best results found in this compu-
tational experiment reported in previous publications for the same MSD features
(24 values from each subject MRI volume) are presented in table 3.31. The last
rows corresponds to the best results obtained with DC classifiers, while the others
correspond to results with other classification algorithms. Specifically, LICA-DC
and Kernel-LICA-DC refer to the application of DC after the application of some
data preprocessing. In general, DC classifiers have a very low specificity because
they target the modeling of the positive class of AD patients. The last row contains
the best result found with the proposed BDC which are competitive with the best
results found so far. These results have been found in an exhaustive exploration
of the effect of the two main parameters, the number of classifiers in the ensemble
and the maximum allowed number of dendrites. Figure 3.12 shows the response
surface of the Accuracy. It seems that the number of DC classifiers in the ensemble
has little effect, though the best average crossvalidation accuracy (89%) was found
with large number of classifiers (64). The maximum number of classifiers appears
to have some effect: when classifier’s number is small - accuracy is still small. Al-
lowing more than five dendrites results in average crossvalidation accuracies above
or near 80%. Figure 3.13 shows the response surface of the ensemble sensitiv-
ity. The effect of the maximum number of dendrites is very strong, small number
of dendrites prevents the overfitting of the classifiers, resulting in low sensitivity
because DC tries to model the positive class. As the number of dendrites grows,
the BDC ensemble easily reaches very high (close to 100%) sensitivities. Finally,
figure 3.14 shows the specificity response surface of the BDC. Specificity remains
very low for almost all combinations of number of classifiers and dendrites, and it
is the main cause of low classifier performance.

3.5 Active Learning with BDC for image segmentation

We perform the segmentation of medical images following an Active Learning
approach that allows quick interactive segmentation minimizing the requirements

1Notice that we are labeling as class 0 the AD patients, while in the referred papers [103, 114]
they were labeled as class 1.
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Classifiers Accuracy Sensitivity Specificity
rbf SVM [103] 81 89 75

LVQ1 [103] 81 90 72
LVQ2 [103] 83 92 74

rbf-DAB-SVM [103] 85 92 78
rbfRVM-LVQ1[114] 87 92 73

LICA - DC [24] 72 88 56
Kernel - LICA - DC [24] 74 96 52.5

Bootstrapped DC 89 100 80

Table 3.3: Results over the MSD features computed from the OASIS data for AD
detection

Figure 3.12: Average accuracy for varying number of DC classifiers and maximum
number of dendritic synapses
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Figure 3.13: Average sensitivity for varying number of DC classifiers and maxi-
mum number of dendritic synapses

Figure 3.14: Average specificity for varying number of DC classifiers and maxi-
mum number of dendritic synapses
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for intervention of the human operator. The basic classifier is the Bootstrapped
Dendritic Classifier (BDC). We validate the approach on the segmentation of the
thrombus in 3D Computed Tomography Angiography (CTA) data of Abdominal
Aortic Aneurysm (AAA) patients. The provided ground truth simulates the human
oracle. The database is described in Appendix A. The generalization results are
given in terms of accuracy and true positive ratio of the classification of the entire
volume by the classifier trained on one slice confirm that the approach is worth its
consideration for clinical practice.

The approach followed in this paper for AAA thrombus segmentation is to
build a voxel classifier into two classes: AAA thrombus or background [33, 80,
127, 71]. The data labeling process building the ground truth for the training and
validation of the supervised classifiers can be costly and error prone, due to fatigue
or operator biases. Active Learning [26, 116] tries to achieve the greatest classi-
fier generalization using the smallest possible training set, minimizing the operator
interaction needed to label the training samples. Active Learning starts with a
minimal training sample, adding new labeled samples in an iterative process. To
obtain the greatest increase in classifier performance, the additional samples are
selected according to a classification uncertainty measure2. Therefore, the oper-
ator is asked to provide the label for the data samples with greatest uncertainty,
providing maximum discrimination gain. When there is a great variability in the
data, such as in the AAA CTA data, the Active Learning provides a powerful tool
to build classifiers from scratch or to perform the adaptation of the previously de-
veloped data to new data with different statistical properties. Active Learning has
been successfully applied to classification of remote sensing images [76, 116, 115],
image retrieval based on semi-supervised Support Vector Machines [51], and the
selection of a minimal collection of training images [57] for the development of
combined generative and discriminative models in the segmentation of CT scans
[57].

In some aspects, this section is a continuation of the work reported in [71]. The
classification uncertainty measure is the variance of the class predictions by the
individual classifiers in the BDC ensemble. We use almost the same set of features
for each voxel, consisting in a collection of the maximum, minimum, median and
Gaussian weighted average of the 2D neighborhoods of the voxel of increasing ra-
dius. The main contribution in this letter relative to [71] is the application of BDC,

2The classification uncertainty measure does not require actual knowledge of the data sample
label, thus no double-dipping is incurred.
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achieving better results. The experimental setup for validation is as follows: We
apply one BDC classifier trained by Active Learning on the volume’s central axial
slice to the remaining axial slices of the volume, in order to test the generalization
power of the approach. The Active Learning oracle providing the sample labels in
the reported experiments is the ground truth given by a manual segmentation.

3.5.1 Learning and feature selection

3.5.1.1 Active Learning fundamentals

The performance of supervised classifiers strongly depend on the information pro-
vided by the data used to train the classifier, so that the appropriate selection and
labeling of the training set may be a cumbersome task requiring extensive man-
ual inspection and analysis of the data, typically requiring some visualization tool
and labeling of each data sample. Besides, noisy samples may interfere the class
statistics, which may lead to poor classification performances and/or over-fitting.
For these reasons, a training set must be constructed in a smart way, meaning that
it must consists of the minimal set of samples allowing to compute correctly the
class boundaries, therefore it must contain the most informative data samples. In
the machine learning literature this approach is known as Active Learning.

Active Learning [26, 115] focuses on the interaction between the user and the
classifier. Let X = {xi,yi}l

i=1 be a training set consisting of labeled samples, with
xi ∈ Rd and yi ∈ {1, . . . ,N}. Let be U = {xi}l+u

i=l+1 ∈ Rd the pool of candidates,
with u � l, corresponding to the set of unlabeled voxels to be classified. In a given
iteration t, the Active Learning algorithm selects from the pool Ut the q candidates
that will, at the same time, maximize the gain in performance and reduce the un-
certainty of the classification model when added to the current training set Xt . The
selected samples St = {xm}q

m=1 ⊂U are labeled with labels {ym}q
m=1 by an oracle,

which can be a human operator in interactive segmentation, or the available ground
truth when performing cross-validation experiments. Finally, the set St is added to
the current training set (Xt+1 = Xt ∪St) and removed from the pool of candidates
(Ut+1 =Ut\St). The process is iterated until a stopping criterion is met, such as the
achieved accuracy reaching a preset threshold θmax. Accuracy is computed on the
test set, which in our application corresponds to the remaining pixels in the slide.
Algorithm 3.3 summarizes the Active Learning process. A critical component of
the Active Learning method is the definition of the uncertainty measure associate
with each sample, that drives the selection of the samples to be labeled and added to
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training data. For single classifiers sometimes a histogram of the classifier output
is processed to select the range of values corresponding to uncertain classification
[81]. For ensemble classifiers, measures on the distribution of the output of the
individual classifiers can be used as the direct uncertainty measure [116] following
a committee approach.

3.5.1.2 Classification uncertainty

The BDC classifiers allow to formulate a committee approach for the estimation
of unlabeled sample uncertainty [115]: assume that we have built a committee of
k base classifiers, i.e. a BDC with k DC classifiers. The output of the committee
members provide k labels for each candidate sample xi ∈ U . The data sample
class label is provided by the majority voting. Our heuristic is that the standard
deviation σ (xi) of the class labels is the measure of the classification uncertainty
of xi. Let us consider an ordering of the pool of candidates U∗ =

�
x ji

�l+u
i=l+1, where

σ (x ji) > σ
�
x ji+1

�
. The standard deviation query-by-bagging heuristic selection

of samples to be added to the train set is stated as the following selection:

St=
�

x jm
�q

m=1 (3.4)

Standard deviation of predicted class labels is a natural multi-class heuristic mea-
sure of classification uncertainty. A candidate sample for which all the classifiers in
the committee agree has a zero prediction standard deviation, thus its inclusion in
the training set does not bring additional information. On the contrary, a candidate
with maximum disagreement between the classifiers results in maximum standard
deviation, and its inclusion will be highly beneficial.

3.5.1.3 Active Learning and feature selection for Image Segmentation

The goal is to classify image voxels into two classes, the target region and the
background [124]. The Active Learning system returns to the user the unlabeled
voxels whose classification outcome is most uncertain with the current classifier.
After manual labeling by the user, voxels are included into the training set and
the classifier is trained again [38]. The feature vector associated with each pixel
for its classification is computed using information from its neighboring voxels,
applying linear and/or non-linear filtering. In this paper the features initially asso-
ciated with CTA voxels are: the Euclidean distance of its coordinates to the center
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Algorithm 3.3 Active learning general algorithm
Inputs

• Initial training set Xt = {xi,yi}l
i=1.

• Pool of candidates Ut = {xi}l+u
i=l+1.

• Number of voxels q to add at each iteration (defining the batch of selected
voxels S).

repeat

• Train a classifier with current training set Xt

• for each candidate in Ut do

– Evaluate classification uncertainty

• end for

• Rank the candidates in Ut according to the score classification uncertainty

• Select the q most interesting voxels St = {xk}q
k=1

• The system assigns a label to the selected voxels St = {xk,yk}k=1

• Add the batch to the training set Xt+1 = Xt ∪St

• Remove the batch from the pool of candidates Ut+1 =Ut \St

• Compute accuracy over all test data

• t = t +1

until accuracy > θmax
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Table 3.4: Feature importance ranking for the first 10 features selected, specifying
the operator used (O), neighborhood radius (R) and the variable importance (VI).
Max, Med, GA correspond to Maximum, Median and Gaussian weighted average,
respectively

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
O Max Max Max Med Max Max Med Med Med GA
R 16 4 8 8 2 1 1 4 16 4
VI 1.277 0.953 0.9531 0.803 0.762 0.759 0.741 0.740 0.732 0.725

of the ground truth in the data domain grid, the voxel intensity, the mean, vari-
ance, maximum and minimum of the voxel neighborhood, for different values of
the neighborhood radius (1,2,4...2n). The definition of these features increases the
data dimensionality and the complexity of the classifiers built on them. A first step
towards the practical feasibility of the approach (meaning affordable computation
times) is the selection of the most informative features, reducing data dimension-
ality. We follow the results of the feature selection reported in [71] on the basis of
the variable importance which is defined on the basis of the sensitivity of the pre-
dictive generalization on the out-of-box dataset to the perturbations on the value
of the feature. To compute the variable importance, the values of the feature in
the out-of-box dataset are subjected to randomization, computing the classification
error for each permutation of the values of the feature. The average difference of
the classification error in the out-of-box dataset with and without randomization is
a measure of the sensitivity of the classifier to this feature. For selection, features
are ordered by this measure, and a number of them are selected to cover a given
percentile of its distribution, namely 95%. The process reported in [71] results in
the selection reproduced in Table 3.4.

3.5.2 Experiments

3.5.2.1 Experimental setup

Datasets. We have performed computational experiments on 6 CTA datasets to test
the proposed Active Learning based image classification approach. Each dataset
consists of real human contrast-enhanced datasets of the abdominal area with 512x512
voxel resolution on each slice. Each dataset consists of 216 to 560 slices and
0.887x0.887x1 mm spatial resolution corresponding to patients with Abdominal
Aortic Aneurysm. The dataset collection shows a wide diversity of sizes and loca-
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tions of the thrombus. Some of them have metal streaking artifacts due to the stent
graft placement. Ground truth segmentations of the thrombus for each dataset, that
simulate a human oracle providing the labels for the voxels, were obtained manu-
ally by a clinical radiologist.

Parameter tuning. The BDC classifier has two sensitive parameters: the num-
ber of the classifiers T and their depth given by the number of dendrites D. We set
T to 100 and D to 32, from previous empirical results [22]. The stopping threshold
for the Active Learning has been set to θmax = 0.99. In our experiments we always
reach this degree of accuracy on the training set.

Once we get the optimal parameters and feature set, we have designed the
following experiment to test our method in the patient CTA volumes, testing the
generalization of a single slice classifier: we build just one RF classifier from the
data of the central slice of the aneurysm, and we test its generalization with the
remaining slices of the CT volume.

Validation. The performance measure of the experiments are the classification
accuracy and the ratio of true positives. The accuracy is ratio of correctly classified
voxels, that may be misleading when classes are not balanced, as in our application
where the background voxels are much more abundant than the thrombus voxels.
The second measure is equivalent to the classifier’s sensitivity, giving information
on how well the target structure, the AAA thrombus, is identified.

3.5.2.2 Experimental Results

Figure 3.15 shows snapshots of the evolution of the Active Learning on one of
the volumes. The interval between each snapshot is five iterations. We show the
classification uncertainty of each voxel in the images of the left column, white
corresponding to the maximum value. The right column shows the actual segmen-
tation obtained by the classifier trained at the corresponding iteration. It can be
appreciated that the uncertainty map evolves towards the boundaries of the throm-
bus, which are the natural places of maximal uncertainty. The segmentation has
some alterations until reaching the final result. The classifier learns, forgets and
relearns the target class along the learning and sample generation process.

Figure 3.16 shows the segmentation results in the central axial slice of each
of the volumes considered. The left column shows the original CTA slice. This
visualization helps to highlight the difficulties of the segmentation process: AAAs
are of different sizes, with different placements and surrounded by different spatial
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Figure 3.15: Evolution of the active learning process in the central slice of one of
the experimental volumes under study, shown at learning iterations 1, 5, 10, 15,
and 20. Left column corresponds to the uncertainty value of each voxel. Right
column shows the actual thrombus segmentation obtained with the classifier built
at this iteration.
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Figure 3.16: Segmentation results in the central slice of the CTA volumes under
study after active learning construction of the classifiers. Left column original
slice, middle column provided ground truth, right column segmentation achieved
by the classifier.
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Figure 3.17: Accuracies obtained on the remaining axial slices by the BDC classi-
fier trained on the central axial slice of each of the CTA volumes. Slice numbers
are the actual numbers in the volume. The red asterisk identifies the central slice
result.
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Figure 3.18: True positive rate of the thrombus detection on the 6 CTA volumes
when applying the BDC learnt on the central axial slice to the remaining axial
slices. Slices are numbered relative to the central slice, positive below it, negative
above it.



3.5. ACTIVE LEARNING WITH BDC FOR IMAGE SEGMENTATION 57

layouts of structures due to anatomical differences between subjects. Moreover, in
some cases the actual lumen situated in the middle of the thrombus is hiperintense,
but not always. The middle column shows the ground truth segmentation provide
by the expert human delineation. The right column shows the segmentation ob-
tained after the Active Learning process in this slice.

Notice that if the BDC classifier obtained on one slice can be applied to the
remaining slices without loss of accuracy, the human operator would only need to
perform once the Active Learning process to obtain the whole volume segmenta-
tion. Fig. 3.17 shows the plots of the accuracy obtained at each CTA volume slice
applying the BDC classifier trained on the thrombus central slice for each of the
6 CTA volumes treated in the experiment. The abscissa values correspond to the
actual slice numbers in the volume. Obviously, slices where there is no thrombus
detected by the ground truth are not included. There is some variability of the plots’
span, due to the different sizes of the thrombus in each patient. As can be expected,
the drop in classification accuracy is mostly symmetric, but not completely so. The
generalization results are very good: the worst accuracy is above 0.98 in almost all
cases.

Figure 3.18 plots the true positive ratios obtained at each CTA volume slice
applying the BDC classifier trained on the thrombus central slice for each of the 6
CTA volumes treated in the experiment. In those plots, the abscissa’s zero value
corresponds to the central axial slice, the negative abscissa values correspond to
slices above the central slice, the positive values correspond to slices below the
central slice. The decrease of the values of true positive ratios are symmetric and
show that the system is able to maintain a high sensitivity near the train slice, but
that this sensitivity decreases greatly at the extremes of the thrombus. It is feasible
to propose additional Active Learning processes in slices where the sensitivity has
decreased too much. Detection of such slices can be done based on the growing ac-
cumulated uncertainty that can be computed along the classification/segmentation
of the slices. Finally, we provide the comparison of average accuracy results pub-
lished in the literature over the same datasets applying the same training and testing
methodology in Table 3.5: training is performed on the central slice of the throm-
bus, test on the remaining slices, and the accuracy reported is the average over all
test slices in the volume. It can be appreciated that BDC provides the best global
result in most volumes.
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Table 3.5: Comparative average accuracy results published in the literature. Clas-
sifiers trained with Active Leraning over one central slice and tested over the re-
maining data. Classifiers tested are: Random Forest (RF) [71] and Hybrid ELM
Rotation Forest (HERF) [9]. Bold values are the maximum for the corresponding
dataset.

RF HERF BDC
Vol. 1 0.993 0.992 0.994
Vol. 2 0.980 0.981 0.985
Vol. 3 0.992 0.993 0.995
Vol. 4 0.995 0.996 0.996
Vol. 5 0.991 0.995 0.995
Vol. 6 0.996 0.993 0.994
Vol. 7 0.994 0.993 0.979
Vol. 8 0.990 0.898 0.994

3.6 A Novel Lattice Associative Memory Based on Den-
dritic Computing

We present a novel hetero-associative memory based on dendritic neural computa-
tion. The computations in this model are based on lattice group operations. The
proposed model does not suffer from the usual storage capacity problem and is
extremely robust in the presence of various types of noise and data corruption.

The matrix correlation memories resulting from the work of Steinbuch, Ko-
honen, Anderson, and Hopfield were the earliest artificial neural network (ANN)
examples of associative memories [110, 112, 111? , 62, 5, 63, 53, 54, 55]. Matrix
correlation memories based on lattice computations were first introduced in the late
1990s [88, 89, 86]. These memories had the advantage of unlimited storage capac-
ity and one step convergence. However, they were susceptible to certain types of
random noise. The concept of dendritic computing was partially due to trying to
eliminate the noise problem encountered in the construction of artificial memories.
The other reason was to provide an artificial neural paradigm that is closer related
to actual biological neural computation [99].

We the focus is on a novel Dendritic Lattice based (hetero) Associative Mem-
ory or, simply, DLAM. Recently two new DLAMs have appeared in the literature
[100] and [117]. The former being a generalization of the DLAMs given in [94],
while the latter had no predecessor within lattice theory. However, the latter model
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was presented as an auto-associative memory. Here we show that the model easily
generalizes to a hetero-associative memory. Similar to earlier lattice based asso-
ciative memories, this new DLAM has unlimited storage capacity in that it can
memorize any finite number of association and provides perfect recall for non-
noisy input. However, as we shall demonstrate, its greatest advantage over prior
associative memories is that it can recall association even when the input is an
exemplar pattern that has been corrupted by more than 90% of random noise.

3.6.1 Dendritic Lattice Associative Memories

The Dendritic Lattice based Associative Memory or DLAM described in this sec-
tion can store any desirable number of pattern associations and has perfect recall
when presented with an exemplary pattern. Furthermore, it is extremely robust in
the presence of noise and can be applied to both Boolean and real number value
patterns.

The proposed DLAM consists of four layers of neurons: an input layer, two
hidden layers, and an output layer. The number of neurons in each layer is pre-
determined by the dimensionality of the pattern domains. Explicitely, if X =

{x1, . . . , xK}⊂Rn and Y = {y1, . . . , yK}⊂Rm, then the number of neurons in the
input layer is n, in the two hidden layers it is K, and the number in the output layer is
m. We denote the neurons in the input layer by N1, . . . , Nn, in the first hidden layer
by A1, . . . , AK , in the second hidden layer by B1, . . . , BK and in the output layer
by M1, . . . , Mm. We refer to the first and second hidden layer as the A-layer and
the B-layer, respectively. For a given input pattern x = (x1, . . . , xn) ∈ Rn, the ith
neuron Ni will assume as its value the ith coordinate xi of x and will propagate this
value through its axonal arborization to the dentrites of the hidden layer neurons.
The dendritic tree of each hidden neuron A j has n single branches d j1, . . . , d jn, and
each neuron Ni has two axonal fibers terminating on the synaptic sites located on
the corresponding branch d ji of the hidden layer neuron A j as depicted in Figure
2.3.1. Observe that in this formulation the dendritic branch counter k = i, making
the extra counter k unecessary. The two synaptic weights associated with the two
synaptic sites of d ji will be denoted by a�i j and defined by a�i j = −x j

i for � = 0, 1.
The output of each dendritic branch is denoted by τ j

i (x). Here we use the formula
given by eqn. 2.7 in order to compute this value. Setting p jk = −1 and using the
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fact that I(k) = I(i) = {i}, eqn. 2.7 reduces to

τ j
i (x) = −

1�

�=0
(−1)1−�

�
xi +a�i j

�
=−[−(xi − x j

i )∧ (xi − x j
i )]

= −[−(xi − x j
i )∧−(x j

i − xi)] = (xi − x j
i )∨ (x j

i − xi). (3.5)

It follows from eqn. ?? that τ j
i (x) = 0⇔ xi = x j

i and τ j
i (x)> 0⇔ xi �= x j

i . The value
τ j

i (x) is passed to the cell body of A j and its state is a function of the combined
values received from its dendritic structure. This state is computed using eqn. 2.7
with p j = 1. Specifically, we have

τ j
A(x) =

n

∑
i=1

τ j
i (x) =

n

∑
i=1

(xi − x j
i )∨ (x j

i − xi) =
n

∑
i=1

|xi − x j
i |. (3.6)

It follows that each neuron A j in the A-layer computes the L1-distance between the
input pattern x and the jth exemplar pattern x j. That is, τ j

A(x) = d1(x,x j). The
activation function for the A-layer neurons is derived from the identity function,
namely

fA(z) =

�
z if z ≤ T
∞ if z > T

, (3.7)

where T is a user defined threshold. We denote the output of A j by s j
A = fA(τ j

A(x))
and the collective output of the A-level neurons by sA.

The output sA of the A-layer serves as input to the neurons in the B-layer. Here
each neuron B j has two dendrites d j1 and d j2. The dendrite d j1 has only one synap-
tic site on which only an axonal fiber of A j terminates. The synaptic weight of this
synapse is given by b�j j = 0, with � = 0. The second branch, d j2, receives input
from all the remaining neurons of the A-layer; i.e., from {A1, . . . , AK}\{A j}. The
synaptic weight of the synaptic site on d j2 for the terminal axonal fiber of neuron
Ar, with r �= j, is given by b�r j = 0, where � = 1. To compute the values τ j

k (x) for
the two dendrites of B j, we use the general formula

τ j
k (x) = p jk

�

i∈I(k)

�

�∈L (i)

(−1)1−�
�

xi +w�
i jk

�
(3.8)

which is similar to eqn. 2.7. For k = 1 and i = j we have I(1) = {1} and L ( j) =
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{0}. Setting p j1 = 1 and employing eqn. 3.8 one obtains

τ j
1(sA) =

�

i∈I(1)

�

�∈L ( j)

(−1)1−�
�

s j
A +b�j j

�
=−s j

A. (3.9)

Similarly, for d j2 we have k = 2, i = r, I(2) = {1, . . . , k}\{ j}, and L (r) = {1}.
Again setting p j2 = 1, one obtains

τ j
2(sA) =

�

r∈I(2)

�

�∈L (r)

(−1)1−�
�

sr
A +b�jr

�
=

�

r �= j
sr

A. (3.10)

The values τ j
1(s

j
A) and τ j

2(sA) flow into the cell body of B j and its state is a
function of the combined values received from its dendrites:

τ j
B(sA) =

2

∑
k=1

τ j
k (sA) = τ j

1(sA)+ τ j
2(sA) =

�

r �= j
sr

A − s j
A. (3.11)

We consider the two possibilities of
�

r �= j sr
A > s j

A and
�

r �= j sr
A ≤ s j

A. The first possi-
ble case implies that s j

A �= ∞ and, hence, s j
A = d1(x,x j). That is, the pattern vector

x is closer to the exemplar pattern x j than any of the other exemplar pattern and
within the allowable threshold T . The second possibility implies that either there is
another exemplar xr which is closer (or just as close) to x as x j, or that x j surpassed
the threshold T . In the first case we want the neuron B j to send that information to
the output neurons while in the second case we do not want B j to fire. In order to
achieve this we define the activation function to be the lattice-based hardlimiter

fB(z) =

�
0 if z > 0
−∞ if z ≤ 0

. (3.12)

Thus, the output of B j is given by s j
B = fB[τ j

B(sA)] and serves as the input to the
output layer M. Each output neuron Mi, i = 1, . . . , m, has only a single dendrite di1

receiving excitatory input from all K neurons of the B-layer. The weight associated
with the synaptic site on di1 of the terminal axonal fiber of B j is defined as w1

ji = y j
i .

Here j = 1, . . . , K and i = 1, . . . , m. Using eqn. 2.7 to compute the output pattern,
we note that since each Mi has only one dendrite di1 we have k = 1 (for each i) and
I(1) = {1, . . . , ,K}. Also, since we are dealing with excitatory synaptic responses
only, we have that for each j ∈ I(1), L( j) = {1}. By setting pi1 = 1, eqn. 2.7 now
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Figure 3.19: Set of Boolean images of six predators in the first row and correspond-
ing six preys in the second row.

reduces to

τ i
1(sB) =

K�

j=1
(s j

B +w1
ji) =

K�

j=1
(s j

B + y j
i ). (3.13)

Observe that τ i(sB) = τ i
1(sB) The activation function for each neuron Mi is simply

the identity function so that the output yi of Mi is given by yi = τ i(sB). The total
output of the the set M1, . . . , Mm is the vector y = (y1, . . . , ym). It remains an easy
excercise to show that for an uncorrupted input x j the output at the M-level will be
y j.

3.6.2 Experiments with Noisy and Corrupted Inputs

In this section we present results of some computational experiments that demon-
strate the performance of the proposed DLAM in recalling stored associations
when presented with corrupted versions of exemplar patterns. We use images to
form pattern vectors only to provide a visual interpretation of the recall. In general.
Associative memories are used for pattern recall, not image recall. The transforma-
tion of images into vectors is accomplished via the usual column-scan method. We
created a database of image patterns from image obtained from various websites.

Experiment 1.

In this experiment, each of the sets X and Y consists of six Boolean exemplar
patterns. The set X is derived from the set of six 700×350 Boolean images shown
in the top row of Figure 3.19, while the set of associated output patterns is derived
from the six 380× 500 Boolean images shown in the botton row of Figure 3.19.
Thus, X = {x1, ..., x6} , with x j ∈ {0,1}245000, and Y = {y1, ..., y6} with y j ∈
{0,1}190000.

Every pattern image was corrupted adding “salt and pepper” noise. Each noisy
pixel of corrupted image is rounded to either 0 or 1 to preserve the Boolean char-
acter of the images.
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Figure 3.20: First row: Boolean exemplar images corrupted with increasing levels
of “salt and pepper” noise of 50%, 60%, 70%, 80%, 90%, and 94% (left to right).
Bottom row: Perfect recall associations derived from the noisy input patterns in the
top row.

The range of the noise levels varied from 1% to 99% and was tested on all
the images. Instances of corrupted input images are shown in Figure 3.20. The
corresponding output images recalled by the DLAM are shown in the bottom row.
The DLAM shows perfect recall robustness to salt and pepper noise.

Experiment 2

In this example we use a database of grayscale images in which the value of each
pixel has an integer intensity value in a range from 0 (black) to 255 (white). Similar
to Example 1, we use predator-prey association images as shown in Figure 3.21.
Both predator and prey images are of size 265×265. In mathematical terminology
we have X = {x1, ..., xK}⊂ R70225 and Y = {y1, ..., yK}⊂ R70225, K = 5. In this
experiment we use different types of pattern corruption and noise. Specifically,
we simulate noise pattern acquisition by increasing and decreasing image contrast,
approximating linear camera motion, applying circular averaging filter, employing
the morphological transforms of dilation and erosion with different structuring el-
ements, and by using Gaussian and uniform noise. Figure 3.22 shows some of the
tested image corruption changes. Different types of noise corruption have been
applied to different images. The first column represents a motion blur, the 2nd
Gaussian noise, the 3rd the application of a circular averaging filter, the 4th a mor-
phological erosion with a line as structuring elements and the 5th a morphological
dilation with elipsoid as structuring elements.

In the above two experiments, the threshold T for the activation function given
in eqn. 7 was set to T = ∞; i.e, fA was simply the identity function. With this
threshold, the DLAM performance is very impressive in that associations can be
recalled even at 99% random noise levels of the input data. However, images
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Figure 3.21: Set of grayscale images: 5 Predators in the first row and corresponding
5 Preys in the second row.

Figure 3.22: The exemplar input image patterns are shown in the 1st row. The
2nd through the 4th column below a given predator show the increase in the noise
level or image corruption of the predator as discussed in the text. The bottom row
illustrates the DLAM’s recall performance when presented with a noisy predator
image above the prey.
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with such high and even lower noise levels of corruption cannot be identified by
a human observer when not first shown the original pattern images. This poses
the problem of misidentifying intruders. For example, suppose we let x ∈ R70225

be obtained from a 265× 265 image of a horse and present the DLAM with x as
input. If T = ∞, then the DLAM will find the closest L1-distance to one of the
stored images and will associate the horse with one of the predators and correlate
it with the predator’s prey. To avoid intruders, a threshold T < ∞ can usually be
determined that avoids misclassification of intruders. In image data (such as shown
here) with random noise levels in excess of 60%, most images cannot be recognized
by a human observer – the best visual pattern recognizer – when not first shown the
corresponding non-noisy exemplar. Thus, if x̄ j represent exemplar x j corrupted by

about 60% of random noise, then setting Tj = d1
�
x j, x̄ j� and T = 1

k

k
∑
j=1

d1
�
x j, x̄ j�

will, generally, present intruders be recognized as a legitimate exemplars. The next
example supports this assumption.

Experiment 3

The dataset is the same as in Example 2. The recall of up to 99% of “salt and
pepper” noise is perfect just as in Example 1. We consider the response of the
DLAM to a new image pattern x which is not an element of X , namely the horse
image of size 265×265 pixels shown in the last column of Figure 3.23.

If we present the image pattern x with the predator image that is closest (in
the L1-distance) to the horse and will, therefore, recall the prey associated with
this predator. In this specific case the nearest predator is the leopard as can be
ascertained from Table 3.6. Thus, the deer will be associated with the horse when
the horse is used as input to the DLAM.

Note that a human observer will have extreme difficulty in identifying any of
the images shown in Figure 3.23 if not shown the true exemplars first. Recognition
at a noise level of 70% becomes pure guess work. Computing Tj = d1

�
x j, x̄ j� for

each j and each noise level as well as d1, we can see from Table 3.6 that d1, where

x1 = leopard and x = horse, and T = 1
5

5
∑
j=1

T j = 5637 when x̄ j represents as 63%

corruption of x j. Thus, T eliminates x as an intruder. Hence, using T = 5376 (x̄ j

representing 60% corruption of x j) would be an even better choice for preventing
other intruders.
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Noise 0% 50% 60% 63% 65% 70% 80% 90% 100% Horse
Leopard 0 4470 5374 5634 5813 6297 7158 8066 8932 5667

Eagle 0 4492 5348 5626 5844 6252 7154 8080 8947 6293
Wolf 0 4484 5396 5663 5832 6265 7177 8051 8965 6367

Dolphin 0 4452 5385 5640 5816 6281 7162 8059 8952 6713
Cobra 0 4487 5377 5621 5801 6292 7147 8052 8946 6189

Average 0 4477 5376 5637 5821 6277 7160 8062 8948 6246

Table 3.6: The distance (×103) between original predator image and the corrupted
image with 50%, 60%, 63%, 65%, 70%, 80%, 90% and 100% of “salt and pepper”
noise. The last column has the distance to the “horse” image shown in Figure 3.23.

Figure 3.23: Grayscale images from Experiment 3. The 1st, 2nd, and 3rd rows
presents the input predator images corrupted with 50%, 60%, 63% “salt and pep-
per” noise. The 4th row contains corrupted images with the noise parameter set
to 70%. These images are at the same distance from the original images as image
“horse” in the last column.
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3.7 Conclusions

This Chapter addresses several issues turning around the same axis: Dendritic
Computing. The general conclusion is that the approach deserves close attention
and provides promising results in some instances of the experiments. From the
point of view of trying to enhance the performance of the bare SNLDC in cross-
validation settings, we have obtained different results:

• The shrinking hyperbox approach provides some balance on the sensitivity
and specificifity of the classifiers, improving generalization accuracy. How-
ever, the setting of the shrinking parameter is not inmediate.

• The Lattice Independent Component Analysis on a kernel matrix generated
applying a Gaussian kernel as the appropriate feature extraction for the Den-
dritic Computing model. Our approach improves over the application of
PCA to the data and to the kernel matrix. Future work can be addressed to
develop the theory of the combination of the kernel method with the LICA
process.

• The ensemble of DC in a Bootstrapped Dendritic Classifiers (BDC). The
main parameters of BDC are the number of DC classifiers and the maximum
allowed number of dendrites. We have performed an extensive computa-
tional experimentation over a dataset of MRI features for AD patient versus
healthy control classification. We have found results which are competitive
or improve the best found in the literature for this database. The examination
of the response surface shows that the approach seems to be much more sen-
sitive to the number of dendrites than to the number of DC classifiers in the
ensemble. Further works will be addressed to more extensive experimenta-
tion with diverse conventional datasets.

Besides we have applied the BDC to identify the thrombus in CTA volumes of Ab-
dominal Aortic Aneurysm (AAA) patients. The general approach of Active Learn-
ing allows the quick interactive segmentation of the volumes by a human operator
performing the labeling of unlabeled voxels with most uncertain classification by
the current classifier. BDC allow the definition of a committee based classification
uncertainty measure. We present an experimental validation of the approach on
a collection of CTA volumes of AAA patients using the provided ground truth to
simulate the human oracle. The classifier trained on the axial slice located at the
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center of the thrombus is applied to the remaining slices to test the generalization
power of the approach. The results show high accuracy across all volume, and
very high true positive ratio at slices close to the central one, decreasing towards
the spatial limits of the thrombus in the axial direction. This two results imply
that there are few spurious detections so that no post-processing of the detected
thrombus. To increase the sensitivity of the approach, we propose to reactivate
the Active Learning process at slices where the accumulated uncertainty has a big
relative growth. This detection can be done in an unsupervised way, amenable for
clinical practice where the system will suggest the human operator where more
information is required. Further work may be addressed to test on new CTA data
provided by local clinicians. Developing an easy to use interface for the radiolo-
gist would allow to perform tests in the clinical practice environment introducing
minimal disturbances. The extension of this approach to work with 3D volumes
instead of 2D slices implies the need to provide appropriate 3D visualization tools
to guide the radiologist in 3D space to the selection of the most uncertain voxels.

The final part of the Chapter presents a new hetero-associative lattice memory
based on Dendritic Computing. We report experimental results showing that this
memory exhibits extreme robustness in the presence of various types of noise. It
is our opinion that this DLAM is superior to existing hetero-associative memories.
Further work will be addressed to perform exhaustive comparison tests with other
associative memory architectures in order to rigorously verify our opinions.



Chapter 4

LICA Applications

This Chapter gives applications of the Lattice Independent Component Analysis
(LICA) approach introduced in Chapter 2 to signal unmixing, such as functional
Magnetic Resonance Imaging (fMRI) data analysis, incluging task based and rest-
ing state data, and Voxel Based Morphometry (VBM) on anatomical MRI data.
Some initial works in this Chapter were shared with Maite Garcia Sebastian in her
PhD, specifically the analysis of synthetic datasets. Specifically, the contribution
of this Thesis to the development of LICA ideas is the realization of some compu-
tational experiments which reported in this Chapter.

The contents of the chapter are as follows: Section 4.1 provides an introduc-
tion to the LICA and competing methods. Section 4.3 gives results of LICA on
synthetic fMRI data. Section 4.4 provides some results on the application of LICA
to resting state fMRI for the detection of brain functional networks. Section 4.5
provides the conclusions of this Chapter.

4.1 Introduction

Linear models [65] underlie many current data analysis techniques applied to func-
tional Magnetic Resonance Imaging (fMRI) data. The most salient are the General
Linear Model (GLM) [36, 35] and the Independent Component Analysis (ICA)
[20, 19, 56]. The GLM is employed in the Statistical Parametric Map (SPM) soft-
ware package for the analysis of fMRI and other data modalities useful in neuro-
sciences research. In ICA, the data is explained as the linear mixture of statistically
independent sources, akin to the GLM regressors. Both the independent sources

69
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and the mixing coefficients are estimated from the data minimizing a suitably de-
fined energy function, which is different among ICA variants.

Lattice Independent Component Analysis (LICA), can be seen as a non-linear
relative of Independent Component Analysis (ICA), where ICA statistically inde-
pendent sources corresponding to LICA Lattice Independent Sources (LIS). LICA
uses endmember induction algorithms, such as the Incremental Lattice Source In-
duction Algorithm (ILSIA), to extract a set of Strong Lattice Independent (SLI)
vectors from the input dataset, which define the vertices of a convex polytope cov-
ering the input data. Therefore, data linear unmixing on the basis of a given set
of Lattice Independent Sources is achieved by least squares error estimation. The
linear coefficients correspond to convex coordinates relative to the convex polytope
vertices, giving the fractional abundance of the endmembers at each pixel. Hence,
LICA is a hybrid of a non-linear lattice based approach for source discovery and
a Linear Mixing Model (LMM) of the data. It is unsupervised because the linear
model design matrix is induced from the data. Moeover, it does not impose any
probabilistic model on the data sources.

Compared with GLM and SPM, ICA and LICA are unsupervised approaches
whose regressors are mined from the input dataset. Therefore, the findings of the
algorithms are not conditioned by the a priori knowledge or expectations. They
are less prone to the double dipping [64] phenomena arising when the same data is
used for selection and selective analysis. They can considered as exploratory data
analysis tools and as such they can help discover unsuspected brain connectivity in
fMRI data. However to build trust in them, specially in LICA, we need to show that
they are able to reproduce the standard results produced by SPM on well known
case studies. This is the motivation for the computational experiments reported
below.

The main contribution of LICA over the various versions of ICA proposed in
the literature is that it does not impose any probabilistic model on the data. Statisti-
cal independence is substituted by strong lattice independence which is a property
much more easy to find in the data. The computational process of finding the LIS
only applies lattice and additive operators, and does not involve the minimization
of non-linear energy functions, neither does it need complex data preprocessing,
such as whitening and/or dimension reduction. The only kind of normalization re-
quired in our works with fMRI data was the shift of the data vectors to the origin
subtracting their means.
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Applications In this chapter we report applications of LICA to a perform Voxel
Based Morphometry (VBM) study on Alzheimer’s disease (AD) patients extracted
from the OASIS public database (see Appendix). The approach is compared to
SPM and Independent Component Analysis results. We show on simulated fMRI
data that LICA can discover meaningful sources with efficiency comparable to that
of ICA. We explore the network detections obtained with LICA in resting state
fMRI data from healthy controls and schizophrenic patients. We compare with the
findings of a standard ICA algorithm. We do not find agreement between LICA
and ICA. When comparing findings on a control versus a schizophrenic patient,
the results from LICA show greater negative correlations than ICA, pointing to a
greater potential for discrimination and construction of specific classifiers.

4.2 LICA for VBM

In this section we report results on the realization of Voxel-based Morphometry
(VBM) over the OASIS anatomical MRI subset described in Appendix A. Also in
this Appendix the description of the conventional VBM process is given. The data
for VBM correspond to the patterns of intensities of a voxel across the population
of subjects. As implemented in SPM or FSL, the VBM involves the application
of GLM to compute the effect of differences between subjects. Here we provide
comparative results using ICA and LICA instead of conventional GLM. We have
used the FastICA algorithm implementation available at [2] . We have also used the
implementations of Maximum Likelihood ICA [50] (which is equivalent to Info-
max ICA), Mean Field ICA [52], Molgedey and Schouster ICA based on dynamic
decorrelation [77], which are available at [1].

Figure 4.1 shows the activation results from a FSL study on this data. We have
used the preprocessed volumes as inputs for the ICA and LICA algorithms. De-
tection of significative voxels in ICA and LICA approaches is given by setting the
threshold on the mixing/abundance coefficients to the 95% percentil of the empiri-
cal distribution (histogram) of this coefficients. We present in figure 4.2 the activa-
tion results corresponding to the 3d endmember detected by the LICA algorithm,
for comparison with the FSL results. It can be appreciated a great agreement. Be-
cause both ICA and LICA are unsupervised in the sense that the pattern searched
is not prescribed, they suffer from the identificability problem: we do not know
beforehand which of the discovered sources/endmembers correspond to the sought
significative pattern, while SPM and FSL approaches are supervised in the sense
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Figure 4.1: FSL significative voxel detection

that we provide the a priori identification of controls and patients, searching for
voxels that correlate well with this indicative variable.

In order to provide a quantitative assessment of the agreement between the dis-
coveries of the ICA and LICA and the statistical significances computed by SPM
and FSL we computed the correlations between the abundance/mixture matrices of
the ICA approach. Table 4.1 shows the correlation between the mixing coefficients
and the abundance coefficients of the corresponding ICA ML algorithm sources
(the one with best results) and the LICA endmembers, both before (left) and after
(right) the application of the 95% percentil threshold to determine the signficative
voxels. We decide that the best relation is between the third LICA endmember
and the second ICA source, because their correlation does not drop after threshold-
ing, contrary to LICA#4 with ICA#1 whose correlation drops dramatically after
thresholding for significance detection.

To give some measure of the meaningfulness of the unsupervised approaches,
we must find out if they are able to uncover something that has a good agree-
ment with the findings of either SPM or FSL approaches. Therefore we compute
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Figure 4.2: LICA activation results for the endmember #3

ICA ML
LICA #1 #2 #3 #4

#1 0.05 0.24 0.44 -0.01
#2 0.19 0.12 -0.28 -0.60
#3 0.38 0.67 0.30 0.24
#4 0.69 0.04 0.26 -0.18

ICA ML
LICA #1 #2 #3 #4

#1 0.003 0.09 0.34 0.03
#2 0.15 0.05 -0.02 -0.02
#3 0.01 0.66 0.007 0.08
#4 0.26 -0.01 0.13 -0.00

Table 4.1: Correlation among ICA and LICA mixing coefficients, before (left) and
after (right) thresholding for activation detection

the correlation between the mixing/abundance coefficients of ICA/LICA and the
statistics computed by SPM and FSL. Table 4.2 shows these correlations. Here the
agreement between the third endmember of LICA and the secod source of ICA ML
obtains a further support, because both are the ones that show maximal agreement
with SPM and FSL, and in both ICA and LICA the agreement with FSL is greater
than with SPM results.
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#1 #2 #3 #4
ICA vs SPM -0.11 0.32 -0.02 0.02

LICA vs SPM -0.03 -0.03 0.23 -0.06
ICA vs FSL 0.08 0.56 0.03 0.07

LICA vs FSL 0.07 0.02 0.58 0.20

Table 4.2: Agreement between SPM, FSL, ICA and LICA

4.3 LICA for synthetic fMRI data analysis

We have used the simulated fMRI data [21, 122] 1. In fMRI the spatial distribution
of data sources can be classified into locations of interest and artifacts. The loca-
tions of interest include task-related, transiently task-related, and function-related
locations. Their spatial distribution are typically super-gaussian in nature because
of the high localization of brain functionality. A task-related location and its cor-
responding source closely match the experimental paradigm. A transiently task-
related source, on the other hand, is similar to a task-related source but with an
activation that may be pronounced during the beginning of each task cycle and
may fade out or change as time progresses. Functional locations are those acti-
vated areas which are related to a particular functional area of the brain and the
corresponding source may not exhibit a particular pattern. The class of uninter-
esting sources or artifacts include motion related sources due to head movement,
respiration, and cardiac pulsation. Figure 4.3 shows the sources used to produce
the simulated fMRI data. Source #1 corresponds to the task related time course,
source #6 corresponds to a transient task-related time course. Figure 4.4 shows
the spatial distribution of the locations of the sources, corresponding to the mixing
matrices in the linear models of both ICA and LICA. Spatial locations #1 and #6
are the ones with most interest from the task point of view. To form the fMRI mix-
ture, first the image data is reshaped into vectors by concatenating columns of the
image matrix. The source matrix is multiplied by the time course matrix to obtain
a mixture that simulates 100 scans of a single slice of fMRI data.

We have applied the LICA and MS-ICA algorithms to this simulated data. We
obtain five LIS with the LICA approach using standard settings of the algorithm,
and we set the MS-ICA number of sources to that number. Figure 4.5 presents
the LIS found by ILSIA, with the best correlated simulated time course overlaid

1Simulated data can be generated with the tools provided in
http://mlsp.umbc.edu/simulated_fmri_data.html
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Figure 4.3: Simulated sources (time courses) in the experimental data.

Figure 4.4: Simulated spatial distribution of location of the sources
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in red. Figure 4.6 shows the sources found by the MS-ICA together with the best
correlated simulated time course. We observe that ILSIA finds both a task related
and a function-related source. We show in figure 4.7 the abundance images that
correspond to the spatial distributions of the LIS. Notice that the spatial location
of the task-related source is well detected in the second image, while the transient
task-related source location is also well detected despite that it does not appear as
one of the best correlated sources in figure ??. Because the LICA and ICA algo-
rithms are unsupervised, they can discover sources which indirectly help discover
the spatial locations of interest, although the sources themselves are not precise
matches of the underlying true sources. Figure 4.8 shows the spatial distribution of
the MS-ICA sources. The detection is noisier than that obtained by LICA, and the
task-related spatial locations are less clearly detected by MS-ICA. Table 4.3 con-
tains the quantitative measure of the goodness of spatial discovery, given by the
Mutual Information similarity measure between the simulated spatial distributions
of the simulated sources and the mixing coefficients of MS-ICA and abundances of
LICA that give the estimation of the spatial distribution of the discovered sources.
We have highlighted the maximum values per column, and we have highlighted the
closest one when it is near the maximum of the column. When two columns have
their maximum value (or one very close to it) in the same row, it means that the true
source is not univocally identified with one of the discovered sources. This is an
ambiguous situation that needs to be avoided in some applications. The MS-ICA
has more ambiguous columns than the LICA, which is in agreement with the visual
assessment of figures 4.7 and 4.8. Sources #4, #5 and #8 are not identified by any
of the algorithms. Source #7 is not identified by LICA. Overall the results of LICA
are comparable or better, depending on the value given to the discovered sources,
than those of MS-ICA.

4.4 LICA detections in resting state fMRI

In this section, we compare the results of networks detected on resting state fMRI
(res-fMRI) by ICA and LICA approaches. We have used the FastICA algorithm
implementation [2]. Because both ICA and LICA are unsupervised in the sense that
the pattern searched is not predefined, they suffer from the identifiability problem:
we do not know beforehand which of the discovered independent sources/endmembers
will correspond to a significant brain connection. Therefore, results need a careful
assessment by the medical expert. We will not give here any neurological conclu-
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Figure 4.5: Sources found by the ILSIA on the simulated data

Figure 4.6: Sources found by MS-ICA on the simulated data

Figure 4.7: Spatial distributions found by LICA on the simulated data.
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Figure 4.8: Spatial distribution of the sources given by the mixing matrices of MS-
ICA on the simulated data.

MS-ICA LICA

Source #1 #2 #3 #4 #5 #1 #2 #3 #4 #5
#1 -0,16 0,15 0,03 1,18 -0,36 -0,52 2,51 -0,37 -0,23 0,02
#2 -0,45 -0,78 -0,13 -0,38 -0,29 -0,48 -0,33 2,26 -0,13 -0,38
#3 1,29 1,09 2,32 0,79 1,18 0,31 1,66 0,25 2,42 2,24
#4 -0,28 0,68 -0,56 -0,63 -0,38 -0,57 -0,72 -0,53 -0,52 -0,50
#5 -1,42 -1,05 -0,80 -0,69 -0,70 -0,71 -0,76 -0,70 -0,57 -0,72
#6 1,33 -0,79 -0,30 -0,39 -0,60 2,26 -0,44 0,36 -0,50 -0,54
#7 0,62 1,51 0,17 -0,24 0,80 0,30 -0,20 -0,57 -0,01 0,55
#8 -0,92 -0,81 -0,72 -0,63 -0,62 -0,59 -0,71 -0,68 -0,47 -0,67

Table 4.3: Mutual Information similarity between the spatial locations discovered
by LICA and MA-ICA and the ground truth spatial locations.
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sion. The results shown in this section are explorations over resting state fMRI data
obtained from a healthy control subject and an schizophrenia patient with auditory
hallucinations selected from an on-going study in the McLean Hospital. Details
of image acquisition and demographic information are given in Appendix A. For
each subject we have 240 BOLD volumes and one T1-weighted anatomical image
and functional images.

The application of LICA with nominal parameters give 8 endmembers. Ac-
cordingly we have computed fastICA setting the number of independent sources to
8. We compute the LICA abundance distributions. For each endmember, we set the
95% percentile of its abundance distribution as the threshold for the detection of the
corresponding endmember in the abundance volume. We do the same with the ICA
mixture distributions. To explore the agreement between ICA and LICA detec-
tions, we have computed the Pearson’s correlation between the abundance/mixing
volumes of each source/endmember, shown in table 4.4 for the schizophrenia pa-
tient and in table 4.5 for the control subject. In both cases, agreement between
detections of LICA and ICA is low. The best correlation is ICA #8 versus LICA
#5 for the schizophrenia patient. For a visual assessment of the agreement between
both detection analysis, we show in figure 4.9 the detections obtained by both al-
gorithms applying the 95% percentile on their respective mixing and abundance
coefficients. In this figure, the detection found by LICA is highlighted in blue
and the detection found by ICA in red. Overlapping voxels appear in a shade of
magenta. It can be appreciated that the LICA detections appear as more compact
clusters. Some spurious detections are shown in the sorroundings of the brain due
to the diffusion produced by the smoothing filter. From these results is clear that
we can not use ICA to validate the findings of LICA.

For further comparison, we have computed the correlations intra-algorithm of
the patient versus the control data, meaning that we compute the correlations of
the abundance/mixing volumes obtained by the LICA/ICA on the patient and the
control data. The aim is to get an idea of the ability of each approach to produce
discriminant features. If we find negative correlations of high magnitude then we
can say that the corresponding approach has a great potential to generate features
that discriminate patients from controls. Table 4.6 shows the correlations between
the LICA abundances obtained from the patient and the control subject. Table 4.7
shows the same information for the mixing coefficients of ICA. In these tables we
are interested in finding the most negatively correlated detections, implying com-
plementary detections. We have highlighted in bold the negative correlations below
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ICA
LICA #1 #2 #3 #4 #5 #6 #7 #8

#1 0.02 0 -0.04 -0.02 0.02 0.03 0.01 0.01
#2 0.03 0.08 -0.1 -0.04 0 0.01 -0.33 0
#3 -0.01 0.36 0.01 -0.07 -0.01 -0.02 0.13 -0.01
#4 0.03 0 -0.03 -0.11 0 -0.01 0 -0.01
#5 -0.03 -0.02 0.16 -0.01 -0.01 -0.11 -0.02 0.46
#6 0.38 -0.03 0.01 -0.13 0.17 0 -0.01 0.01
#7 0 -0.02 0.06 -0.02 -0.01 -0.02 -0.02 -0.01
#8 0.25 0.01 -0.22 0.04 -0.52 0.05 0.02 -0.05

Table 4.4: Pearson’s Correlation coefficients between ICA and LICA
source/endmember detections for the schizophrenia patient.

ICA
LICA #1 #2 #3 #4 #5 #6 #7 #8

#1 0.04 -0.02 -0.04 0.05 -0.06 -0.07 0.03 0.01
#2 -0.02 0.02 0 -0.08 -0.03 -0.03 0.15 -0.01
#3 0.22 -0.05 0.13 0.06 0.01 0.08 -0.03 0.07
#4 0.05 -0.22 0.06 -0.09 0.06 0.08 0.08 -0.03
#5 0.03 0.07 -0.07 0.12 0.14 -0.13 0.04 -0.01
#6 0.04 0 0.05 -0.06 -0.1 0.02 -0.05 -0.03
#7 0.08 0.1 0 0.03 -0.03 -0.02 0.09 0.03
#8 -0.02 -0.04 0.02 0.04 -0.05 -0.07 0.07 0.03

Table 4.5: Pearson’s Correlation coefficients between ICA and LICA
source/endmember detections for the healthy control.

-0.15. We show in figure 4.10 the detections with greatest negative correlation be-
tween patient and control for both LICA and ICA. In this figure, red corresponds
to the patient volume detection, blue corresponds to the control volume detection.
Notice again that LICA detections produce more compact clusters. The greatest
discrimination is obtained by LICA

4.5 Conclusions

The LICA approach was introduced in Chapter 2. In this Chapter we have re-
ported results on several applications of LICA to brain medical image, specifically
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(a) (b)

Figure 4.9: Simultaneous visualization of the best correlated detection results from
LICA and ICA from tables 4.4 and 4.5 . Red corresponds to ICA detection, Blue
to LICA detection. (a) Patient, (b) Control.

patient
control #1 #2 #3 #4 #5 #6 #7 #8

#1 -0.17 -0.04 -0.03 0.24 0.08 0.08 0.09 0.01
#2 0.02 -0.21 0.04 0.1 0.15 0.09 0.02 -0.09
#3 -0.32 0.05 -0.05 0.14 0.24 0.13 0.13 0.15
#4 0.01 0.15 0.08 0.05 -0.03 0.02 0.05 0.17
#5 -0.14 -0.13 -0.18 0.13 0.14 0.11 0.12 -0.04
#6 0.01 -0.06 0.11 0.02 0.02 0.02 -0.02 -0.02
#7 0.06 -0.11 -0.05 -0.15 -0.05 -0.05 -0.12 0.03
#8 -0.32 -0.19 -0.02 0.23 0.22 0.2 0.05 0.02

Table 4.6: Correlation between patient and control detections obtained by LICA

patient
control #1 #2 #3 #4 #5 #6 #7 #8

#1 0.41 0.01 -0.15 0.01 -0.18 0.02 0.02 -0.04
#2 -0.12 0.02 0.06 -0.04 0.08 -0.01 0.01 0.05
#3 0.02 -0.02 -0.24 -0.02 0.01 0.01 0 0.03
#4 0.03 0 0 0 0.02 0.02 0.02 0
#5 0.04 -0.01 0.06 -0.03 -0.05 -0.01 0.01 0.36
#6 0.04 0.07 -0.05 0.01 0 0 -0.25 0
#7 0.03 0 -0.02 0 -0.01 0.06 0 -0.03
#8 0.02 0.03 -0.01 0 -0.02 0 0.01 0

Table 4.7: Correlation between patient and control detections obtained by ICA
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(a) (b)

Figure 4.10: Findings in the patient versus the control. Greatest negative correlated
detections (a) found by LICA, (b) found by ICA

anatomical MRI, synthetic fMRI, and real life rs-fMRI data. The LICA approach
is compared to several flavors of ICA. An important feature of LICA is that it is
an unsupervised algorithm, where we do not need to postulate a priori information
or models. This may allow its application as an exploratory data analysis proce-
dure. LICA does not impose a probabilistic model on the sources. The lattice
independence condition may be a more easily satisfiable restriction in order to find
meaningful sources in data instances where ICA approaches can fail due to their
statistical properties.

• In the application of LICA to the model-free (unsupervised) VBM analysis,
we find a strong agreement between LICA results and those of ICA, and we
can identify endmembers and sources that correspond closely to the signi-
ficative detection of results in agreement with SPM and FSL, providing a
validation of the approach. The problem with VBM and similar morpho-
metric approaches is that we need to be able to give some interpretation to
the findings of the ICA and LICA algorithms, that is, besides the obvious
identification of voxels that correlate well with the indicative variable, the
problem is to find additional regularities and give them some sense.

• The computational experiments performed on simulated fMRI data show
that LICA performance is comparable to or improves over the ICA approach
in the sense of discovering task-related sources and their spatial locations.
Computational experiments on a well-known case study, have found that
LICA gives results consistent with the gold standard provided by the SPM
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approach. Compared to ICA algorithms, LICA reproduces better the SPM
results.

• We compare LICA and ICA findings on rs-fMRI data in the form of detec-
tions based on the thresholding of the abundance images and mixing matri-
ces. Both LICA and ICA are unsupervised approaches, so they do not force
a priori assumptions on the localization of the findings, which must be in-
terpreted after the analysis, risking to obtain results not in agreement with
the expectations of the analysis. LICA detections are less sparse than those
of ICA, but the medical assessment of findings is being carried out actually.
The main quantitative conclusion of this study is that there is little agreement
between LICA and ICA on this data. Moreover, when we consider the cor-
relation of findings by LICA or ICA on the control versus the schizophrenic
patient, we find that the LICA results show greater negative correlation than
the results of ICA. We interpret this result as pointing to a greater capability
to produce features for discrimination between control and patients based on
resting state fMRI data. Anyway, we can not use ICA results as a valida-
tion reference, so validation of LICA results must rest on the medical expert
assessment of its findings.

Future work Besides some other open theoretical questions, we want to state
conveniently, and solve, the problem of finding the right number of LIS, and the
right LIS. Those are non trivial problems in many other context (i.e. clustering),
stated and solved as some kind of minimization problem. In our context, the prob-
lem is further complicated by the intrinsic non-linearity of endmember induction
algorithms and the interleaving of the linear and non-linear procedures in LICA. It
is not evident at this moment how to formulate a well behaved objective function
for such purposes. Besides these fundamental problems, we will extend the valida-
tion evidence that may give the confidence to apply the method to new fMRI data
sets as an exploratory tool by itself. We wishfully think that it could be applied to
event oriented experiments, and to the task of discovering networks of activation
in the brain.
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Chapter 5

Lattice Computing Multivariate
Mathematical Morphology

This chapter introduces the concept of Multivariate Mathematical Morphology
based on the definition of a supervised ordering built on the Lattice Auto-associative
Memories (LAAM) recall. Such constructions allow to set completely the Multi-
variate Mathematical Morphology in a Lattice Computing framework [43, 40, 41].
The chapter includes results on the application on resting state fMRI (rs-fMRI)
data for the study of Schizophrenia patients with and without auditory hallucina-
tions [44]. The content of the chapter is as follows: Section 5.1 gives an introduc-
tion to the chapter contents. Section 5.2 introduces the main ideas of Multivariate
Mathematical Morphology. Section 5.3 provides the definition of the LAAM based
reduced h-orderings. Section 5.4 provides the detailed experimental results over a
specific rs-fMRI dataset. Section 5.5 gives some conclusions of this chapter.

5.1 Introduction

The extension of Mathematical Morphology to multivariate images needs to define
appropriate orderings allowing to define the elementary morphological operators
without introducing spurious results (i.e. false color). The general approach fol-
lowed in this Thesis consists in the application of Lattice Auto-Associative Memo-
ries (LAAMs) [89, 87] to the definition of a LAAM-supervised ordering, an specific
kind of h-ordering [120], that allows the consistent definition of morphological op-
erators on multivariate data. All the required calculations are defined using the

85
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Lattice algebra operators (∨, ∧ and +) and therefore, LAAM-supervised order-
ing is faster and imposes less computational burden than the supervised orderings
previously proposed in [120]. The LAAM-supervised h-function consists in the
LAAM recall error for each voxel.

rs-fMRI images We consider rs-fMRI data of healthy controls (HC), schizophre-
nia patients with and without auditory hallucinations (SZAH and SZnAH, respec-
tively) looking for brain network differences. Using the LAMM-supervised h-
ordering is a Lattice Computing correspondent to the correlation [68] or indepen-
dent component analysis [12] based approaches to the analysis of resting state
fMRI searching for networks of low frequency synchronized components in the
brain. In short, a seed voxel BOLD time series is used to build a LAAM, which is
then applied to the remaining voxels of the brain fMRI 4D data. Here the h-function
provides the functional similarity on which the identification of the brain networks
is performed, and the map obtained from the whole brain volume is thresholded to
detect functional connectivity. It can be also processed by morphological operators
providing some specific features of the volume.

Experiments We report in this chapter three experiments performed on the res-
fMRI data. In the first two experiments, a group analysis is performed on the
templates corresponding to each class of subjects computed by averaging their
spatially normalized rsfMRI data. We inspect the Tanimoto coefficients between
identified networks to decide the appropriate threshold value to report the detected
brain functional networks.

1. In the first experiment, the reduced ordering function maps are used for the
detection of brain networks. Specifically we compute the brain networks in-
duced by specific brain sites, looking for differences in specific populations.
Results show that the approach is able to find functionally connected clus-
ter differences discriminating the subjects suffering auditory hallucination.
Specifically, we perform experiments with background/foreground LAMM
h-function.

2. In the second experiment, (a) we build templates for each population by av-
eraging the registered 4D data, (b) we process the whole brain volume, (c)
we focus on the background/foreground h-function map, (d) we follow the
work in [109] exploring the network induced by an specific localization in
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the brain, (e) threshold value is decided by inspection of the Tanimoto coeffi-
cients between the functional networks of each population class. Working on
the population templates allows to assess group level effects that are visible
on the average data.

3. In the third experiment, we report classification results on each population
class. Data features for classification are obtained as follows: we build the
LAAM-supervised h-function providing a reduced ordering map related to
the left Heschl’s gyrus. The Pearson correlation coefficient between the h-
function values and the categorical variable at each voxel site allows to iden-
tify the most informative voxel sites. Feature vectors are constructed as the
h-function values at these sites. Results with the baseline k-NN classifiers
show that the approach can provide accurate discrimination between these
populations.

5.2 Multivariate Mathematical Morphology

Mathematical Morphology was introduced by J. Serra [105, 106] and P. Maragos
[74] as a powerful tool for image analysis. Over the fifty years of its existence,
Mathematical Morphology has proven to be useful in different fields, such as im-
age processing, vision; and in different application: medical image segmentation,
remote sensing classification, noise detection, texture analysis, shape recognition.

Morphological operations are mappings between complete lattices, denoted L
or M, that are partially ordered set where infimum and supremum are defined for
all pairs of elements. The two elementary morphological operators are erosion and
dilation. other operators and filters are defined as compositions of them. For every
subset Y ⊆ L an erosion is a mapping ε : L→M that commutes with the infimum
operation, ε (

�
Y ) =

�
y∈Y ε (y). Similarly, a dilation is a mapping δ : L→M that

conmutes with the supremum operation, δ (
�

Y ) =
�

y∈Y δ (y). O top of these basic
operators it is possible to define image fiters such as the morphological gradient
g(Y ) = δ (Y )− ε (Y ), or the top-hat t (Y ) = Y −δ (ε (Y )).

5.2.1 Multivariate ordering

Morphological operators are well defined for scalar images, however their exten-
sion to multivariate images is not straightforward since defining a total order on
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these vector spaces preserving some natural properties of the morphological oper-
ators is not easy. One salient property is that the result of erosion or dilation oper-
ators must be closed in the image range of values, i.e. no new colors are generated
by their application. The proposals in [11, 84, 107, 7] are examples of multivariate
order definitions that suffer from the false color problem.

One way to accomplish that is the mapping of the multivariate values into a
scalar through the definition of a reduced ordering [6, 120]. A h-ordering is defined
by a surjective mapping of the original data set onto a complete lattice h : X → L ,
so that the order in the target lattice induces a total order on the original data set X ,
that is, r ≤h r� ⇔ h(r)≤ h(r�).

x ≤h y ⇔ h(x)≤ h(y) ;∀x,y ∈ X . (5.1)

The reduced ordering can be defined on the basis of a supervised classifier
trained with some pixel values extracted from the image. Discriminant function
values or the estimated class a posteriori probabilities provide the surjective map-
ping h. Often, a two class discrimination between foreground and background
classes is considered. In the formalization suggested in [120], a h-supervised or-
dering over a non-empty set X is a h-ordering satisfying the conditions h(b) =⊥,
∀b∈B, and h( f )=�, ∀ f ∈F , where B,F ⊂X are subsets of X such that B∩F = /0,
and ⊥ and � are the bottom and top elements of the target lattice, respectively.
Erosion operators increase image regions of points close to the background, and
dilation operators will increase image regions of points close to the foreground.

As h-functions are not necessarily injective the induced h-ordering ≤h might
be not a total order. When we need to differentiate among the members of the
equivalence classes L [z] = {c ∈ Rn|h(c) = z}, the disambiguation criterion is the
lexicographical order.

5.2.1.1 Multivariate morphological operators

The h-supervised erosion of a multivariate image {I (p) ∈ Rn}p∈DI
, where DI is

the spatial domain of the image, with structural object S, is defined as follows:
εh,S (I)(p) = I (q) s.t. I (q) =

�
h {I (s) ;s ∈ Sp}, where

�
h is the infimum defined

by the reduced ordering ≤h of Eq. (??), and Sp is the structural element trans-
lated to the pixel position p. The h-supervised dilation is defined as δh,S (I)(p) =
I (q) s.t. I (q) =

�
h {I (s) ;s ∈ Sp}, where

�
h is the supremum defined by the order

of Eq. (5.1).
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The morphological gradient for scalar valued images is computed as the dif-
ference between the dilations and erosions of image I with structuring element S:
gS (I) = δS (I)− εS (I). For multivariate images, the h-supervised morphological
gradient can be defined as the h-supervised erosion εh,S (I) and dilation δh,S (I) as
follows:

gh,S (I) = h(δh,S (I))−h(εh,S (I)) . (5.2)

5.3 LAAM-Supervised Ordering

5.3.1 LAAM’s h-mapping

The LAAM h-mapping is defined as the Chebyshev distance between the original
pattern vector and the recall obtained from the LAAM. In [113] this distance was
used to define a lattice based Nearest Neighbor classifier. In our approach it per-
forms the role of the supervised classifier. Formally, given a sample data vector
x ∈ Rn and a non-empty training set X = {xi}K

i=1, xi ∈ Rn for all i = 1, . . . ,K, the
LAAM h-mapping is given by:

hX (c) = dC
�
x#,x

�
, (5.3)

where x# ∈ Rn is the recalling response of dilative LAAM MXX to the input of
vector x, i.e. x#

M = MXX ∧� x. The erosive memory WXX recall, i.e. x#
W =WXX ∨� x,

could be used alternatively. Function dC (a,b) denotes the Chebyshev distance
between two vectors, given by the greatest absolute difference between the vectors’
components: dC (a,b) =

�n
i=1 |ai −bi|.

5.3.2 Foreground LAAM h-supervised ordering

Given a training set X a Foreground LAAM h-supervised ordering, denoted by ≤X ,
is defined on the LAAM h-mapping of Eq. (5.3) as follows:

∀x,y ∈ Rn, x ≤X y ⇐⇒ hX (x)≤ hX (y) . (5.4)

The Foreground LAAM-supervised ordering generates a complete lattice LX , whose
bottom element ⊥X= 0 corresponds to the set of fixed points of MXX and WXX , i.e.
h(x) =⊥X for x ∈ F (X). On the other hand, the the top element is �X =+∞.
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5.3.3 Background/Foreground LAAM h-supervised orderings

In order to build a Background/Foreground LAAM h-supervised ordering, disjoint
background B and foreground F training sets are required. The Foreground LAAM
h-mapping defined in Eq. (5.3) is independently applied to the data using B and
F as training sets, obtaining mappings hB and hF , respectively.We define a Back-
ground/Foreground (B/F) LAAM h-mapping hr (x) combining both hB and hF into
an h-mapping as follows:

hr (x) = hF (x)−hB (x) , (5.5)

which is positive for x ∈ F (B), and negative for x ∈ F (F). Therefore, we as-
sume it as a discriminant function such that hr (x)> 0 corresponds to pixels in the
background class, and hr (x) < 0 to pixels in the foreground class. Points where
hr (x) = 0 holds correspond to the decision boundary. The Relative h-supervised
ordering, denoted ≤r, is defined as follows:

∀x,y ∈ Rn, x ≤r y ⇐⇒ hr (x)≤ hr (y) . (5.6)

The image of the B/F LAAM h-mapping is a complete lattice Lr whose bottom
and top elements are ⊥= −∞ and � = +∞, respectively. Though this h-mapping
does not fit strictly into the formalization proposed in [120] because hr (b) �=⊥ for
b ∈ B and hr (f) �=� for f ∈ F , the induced ordering and subsequent morphological
operators provide good results.

5.4 Experimental results on rs-fMRI

The results reported in this section are explorations over resting state fMRI data
obtained from a 28 healthy control subjects (NC), and two groups of schizophrenia
patients: 26 subjects with and 14 subjects without auditory hallucinations (SZAH
and SZnAH respectively), selected from an on-going study in the McLean Hos-
pital, Boston, Ma. Details of image acquisition and demographic information are
given in the Appendix of this Thesis. Before going into the detail of the experi-
ments, we provide relevant definitions.

Tanimoto coefficient We use the Tanimoto coefficients computing the similarity
between detected networks to decide the appropriate threshold to apply in order to
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report the network detection. Given a pair of sets A and B, the Tanimoto coefficient
measures their similarity as the ratio between the cardinalities of their intersection
and union:

T (A,B) =
|A∩B|
|A∪B| , (5.7)

that is, the it measures the relative extent of their overlapping. The Tonimoto co-
efficient is normalized T ∈ [0,1]. Complete dissimilarity corresponds to T = 0,
identity corresponds to T = 1. When comparing image segmentation results, the
sets are image regions.

Pearson Correlation The Pearson correlation coefficient is given by:

r =
n(∑xy)− (∑x)(∑y)��

n∑x2 − (∑x)2
��

n∑y2 − (∑y)2
� (5.8)

where r ∈ [−1,1], r = 1 means that two variables have perfect positive correlation
and r =−1 means that there is a perfect negative correlation between them. In our
case Pearson correlation evaluates the nexus between a priori known class labels
and fMRI neural connectivity by means of h-function.

5.4.1 Experiment 1

The aim of the experiments in this section looks for brain networks that may al-
low the discrimination of healthy control subjects, schizophrenia patients with and
without auditory hallucinations. The results show that the LAAM-supervised h-
orderings detect quite different brain networks depending on the subject using the
same h-function built from selected voxel seeds. Network localizations correlated
with an specific voxel, preferentially from the auditory cortex will show some ef-
fect related to the auditory hallucinations. The voxel time series used to build the
LAAM is extracted from one healthy control subject data. We compute the map
corresponding to the application of the LAAM-supervised h-function to each voxel
in one healthy control subject and one schizophrenia patients, showing the network
constituted by most similar voxels according to the h-function. Finally, we visual-
ize the detection obtained by the peaks of the top-hat transformation. We present
results over the brain mappings given by the one-side and background/foreground
orderings.
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One-side supervised h-ordering We have tested the results of two seeds, one in
the frontal lobe and other in the auditory cortex. Figure 5.1(a) shows the location of
the voxel seed near the frontal lobe. It has been picked arbitrarily in the gray matter.
Figure 5.1(b) shows the network located with this seed voxel in the control subject
data, without any further postprocessing. Figure 5.1(c) shows the network in the
patient with auditory hallucinations. A number of related voxels appear larger than
in the control subject and the patient without hallucination. Figure 5.1(d) shows the
same detection result on the patient without hallucinations. It can be appreciated
that the network is much smaller than in the AH case.

Figure 5.2(a) shows the location of the voxel seed in the auditory cortex. Re-
maining subfigures have the same meaning as in figure 5.1. Observe that the health
control does not have any induced network in this case. Again, the network of the
patient with hallucinations is very large.

Therefore proposed approach provides brain networks which are dependent
on the voxel seed. The main feature of the results is that, independently of the
seed voxel used to build hX , we find a strong discordance between the network of
Schizophrenic patients with and without AH. This conclusion is confirmed by the
top-hat filter localizations shown in figure 5.4(a) and 5.4(b) computed on the h-map
induced by the seed shown in figure 5.1(a) 5.2(a).

Background/foreground supervised ordering We have selected as a background
seed the voxels of WM in the Temporal Lobe and CSF in the ventricles, and as fore-
ground voxel of GM: one in the Auditory Cortex and another in Frontal Lobe, to
compute the hr map. The seed selection is shown in figure 5.3(a)-(d). The meaning
of the remaining images in figure 5.4 is the same as in previous images. Again,
we find a strong difference between the network locations detected in the three
subjects from the same map. This conclusion is reinforced by the top-hat filter lo-
calizations shown in figure 5.5(a)-(d) computed on the h-map induced by the seed
shown in figure 5.3(a)-(d).

5.4.2 Experiment 2

After the preprocesing step detailed in the Appendix A, we compute the Z-scored
time series at each voxel. These normalized images were used to calculate the
time-average of BOLD across subjects for each group. Finally, we compute the
4D group-average of subjects from HC, SZAH and SZnAH groups to build corre-
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(a) (b) (c) (d)

Figure 5.1: Seed from the frontal lobe. (a) location of the seed voxel in the healthy
control volume, (b) network of corresponding voxels in the healthy control, (c)
schizophrenia patient with auditory hallucinations, and (d) schizophrenia patient
without auditory hallucinations.

(a) (b) (c) (d)

Figure 5.2: Seed from the auditory cortex. (a) location of the seed voxel in the
healthy control volume, (b) network of corresponding voxels in the healthy con-
trol, (c) schizophrenia patient with auditory hallucinations, and (d) schizophrenia
patient without auditory hallucinations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.3: Two voxel seeds: (a) background from WM and foreground from GM
of Frontal Lobe, (b) background from WM anfd foreground from GM of Auditory
Cortex, (c) background from CSF of the ventricule and foreground from GM of
Frontal Lob, (d) background from CSF of the ventricule and foreground from GM
of Auditory Cortex, – used to build the hr ordering. Blue and pink colors indicate
the back- and fore-ground voxels. (e) location of the seed voxels in the healthy
control volume, (f) network of corresponding voxels in the healthy control, (g)
schizophrenia patient with auditory hallucinations, and (h) schizophrenia patient
without auditory hallucinations.
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(a) (b)

Figure 5.4: Top-hat localizations computed on (a) and (b) the hX ordering induced
by the seed in figure 5.1(a) and 5.2(a). Red, green, blue voxel colors correspond
to healthy control, schizophrenia no auditory hallucination, and schizophrenia no
auditory hallucination, respectively..

(a) (b) (c) (d)

Figure 5.5: Top-hat localizations: the hr ordering induced by the pair of back-
grounf/foreground seeds in figure 5.3(a)-(d).
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sponding templates for each population.

Identification of relevant networks According to the findings reported in [109],
our experiments aim to obtain network localizations correlated with an specific
voxel placed on the left Heschl’s gyrus (LHG; MNI coordinates -42,-26,10) whose
localization is illustrated in figure 5.6, preferentially from the auditory cortex in
order to ascertain some effect related to the auditory hallucinations. The voxel
time series used as the seed to build the LAAM corresponding to the foreground
is extracted from this MNI coordinate from the template data of each group. We
compute the map corresponding to the application of the Foreground/Background
LAAM h-function on each template using as foreground and background training
data the seed voxels identified in figures 5.6 and 5.7, respectively. The foreground
voxel seed corresponds to the LHG, and the background voxel to the CSF in one
of the ventricles, which corresponds to irrelevant or noisy time series.

Computing the Foreground/Background LAAM h-function produces a real val-
ued map over the brain volume, where functional networks are identified applying
a threshold to this map. We would like to set this threshold so that the differences
between the networks from each population are greatest while the size of the de-
tected network sites (aka voxel clusters) are also greatest. To this end we compute
the Tanimoto coefficient between the brain regions identified in different templates
when setting a threshold value on their respective h-mappings. In fact, we deal
with sets of voxels sites, which depend on the value of the threshold applied to the
h-function map. Therefore, X (θ) is the set of voxel sites with h-function above the
θ threshold. Consequently, we denote T (θ) = T (X (θ) ,Y (θ)). We are looking
for the existence of discriminant regions, that is, brain networks that are unique to
each population. Therefore, we look for small values of the Tanimoto coefficient,
while the size of the identified regions (brain networks) remains significant.

Results Figure 5.8 shows two plots. The first plot corresponds to the evolution of
pairwise population network similarity measured by Tanimoto coefficients T (θ),
increasing the threshold value. It can be appreciated that the similarities of the
HC versus any of the two patient populations are very much the same. However,
the Tanimoto coefficient of the two patient populations are significantly higher,
confirming the intuition that they share many functional network traits. However,
we are interested here in finding differences that may be useful for discrimina-
tion/classification. Therefore, we focus in the lower values: for θ > 0.7, Tanimoto
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Figure 5.6: Foreground voxel seed site from the left Heschl’s gyrus (LHG; -42,-
26,10).

coefficients T (θ) comparing healthy and patients are close to zero , meaning that
the networks are almost disjoint. The comparison between patient classes gives
almost zero Tanimoto coefficients for θ > 0.8. The second plot corresponds to the
size of the networks, measured as the cardinality of the sets of voxel sites. It can be
appreciated that for θ > 0.7 the networks become very small, therefore, we have
chosen θ = 0.7 for the figures below.

Figure 5.9 shows the networks found related to the LHG seed voxel for the (a)
healthy control (HC), (b) schizophrenic with auditory hallucinations (SZAH), and
(c) schizophrenic without auditory hallucinations (SZnAH). Notice that the size of
the SZAH network is bigger and they are more spread than the SZnAH network.
There is a clear difference relative to the HC network. We think that these sites
can be proposed as specific biomarkers. We have found that some of them are in
agreement with previous reported findings [109], though the exhaustive listing of
detection will be given elsewhere. We show in Figure 5.10(a) the intersection be-
tween the SZnAH and SZAH networks, which is very small but significant, and
in Figure 5.10(b) the difference network corresponding to the clusters active only
in SZnAH. There are many voxel sites which may be taken as biomarkers to dis-
criminate between patient these classes. For a global view of the extent of the
discriminant regions, we show a 3D visualization in Figure 5.11.



98CHAPTER 5. LATTICE COMPUTING MULTIVARIATE MATHEMATICAL MORPHOLOGY

Figure 5.7: Background voxel seed site from CSF of the ventricle.

(a)

(b)

Figure 5.8: Effect of threshold value on the identified networks on back-
ground/foreground h-function brain map. (a) Tanimoto Coefficient comparing net-
works from each pair of population, and (b) size of the detected clusters.
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(a)

(b)

(c)

Figure 5.9: Networks identified by thresholding the Background/Foreground h-
function induced by the pair of background/foreground seeds in figure 5.6 and 5.7
(a) healthy controls (HC), (b) schizophrenics with hallucinations, (c) schizophren-
ics without hallucinations.
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(a)

(b)

Figure 5.10: Comparison of networks obtaining by thresholding back-
ground/foreground h-functions on the templates of the two types of schizophre-
nia patients (with and without auditory hallucinations): (a) the intersection net-
work, (b) the network appearing only on the template of patients with hallucination
(SZAH)
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Figure 5.11: 3D visualization of the brain networks appearing only in the SZAH
population template (green), and the common networks between SZAH and SZ-
nAH populations (brown).
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Figure 5.12: Pipeline of our experimental design

5.4.3 Experiment 3

Experimental pipeline Figure 5.12 shows the graphical description of our ex-
perimental process. Resting state fMRI data is first preprocessed to ensure that all
fMRI volumes are aligned and warped to the spatially normalized structural T1-
weighted data. On the normalized data, we compute the B/F LAMM h-mapping
where the Background data corresponds to CSF in the brain ventricle voxels, and
the Foreground data is a selection of voxels in the LHG according to [109]. The h-
mappings are used to compute across volume voxel-wise Pearson correlation with
the categorical variable specifying the class of the subject, obtaining a correlation
map. Selection of the voxels sites with greatest absolute value of correlation coef-
ficients defines the masks for feature extraction, which are used to build the feature
vectors from the individual h-maps. These masks are providing localizations for
image biomarkers that may have biomedical significance, therefore we report them
separately. Feature vectors are used to perform classification experiments, apply-
ing a 10-fold cross validation methodology. We use k-NN classifiers to provide
baseline results. Accuracy results are assumed to provide some endorsement of the
value of the image biomarkers identified by the feature masks.



5.5. CONCLUSIONS 103

Classification results Figure (5.13) shows the results of the classification exper-
iments on the discrimination the possible pairs of classes: Healthy controls versus
Schizophrenia patients (HC vs. Schiz), versus patients without auditory halluci-
nations (HC vs. nAH), with auditory hallucinations (HC vs. AH), and between
classes of patients (nAH vs. AH). The color bars identify the size of the feature
vectors, which are built from voxels sites with greatest absolute Pearson’s correla-
tion coefficients. In all cases, classification performance decreases with the largest
sizes of the feature vectors, which is to be expected because the k-NN classifier
suffers from the curse of dimensionality. The best results are obtained in the (HC
vs. nAH) case, suggesting that these kind of patients could be better discriminated
from healthy controls. Discrimination of the auditory hallucination (nAH vs. AH)
is not successful, however we expect that further experimentation will improve
results.

Feature localization in the brain Figure (5.14) shows the voxel sites of the fea-
ture extraction in the above enumerated cases. These localizations may server as
biomarkers for additional research.

5.5 Conclusions

We introduce in this chapter a Multivariate Mathematical Morphology using lattice
computing techniques. Specifically, using the LAAM reconstruction error mea-
sured by the Chebyshev distance as a reduced ordering h-map, we define several h-
supervised orderings and ensuing mathematical morphology operators and filters.
Specifically, we introduce a Foreground and a Foreground/Background/ LAAM-
supervised orderings. The main benefit of these definitions is the consistency of
the morphological operators and filters. Proposed method for fMRI data analysis
needs the definition of seed voxels. However this method does not involve any
common statistical techniques and assumptions, being model-free in a very exten-
sive point of view. Moreover the method relies only in lattice computing operators,
so that the only operations required for its intelligent wandering are min, max and
addition which introduce less error than other arithmetic approaches.

Regarding rs-fMRI, we give results of three experimental settings on the iden-
tification of differences between brain networks of schizophrenic patients with and
without auditory hallucinations, which may allow to define discriminating voxel
sites for feature extraction. In the first experiment, the basic approach shows that
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HC vs. Schiz

HC vs. nAH

HC vs. AH

nAH vs. AH

Figure 5.13: Maximum Classifier Accuracy found in 10 repetition of 10-fold cross
validation for k-NN classifier k = 1,3,7,11,15. The bar colors represent diferent
number of extracted features.
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HC vs. Schiz

HC vs. AH

HC vs. nAH

nAH vs. nAH

Figure 5.14: Visualization of Localization
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the approach is able to produce some network localizations with strongly differ-
ent according to the subject class, inducing some kid of discrimination that are
afterwards exploited by machine learning approaches.

In the second experiment, we compute brain networks setting a threshold on the
h-mappings computed using appropriate foreground (LIH gyrus) and background
(CSF) voxel seeds for the training of the LAMM. The population study is per-
formed on the average templates per population, i.e. we build average templates
for healthy patients, schizophrenia patients with and without auditory hallucina-
tion. The identified networks have clear differences between populations, which
may allow to discriminate between them on an individual basis, using some classi-
fication approach.

In the third experiment, the Foreground/Background/ LAAM-supervised h-
map on resting state fMRI provides the features for the identification of potential
biomarkers for schizophrenia and variants with and without auditory hallucinations
by computing the Pearson’s correlation coefficient with the categorical variable.
These biomarkers are evaluated in the terms of the corresponding classification
accuracy achieved on the feature vectors extracted from the selected voxel sites.
We find that the classification results are encouraging, with best results obtained
in the discrimination between healthy controls and patients without auditory hal-
lucinations. Further results will be obtained applying more sophisticated classifier
systems to the data. Application of morphological filters to perform feature selec-
tion is also considered on the basis of the well defined Multivariate Mathematical
Morphology.



Appendix A

Data

This Appendix is devoted to the description of some of the datasets that have been
used in the experimental works along the thesis. From the medical point of view we
have treated imaging data from several diseases: Alzheimer’s Disease, Schizophre-
nia, and Abdominal Aortic Aneurysm. The latter datasets have been accessed
through the collaboration with Josu Maiora, which obtained them for his PhD
work. The contents of the Appendix are as follows: Section A.1 provides some
medical background on each disease. Section A.2 introduces some of the image
modalities used in the computational experiments. Section A.3 gives a short review
of Voxel Based Morphometry. Section A.4 contains the description of the anatom-
ical feature dataset for Alzheimer’s Disease extracted from the OASIS database.
Section A.5 presents the resting state data used for the study on Schizophrenia pa-
tients. Section A.6 provides the description of the Abdominal Aortic Aneurysm
database.

A.1 Medical background

A.1.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is a neurodegenerative disorder, which is one of the
most common cause of dementia in old people. Currently, due to the socioe-
conomic importance of the disease in occidental countries it is one of the most
studied. The diagnosis of AD can be done after the exclusion of other forms of
dementia but a definitive diagnosis can only be made after a post-mortem study
of the brain tissue. This is one of the reasons why Magnetic Resonance Imaging
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(MRI) based early diagnosis is a current research hot topic in the neurosciences.
The pharmaceutical companies have already recognized that imaging techniques
especially MRI and Positron Emission Tomography (PET) provide "surrogate" in-
formation concerning the pattern and rate of neurodegeneration, which can be used
to monitor the effects of treatments which slow the progression of neurodegener-
ation. Therefore, there is high interest in the development of automated detection
procedures based on MRI and other medical imaging techniques.

A.1.2 Schizophrenia

Schizophrenia is a brain disorder of mental activity that affects abilities of the per-
son in processing the information, giving rise to difficulty understanding of the
surrounding world. Schizophrenia is characterized by a suit of symptoms. These
include auditory hallucinations, paranoid delusions, lack of emotion, disorganized
and slow thinking, difficulty understanding. Schizophrenia is a severe psychiatric
disease that is characterized by delusions and hallucinations, loss of emotion and
disrupted thinking. In the last twenty years, there has been an explosion of knowl-
edge about MRI analysis and how healthy brains and in brains with schizophrenia
work, but little is known for sure. Schizophrenia is still a hermetic and difficult to
understand disease, but reserch is not static and trying to develop new methods and
tools of comprehension the schizophrenia.

A.1.3 Aortic Abdominal Aneurysm

An aneurysm is a focal dilation of a blood vessel to more than twice its normal
diameter. Aneurysms are most commonly found in large arteries (aorta, iliac, and
femoral); however, they have been reported in smaller arteries such as the radial
or coronary arteries as well. The etiology of aneurysm is currently believed to
be multi-factorial with atherosclerosis contributing the greatest part to the disease
process. Other causes may include infectious etiologies, traumatic injury, chronic
lung diseases, genetic disorders, smoking, and bio-mechanical factors such as hy-
pertension, disturbed blood flow, and wall tissue degradation. The prevalence of
aneurysms is greatest in the infra-renal abdominal aorta.

Abdominal Aortic Aneurysm (AAA) [? ] is a dilation of the aorta that occurs
between the renal and iliac arteries due to weakening of the vessel wall. The weak-
ening of the aortic wall leads to its deformation and the generation of a thrombus.
If the aneurysm gets too big, it can break. If left untreated, nearly all aneurysms



A.2. MEDICAL IMAGE MODALITIES 109

continue to enlarge and eventually rupture. Aneurysm with a diameter of 5 cm
or greater should be treated. The rupture of an aneurysm can have very serious
consequences and even cause death.

A.2 Medical Image Modalities

A.2.1 fMRI

Noninvasive techniques can measure cerebral physiologic responses during neural
activation. Among them, fMRI [82] uses the blood oxygenation level dependent
(BOLD) contrast to detect physiological alterations, such as neuronal activation
resulting in changes of blood flow and blood oxygenation. The signal changes are
related to changes in the concentration of deoxyhemoglobin, which acts as an in-
travascular contrast agent for fMRI. Most of the fMRI examinations are performed
using T2* weighted gradient echo pulse sequences. The various fMRI-methods
have a good spatial and temporal resolution, limited only by the delays with which
the autoregulatory mechanisms of the brain adjust blood flow to the metabolic de-
mands of neuronal activity. Since these methods are completely noninvasive, using
no contrast agent or ionizing radiation, repeated single-subject studies are becom-
ing feasible [78].

An fMRI experiment consists of a functional template or protocol (e.g., alter-
nating activity and rest periods for a certain time) that induces a functional response
in the brain. The aim of the experiment is to detect the response to this time varying
stimulus, through the examination of the signal resulting from the BOLD effect, in
defined volume elements (voxels). The functional information of a voxel has to
be extracted from its BOLD signal time series. One fMRI volume is recorded at
each sampling time instant during the experiment. The time sampling frequency
is determined by the resolution of the fMRI pulse sequence. The complete four-
dimensional dataset (three dimensions in space, one dimension in time) consists of
subsequently recorded three-dimensional (3-D) volumes. The acquisition of these
functional volumes runs over periods lasting up to several minutes. These long ac-
quisition times allow for the introduction of motion artifacts that must be corrected
through careful volume registration procedures.

The most extended analysis approach for fMRI signals is the Statistical Para-
metric Maps (SPM) [36, 35], which has evolved into a free software package. This
method consists in the separate voxel estimation of the regression parameters of
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General Linear Model (GLM). In GLM, data is explained as a linear combination
of regressors defined of the basis of a priori knowledge about the data and the
problem, which conform the so-called design matrix. The linear combination co-
efficients are estimated by conventional least squares methods. The design matrix
is built corresponding to the experimental design. A contrast is then defined on the
estimated regression parameters, which can take the form of a t-test or an F-test.
The theory of Random Fields is then applied to correct the test thresholds, taking
into account the spatial correlation of the independent test results.

Application of Independent Component Analysis (ICA) to fMRI [20, 19, 56]
assumes that the time series observations are linear mixtures of independent sources
which can not be observed. Reports on the research application of ICA to fMRI
signals include the identification of signal types (task related and physiology re-
lated) and the analysis of multisubject fMRI data. The most common approach is
the spatial ICA that looks for spatial disjoint regions corresponding to the identi-
fied signal types. It has been claimed that ICA has identified several physiological
noise sources as well as other noise sources (motion, thermodynamics) identifying
task related signals. Diverse ICA algorithms have been tested in the literature with
inconclusive results. Among the clinical applications, ICA has been used to study
the brain activation due to pain in healthy individuals versus those with chronic
pain [16], the discrimination of Alzheimer’s patients from healthy controls [49],
the classification of schizophrenia [21] and studies about the patterns of brain acti-
vation under alcohol intoxication [21].

A.2.2 Resting state fMRI

Resting state fMRI (rsfMRI) data has been used to study the functional connec-
tivity in the brain [27, 79, 119], looking for temporal correlation of low frequency
oscillations in diverse areas of the brain, which provides a kind of brain functional
fingerprint. Because the subject is not performing any explicit cognitive task, the
functional network is assumed as some kind of brain fingerprint, which can be
used to detect biomarkers of cognitive or neurodegenerative diseases. Resting state
fMRI experiments do not impose constraints on the cognitive abilities of the sub-
jects. For instance in pediatric applications, such as the study of brain maturation
[32], there is no single cognitive task which is appropriate across the aging popu-
lation. Resting state fMRI has being found useful for performing studies on brain
evolution based on the variations in activity of the default mode network [32], de-
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(a) (b)

Figure A.1: Comparison of vessel intensity values between CT and CTA slice. a)
in CTA slice using the contrast agents, blood in lumen is highlighted for a better
view. b) in CT slice without using the contrast agent, intensity values of lumen and
thrombus are similar.

pression (using regional homogeneity measures) [123], Alzheimer’s Disease [69],
and schizophrenia. Computational approaches applied include hierarchical cluster-
ing [? ], independent component analysis (ICA) [29? , 18], fractional amplitude of
low frequency analysis [128], multivariate pattern analysis (MVPA) [32, 83].

A.2.3 Computed Tomography Angiography

Computed Tomography (CT), a modality for non-invasive medical imaging has
been established as the gold standard in many areas. Computed Tomography (CT)
is a further development of the traditional X-ray technique. It is a medical imaging
method employing tomography to generate a large series of cross-sectional images
of the body. Though the CT slice is a two-dimensional (2D) image, using image
processing, anatomical structures can be segmented and three-dimensional (3D)
rendering can be created, which enhances the visual information of planar images
and give physicians anatomical information of the region of interest .

Early CT scanners could only acquire images as a single axial slice at a time
(sequential scanning), Later, several generations of scanners have been developed.
Spiral CT scanners enables the X-ray tube to rotate continuously in one direction
around the patient. Multi-slice CT machines (now up to 64-slice) utilizes the prin-
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ciple of the spiral scanner and incorporate multiple rows of detector rings. The lat-
est generation of CT scanner is Dual Source CT scanners, which were introduced
in 2005. They allow higher temporal and spacial resolution, therefore reducing
motion blurring at high heart rates and potentially requiring a shorter breath-hold
time.

Volumetric data acquired by the modern CT scanner can be reconstructed to
suit most clinical requirements. The data can be reformatted in various planes
which is called multiplanar reformatting (MPR). We can get sagittal, coronal and
oblique plane views along with the standard trans-axial plane. The stack of 2D
slices can also be reconstructed as volumetric (3D) representations of structures
for a better anatomical view. Contrast between different tissues of the body can
be improved by the use of different contrast agents. These contrast agents are
used to highlight specific areas so that the organs, blood vessels, or tissues are
more visible. A.1 highlights the differences in contrast due to the use of a blood
contrast. Contrast-enhanced Computed Tomography Angiography (CTA) is the
most widely used medical imaging technology for getting exact knowledge of the
position, shape, size of an aneurysm and the occurrence of endoleaks.

A.2.4 CTA for AAA

CTA allows minimally invasive visualization of the Aorta’s lumen, thrombus and
calcifications. The segmentation of the AAA thrombus is a challenging task due
to the low thrombus signal contrast, great shape variability, both intra and inter-
subjects, and little availability of prior information. Specifically, this is a blood
vessel segmentation problem [? 70, 66].

Classification based approaches to AAA thrombus segmentation allow to learn
the optimal segmentation from the data. Some examples in the literature: A clas-
sification approach that needs an initial manual segmentation of the Aorta lumen
[80]; an active shape model that uses the classification of grayscale profiles to
move the active contour [28]; Support Vector Machine (SVM) used to drive a level
set segmentation [127]; a Gaussian Mixture Model probability map drives a de-
formable NURBS model in [29]; finally, a segmentation based on voxel classifica-
tion using Random Forests is proposed in [72, 71].

AAA thrombus segmentation methods reported in the literature need a lot of
human interaction or a priori information one way or the other. In [127] an initial
rough specification of the aneurysm surface is refined by means of level set seg-
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mentation driven by an a priori model and the likelihood estimation provided by
Support Vector Machine classifiers trained on voxel location, intensity and texture
features. In [29] a deformable NURBS model is driven by a probability map built
from a Gaussian Mixture Model trained on selected samples. This approach needs
an initial manual lumen segmentation and intensity renormalization to avoid con-
vergence mishaps of the NURBS model adaptation. In [? ] the AAA thrombus
after endovascular repair is detected following a radial model approach needing
the specification of the lumen centerline and some manually tuned correction per-
formed on the polar coordinate representation of the image. A graph-cut approach
constrained by a geometrical model is proposed in [33], needing a previous lu-
men segmentation and centerline computation. The approach iterates labeling and
geometric model re-estimation, which are costly processes.

A.3 Voxel-based Morphometry (VBM)

Morphometry analysis has become a common tool for computational brain anatomy
studies. It allows a comprehensive measurement of structural differences within
a group or across groups, not just in specific structures, but throughout the en-
tire brain. Voxel Based Morphometry (VBM) is a computational approach to
neuroanatomy that measures differences in local concentrations of brain tissue,
through a voxel-wise comparison of multiple brain images [8]. For instance, VBM
has been applied to study volumetric atrophy of the grey matter (GM) in areas
of neocortex of AD patients vs. control subjects [17, 104, 34]. The processing
pipeline of VBM is illustrated in figure A.2. The procedure involves the spatial nor-
malization of subject images into a standard space, segmentation of tissue classes
using a priori probability maps, smoothing to correct noise and small variations,
and voxel-wise statistical tests. Smoothing is done by convolution with a Gaussian
kernel whose the Full-Width at Half-Maximum (FWHM) is tuned for the prob-
lem at hand. Statistical analysis is based on the General Linear Model (GLM) to
describe the data in terms of experimental and confounding effects, and residual
variability. Classical statistical inference is used to test hypotheses that are ex-
pressed in terms of GLM estimated regression parameters. This computation of
given contrast provides a Statistical Parametric Map (SPM), which is thresholded
according to the Random Field theory to obtain clusters of significant voxels.
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Figure A.2: The processing pipeline of the Voxel Based Morphometry (VBM) on
structural MRI volumes.
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A.4 OASIS anatomical imaging feature dataset

For specific classification experiments we have used a feature dataset which has
been computed from a selected collection subjects from the Open Access Series
of Imaging Studies (OASIS) database [73]. OASIS data set has a cross-sectional
collection of 416 subjects covering the adult life span aged 18 to 96 including
individuals with early-stage Alzheimer’s Disease. The research group has used
this particular database in previous works [37, 101, 102]

In this section we give a description of the feature extraction process that has
been performed for the realization of the computational experiments on the classifi-
cation of structural MRI data into Alzheimer’s Disease (AD) patients and controls.
The data sets are published in the research group web page 1 to allow the inde-
pendent validation of our results, and to allow new classification approaches to be
tested on this data. The process consists in the realization of Voxel Based Mor-
phometry analysis to detect clusters of voxels which can be discriminat about AD
patients and controls. These clusters are used as an spatial mask to extract from the
original volumes the values of the corresponding voxels. We compute the mean
and standard deviation of the voxel values inside each of the clusters, constituting
the MSD feature vectors.

Selected Subjects from the OASIS database Many of the classification studies
on the detection of AD were done with both men and women. However, it has
been demonstrated that brains of women are different from men’s to the extent
that it is possible to discriminate the gender via MRI analysis. Moreover, it has
been shown that VBM is sensitive to the gender differences. For these reasons,
we have been very cautious in this study. We have selected from the OASIS a set
of 98 MRI women’s (aged 65-96 yr) T1-weighted MRI brain volumes. It must be
noted that this is a large number of subjects compared with the other studies at the
time of publication of our works. We have ruled out a set of 200 subjects whose
demographic, clinical or derived anatomic volumes information was incomplete.
For the present study there are 49 subjects who have been diagnosed with very
mild to mild AD and 49 non-demented. A summary of subject demographics and
dementia status is shown in table A.4.

1http://www.ehu.es/ccwintco/index.php/GIC-experimental-databases
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Very mild to mild AD CS
No. of subjects 49 49

Age 78.08 (66-96) 77.77 (65-94)
Education 2.63 (1-5) 2.87 (1-5)

Socioeconomic status 2.94 (1-5) 2.88 (1-5)
CDR (0.5 / 1 / 2) 31 / 17 / 1 0

MMSE 24 (15-30) 28.96 (26-30)

Table A.1: Summary of subject demographics and dementia status. Education
codes correspond to the following levels of education: 1-less than high school
grad., 2-high school grad., 3-some college, 4-college grad., 5- beyond college.
Categories of socioeconomic status: from 1 (biggest status) to 5 (lowest status).
Clinical Dementia Rating (CDR). Mini-Mental State Examination (MMSE) score
ranges from 0 (worst) to 30 (best).

Anatomical Imaging Protocol The OASIS database has been built following a
strict imaging protocol, to avoid variations due to imaging protocol which would
pose big image normalization problems. Multiple (three or four) high-resolution
structural T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE)
images were acquired [? ] on a 1.5-T Vision scanner (Siemens, Erlangen, Ger-
many) in a single imaging session. Image parameters: TR= 9.7 msec., TE= 4.0
msec., Flip angle= 10, TI= 20 msec., TD= 200 msec., 128 sagittal 1.25 mm slices
without gaps and pixels resolution of 256×256 (1×1mm).

Image processing and VBM for OASIS We have used the average MRI vol-
ume for each subject, provided in the OASIS data set. These images are already
registered and re-sampled into a 1-mm isotropic image in atlas space and the bias
field has been already corrected [73]. The Statistical Parametric Mapping software
(SPM8) [3] was used to compute the VBM which gives us the spatial mask to
obtain the classification features. Images were reoriented into a right-handed coor-
dinate system to work with SPM8. The tissue segmentation step does not need to
perform bias correction. We performed the modulation normalization for GM, be-
cause we are interested in this tissue for this study. We performed a spatial smooth-
ing before performing the voxel-wise statistics, setting the FWHM of the Gaussian
kernel to 10mm isotropic. A GM mask was created from the average of the GM
segmentation volumes of the subjects under study. Thresholding the average GM
segmentation, we obtain a binary mask that includes all voxels with probability
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Figure A.3: SPM results: clusters of significant voxels with increased gray matter
density in the controls relative to the patient subjects, detected by the VBM process.

greater than 0.1 in the average GM segmentation volume. This interpretation is not
completely true, since the data is modulated, but it is close enough for the mask to
be reasonable. We designed the statistical analysis as a Two-sample t-test in which
the first group corresponds with AD subjects. In SPM software jargon: the con-
trast has been set to [-1 1], a right-tailed (groupN > groupAD), correction FWE,
p-value=0.05. The VBM detected clusters are used for the feature extraction for
the classification procedures. Statistical significance was determined using an ex-
tent threshold of 0 adjacent voxels for two sample comparisons. The clusters of
significant voxels detected by the VBM analysis are displayed in figure A.3.

Computing the feature vectors The feature vector extraction processes is based
on the voxel location clusters detected as a result of a VBM analysis . The VBM
detected clusters are used as masks to determine the voxel positions where the
features are extracted. These masks are applied to the GM density volumes re-
sult of the segmentation step in the VBM analysis. The feature extraction process
computes the mean and standard deviation of the GM voxel values of each voxel
location cluster.
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A.5 resting state fMRI for Schizophrenia

Functional disconnection between brain regions is suspected to cause Schizophre-
nia symptoms, because of known aberrant effects on gray and white matter in brain
regions that overlap with the default mode network. Resting state fMRI stud-
ies [75, 125, 126] have indicated aberrant default mode functional connectivity
in schizophrenic patients. These studies suggest an important role for the default
mode network in the pathophysiology of schizophrenia. Functional disconnectivity
in schizophrenia could be expressed in altered connectivity of specific functional
connections and/or functional networks, but it could also be related to a changed
organization of the functional brain network. Resting state studies for schizophre-
nia patients with auditory hallucinations have also been performed [121] showing
reduced connectivity. Recent findings [109] show effects on the resting state net-
work localizations correlated with voxels in the left Heschl’s gyrus (LHG; MNI
coordinates -42,-26,10) from the auditory cortex effect related to the auditory hal-
lucinations in schizophrenic patients.

Materials The results shown in this section are explorations over resting state
fMRI data obtained from a 28 healthy control subjects (NC), and two groups of
schizophrenia patients: 26 subjects with and 14 subjects without auditory halluci-
nations (SZAH and SZnAH respectively), selected from an on-going study in the
McLean Hospital, Boston, Ma. Details of image acquisition and demographic in-
formation will be given elsewhere. For each subject we have 240 BOLD volumes
and one T1-weighted anatomical image.

Preprocessing pipeline

The data preprocessing begins with the skull extraction using the Brain Extrac-
tion Tool from FSL 2. All the images were manually oriented to AC-PC line. The
functional images were coregistered to the T1-weighted anatomical image. Further
preprocessing, including slice timing, head motion correction (a least squares ap-
proach and a 6-parameter spatial transformation), smoothing (FWHM=4mm) and
spatial normalization to the Montreal Neurological Institute (MNI) template (re-
sampling voxel size = 3 mm × 3 mm × 3 mm), temporal filtering (0.01-0.08 Hz)
and linear trend removing, were conducted using the DPARSF 3 package. All the

2http://www.fmrib.ox.ac.uk/fsl/
3http://www.restfmri.net/forum/DPARSF
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subjects have less than 3mm maximum displacement and less than 3º of angular
motion.

A.6 Abdominal Aortic Aneurysm data Datasets

The data was provided by Dr Joszkowicz from the Mount Sinai School of Medicine
(New York). Patients were administered 100cc of non-iodinated contrast agent with
a rapid injection aid at 3-4cc per sec. The CTAs consist of 512 × 512 pixels per
slice with physical voxel sizes in the 0.7- 1.2mm range. The datasets included
various sizes and locations of the thrombus. Some of them were acquired after
stent placement, and thus include strong streaking artifacts. The datasets were
acquired on a 64-row CT scanner (Brilliance 64 - Phillips Healthcare, Cleveland,
OH) and were chosen randomly from the hospital archive to represent wide variety
of patients with different ages. A.4(a) and A.4(b) show an axial view and a coronal
view of this dataset.
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(a)

(b)

Figure A.4: Mount Sinai CT image with contrast agent. (a) Axial view (b) Coronal
view



Bibliography

[1] http://isp.imm.dtu.dk/toolbox/ica/index.html.

[2] http://www.cis.hut.fi/projects/ica/fastica/.

[3] http://www.fil.ion.ucl.ac.uk/spm/.

[4] Y. Amit and D. Geman. Shape quantization and recognition with random-
ized trees. Neural computation, 9(7):1545–1588, 1997.

[5] J.A. Anderson. A simple neural network generating an interactive memory.
Mathematical Biosciences, 14:197–220, 1972.

[6] J. Angulo. Morphological colour operators in totally ordered lattices based
on distances: Application to image filtering, enhancement and analysis.
Comput. Vis. Image Underst., 107(1-2):56–73, July 2007.

[7] E. Aptoula and S. Lefevre. A comparative study on multivariate mathemat-
ical morphology. Pattern Recogn., 40(11):2914–2929, November 2007.

[8] J. Ashburner and K. J. Friston. Voxel-based morphometry: The methods.
Neuroimage, 11(6):805–821, 2000.

[9] B. Ayerdi, J. Maiora, and M. Graña. Active learning of hybrid extreme
rotation forests for cta image segmentation. In Hybrid Intelligent Systems
(HIS), 2012 12th International Conference on, pages 543–548, 2012.

[10] A. Barmpoutis and G.X. Ritter. Orthonormal basis lattice neural networks.
In Fuzzy Systems, 2006 IEEE International Conference on, pages 331 –336,
2006.

[11] Barnett. The ordering of multivariate data. Journal Of The Royal Statistical
Society Series A General, 139(3):318–355, 1976.

121



122 BIBLIOGRAPHY

[12] Christian F. Beckmann, Marilena DeLuca, Joseph T. Devlin, and Stephen M.
Smith. Investigations into resting-state connectivity using independent com-
ponent analysis. Philosophical Transactions of the Royal Society of London
- Series B: Biological Sciences, 360(1457):1001–1013, 2005.

[13] Garrett Birkhoff. Lattice Theory. American Mathematical Society, 1940.

[14] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[15] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[16] A.L. Buffington, C.A. Hanlon, and M.J. McKeown. Acute and persist-
ent pain modulation of attention-related anterior cingulate fmri activations.
Pain, 113:172–184, 2005.

[17] G. F. Busatto, G. E. J. Garrido, O. P. Almeida, C. C. Castro, C. H. P. Ca-
margo, C. G. Cid, C. A. Buchpiguel, S. Furuie, and C. M. Bottino. A
voxel-based morphometry study of temporal lobe gray matter reductions in
alzheimer’s disease. Neurobiology of Aging, 24(2):221–231, 2003.

[18] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar. A method for mak-
ing group inferences from functional mri data using independent component
analysis. Human Brain Mapping, 14(3):140–151, 2001.

[19] V.D. Calhoun and T. Adali. Unmixing fMRI with independent component
analysis. Engineering in Medicine and Biology Magazine, IEEE, 25(2):79–
90, 2006.

[20] V.D. Calhoun, K.A. Kiehl, P.F. Liddle, and G.D. Pearlson. Aberrant loc-
alization of synchronous hemodynamic activity in auditory cortex reliably
characterizes schizophrenia. Biol. Psych., 55(8):842–849, 2004.

[21] V.D. Calhoun, J.J. Pekar, and G.D. Pearlson. Alcohol intoxication effects on
simulated driving: Exploring alcohol-dose effects on brain activation using
func- tional mri. Neuropsychopharmacology, 29(11):2097–2107, 2004.

[22] Darya Chyzhyk. Bootstrapped dendritic classifiers for alzheimer’s disease
classification on mri features. In Advances in Knowledge-Based and Intelli-
gent Information and Engineering Systems. rontiers in Artificial Intelligence
and Applications (FAIA) series, volume 243, pages 2251–2258. Manuel
Graña, Carlos Toro, Jorge Posada, Robert J, 2012.



BIBLIOGRAPHY 123

[23] Darya Chyzhyk and Manuel Graña. Optimal hyperbox shrinking in dendritic
computing applied to alzheimer’s disease detection in mri. Soft Comput-
ing Models in Industrial and Environmental Applications, 6th International
Conference SOCO 2011, pages 543–550, 2011.

[24] Darya Chyzhyk, Manuel Graña, Alexandre Savio, and Josu Maiora. Hybrid
dendritic computing with kernel-lica applied to alzheimer’s disease detec-
tion in mri. Neurocomputing, 75(1):72–77, 2012.

[25] Darya Chyzyk, Maite Termenon, and Alexandre Savio. A comparison of
vbm results by spm, ica and lica. Hybrid Artificial Intelligence Systems,
pages 429–435, 2010.

[26] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with
active learning. Machine Learning, 15:201–221, 1994.

[27] R. Cameron Craddock, Paul E. Holtzheimer, Xiaoping P. Hu, and Helen S.
Mayberg. Disease state prediction from resting state functional connectivity.
Magnetic Resonance in Medicine, 62(6):1619–1628, 2009.

[28] Marleen de Bruijne, Bram van Ginneken, Max A Viergever, and Wiro J
Niessen. Interactive segmentation of abdominal aortic aneurysms in cta im-
ages. Med Image Anal, 8(2):127–138, Jun 2004.

[29] Stefanie Demirci, Guy Lejeune, and Nassir Navab. Hybrid deformable
model for aneurysm segmentation. In ISBI’09, pages 33–36, 2009.

[30] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A.O. Hero.
Joint bayesian endmember extraction and linear unmixing for hyperspectral
imagery. Signal Processing, IEEE Transactions on, 57(11):4355 –4368, nov.
2009.

[31] N. Dobigeon, J.-Y. Tourneret, and Chein-I Chang. Semi-supervised linear
spectral unmixing using a hierarchical bayesian model for hyperspectral im-
agery. Signal Processing, IEEE Transactions on, 56(7):2684 –2695, jul.
2008.

[32] Nico U. F. Dosenbach, Binyam Nardos, Alexander L. Cohen, Damien A.
Fair, Jonathan D. Power, Jessica A. Church, Steven M. Nelson, Gagan S.
Wig, Alecia C. Vogel, Christina N. Lessov-Schlaggar, Kelly Anne Barnes,



124 BIBLIOGRAPHY

Joseph W. Dubis, Eric Feczko, Rebecca S. Coalson, John R. Pruett,
Deanna M. Barch, Steven E. Petersen, and Bradley L. Schlaggar. Predic-
tion of individual brain maturity using fmri. Science, 329(5997):1358–1361,
2010.

[33] Moti Freiman, Steven J. Esses, Leo Joskowicz, and Jacob Sosna. An It-
erative Model-Constraint Graph-cut Algorithm for Abdominal Aortic An-
eurysm Thrombus Segmentation. In Proc. of the 2010 IEEE Int. Symp. on
Biomedical Imaging: From Nano to Macro (ISBI’10), pages 672–675, Rot-
terdam, The Netherlands, 2010. IEEE.

[34] G. B. Frisoni, C. Testa, A. Zorzan, F. Sabattoli, A. Beltramello, H. Soin-
inen, and M. P. Laakso. Detection of grey matter loss in mild alzheimer’s
disease with voxel based morphometry. Journal of Neurology, Neurosurgery
& Psychiatry, 73(6):657–664, 2002.

[35] K.J. Friston, J.T. Ashburner, S.J. Kiebel, T.E. Nichols, and Penny W.D.
(eds.). Statistical Parametric Mapping, the analysis of functional brain im-
ages. Academic Press, 2007.

[36] K.J. Friston, A.P. Holmes, K.J. Worsley, J.P. Poline, C.D. Frith, and R.S.J.
Frackowiak. Statistical parametric maps in functional imaging: A general
linear approach. Hum. Brain Map., 2(4):189–210, 1995.

[37] M. García-Sebastián, A. Savio, M. Graña, and J. Villanúa. On the use of
morphometry based features for Alzheimer’s Disease detection on MRI.
Bio-Inspired Systems: Computational and Ambient Intelligence. / IWANN
2009 (Part I) Joan Cabestany, Francisco Sandoval, Alberto Prieto, Juan M.
Corchado (Editors), LNCS 5517, pages 957–964, 2009.

[38] E. Geremia, B. Menze, O. Clatz, E. Konukoglu, A. Criminisi, and N. Ay-
ache. Spatial decision forests for ms lesion segmentation in multi-
channel mr images. Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2010, pages 111–118, 2010.

[39] M. Graña, J. Gallego, and C. Hernandez. A single individual evolutionary
strategy for endmember search in hyperspectral images. Information Sci-
ences, 161(3-4):181–197, 2004.



BIBLIOGRAPHY 125

[40] M. Graña. A brief review of lattice computing. In Proc. WCCI 2008, pages
1777–1781, 2008.

[41] M. Graña. Lattice computing in hybrid intelligent systems. In IEEE Press,
editor, Proc. HIS 2012, 2012.

[42] M. Graña, A. Manhaes-Savio, M. García-Sebastián, and E. Fernandez. A
Lattice Computing approach for on-line fMRI analysis. Image and Vision
Computing, 28(7):1155–1161, 2010.

[43] M. Graña, I. Villaverde, J.O. Maldonado, and C. Hernandez. Two lattice
computing approaches for the unsupervised segmentation of hyperspectral
images. Neurocomputing, 72(10-12):2111–2120, 2009.

[44] Manuel Graña and Darya Chyzhyk. Hybrid multivariate morphology using
lattice auto-associative memories for resting-state fmri network discovery.
In Hybrid Intelligent Systems (HIS), 2012 12th International Conference
on, pages 537–542. IEEE, 2012.

[45] Manuel Graña, Darya Chyzhyk, Maite García-Sebastián, and Carmen
Hernández. Lattice independent component analysis for functional mag-
netic resonance imaging. Information Sciences, 181(10):1910–1928, 2011.

[46] Manuel Graña, M. García-Sebastian, I. Villaverde, and E. Fernández. An
approach from lattice computing to fMRI analysis. In LBM 2008 (CLA
2008), Proceedings of the Lattice-Based Modeling Workshop, pages 33–44,
2008.

[47] Manuel Graña, Ivan Villaverde, Ramon Moreno, and Francisco. Albizuri.
Convex coordinates from lattice independent sets for visual pattern recogni-
tion. In VassilisG. Kaburlasos and GerhardX. Ritter, editors, Computational
Intelligence Based on Lattice Theory, volume 67 of Studies in Computa-
tional Intelligence, pages 101–128. Springer Berlin Heidelberg, 2007.

[48] George A. Gratzer. General lattice theory. Academic Press New York, 1978.

[49] M.D. Greicius, G. Srivastava, A.L. Reiss, and V. Menon. Default-mode net-
work activity distinguishes alzheimer’s disease from healthy aging: Evid-
ence from func- tional mri. Proc. Nat. Acad. Sci. U.S.A., 101(13):4637–
4642, 2004.



126 BIBLIOGRAPHY

[50] L. K. Hansen, J. Larsen, and T. Kolenda. Blind detection of independent
dynamic components. In proc. IEEE ICASSP’2001, 5:3197–3200, 2001.

[51] Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Semisuper-
vised SVM batch mode active learning with applications to image retrieval.
ACM Transactions on Information Systems, 27(3):1–29, 2009.

[52] P. Højen-Sørensen, O. Winther, and L.K. Hansen. Mean field approaches to
independent component analysis. Neural Computation, 14:889–918, 2002.

[53] J.J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. Proc. of the National Academy of Sciences,
USA, 79:2554–2558, 1982.

[54] J.J. Hopfield. Neurons with graded response have collective computational
properties like those of two state neurons. Proc. of the National Academy of
Sciences, USA, 81:3088–3092, 1984.

[55] D.W. Hopfield J.J., Tank. Computing with neural circuits. Science, 233:625–
633, 1986.

[56] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis.
John Wiley & Sons, New York, 2001.

[57] J. Iglesias, E. Konukoglu, A. Montillo, Z. Tu, and A. Criminisi. Combining
generative and discriminative models for semantic segmentation of ct scans
via active learning. In Information Processing in Medical Imaging, pages
25–36. Springer, 2011.

[58] Vassilis G Kaburlasos. Towards a unified modeling and knowledge-
representation based on lattice theory: computational intelligence and soft
computing applications, volume 27. Springer, 2006.

[59] Vassilis G Kaburlasos. Granular enhancement of fuzzy-art/som neural clas-
sifyers based on lattice theory. In Computational intelligence based on lat-
tice theory, pages 3–23. Springer Berlin Heidelberg, 2007.

[60] Vassilis G Kaburlasos and Gerhard X Ritter, editors. Computational In-
telligence Based on Lattice Theory, Studies in Computational Intelligence,
volume 67. Springer, Heidelberg, Germany, 2007.



BIBLIOGRAPHY 127

[61] N. Keshava and J.F. Mustard. Spectral unmixing. Signal Processing
Magazine, IEEE, 19(1):44 –57, jan. 2002.

[62] T. Kohonen. Correlation matrix memory. IEEE Trans. on Computers, C-
21:353–359, 1972.

[63] T. Kohonen. Self-Organization and Associative Memories. Springer-Verlag,
Berlin, 1987.

[64] N. Kriegeskorte, W.K. Simmons, P.S.F. Bellgowan, and C.I. Baker. Circular
analysis in systems neuroscience: the dangers of double dipping. Nature
Neuroscience, 12:535 – 540, 2009.

[65] C.L. Lawson and H.J. Hanson. Solving least squares problems. Prentice-
Hall, (1974) Englewoods Cliffs NJ, 1974.

[66] David Lesage, Elsa D. Angelini, Isabelle Bloch, and Gareth Funka-Lea. A
review of 3d vessel lumen segmentation techniques: Models, features and
extraction schemes. Medical Image Analysis, 13(6):819 – 845, 2009. In-
cludes Special Section on Computational Biomechanics for Medicine.

[67] Jiang Li. Wavelet-based feature extraction for improved endmember abund-
ance estimation in linear unmixing of hyperspectral signals. Geoscience and
Remote Sensing, IEEE Transactions on, 42(3):644 – 649, mar. 2004.

[68] Dongqiang Liu, Chaogan Yan, Juejing Ren, Li Yao, Vesa J. Kiviniemi, and
Yufeng Zang. Using coherence to measure regional homogeneity of resting-
state fmri signal. Frontiers in Systems Neuroscience, 4:24, 2010.

[69] Yong Liu, Kun Wang, Chunshui YU, Yong Hea, Yuan Zhoua, Meng Liang,
Liang Wang, and Tianzi Jiang. Regional homogeneity, functional connectiv-
ity and imaging markers of alzheimer’s disease: A review of resting-state
fmri studies. Neuropsychologia, 46:1648–1656, 2008.

[70] I Macia, M. Graña, and C. Paloc. Knowledge management in image-based
analysis of blood vessel structures. Knowledge and Information Systems,
30(2):457–491, 2012.

[71] J. Maiora, B. Ayerdi, and M. Graña. Random forest active learning for
computed tomography angiography image segmentation. Neurocomputing,
inpress, 2013.



128 BIBLIOGRAPHY

[72] Josu Maiora and Manuel Graña. Abdominal cta image analisys through
active learning and decision random forests: Aplication to aaa segmentation.
In IJCNN, pages 1–7, 2012.

[73] Daniel S Marcus, Tracy H Wang, Jamie Parker, John G Csernansky, John C
Morris, and Randy L Buckner. Open access series of imaging studies
(OASIS): cross-sectional MRI data in young, middle aged, nondemented,
and demented older adults. Journal of Cognitive Neuroscience, 19(9):1498–
1507, September 2007.

[74] G. Matheron. Random sets and integral geometry. Wiley series in prob-
ability and mathematical statistics: Probability and mathematical statistics.
Wiley, 1975.

[75] Gianluca Mingoia, Gerd Wagner, Kerstin Langbein, Sigrid Scherpiet, Ralf
Schloesser, Christian Gaser, Heinrich Sauer, and Igor Nenadic. Altered
default-mode network activity in schizophrenia: a resting state fmri study.
Schizophrenia Research, 117(2-3):355 – 356, 2010. 2nd Biennial Schizo-
phrenia International Research Conference.

[76] Pabitra Mitra, B. Uma Shankar, and Sankar K. Pal. Segmentation of multis-
pectral remote sensing images using active support vector machines. Pattern
Recognition Letters, 25(9):1067 – 1074, 2004.

[77] L. Molgedey and H. Schuster. Separation of independent signals using time-
delayed correlations. Physical Review Letters, 72(23):3634–3637, 1994.

[78] H.-P. Muller, E. Kraft, A. Ludolph, and S.N. Erne. New methods in fmri
analysis. Engineering in Medicine and Biology Magazine, IEEE, 21(5):134–
142, Sep/Oct 2002.

[79] Georg Northoff, Niall W. Duncan, and Dave J. Hayes. The brain and its rest-
ing state activity–experimental and methodological implications. Progress
in Neurobiology, 92(4):593 – 600, 2010.

[80] SD Olabarriaga, JM Rouet, M Fradkin, M Breeuwer, and WJ Niessen. Seg-
mentation of thrombus in abdominal aortic aneurysms from cta with non-
parametric statistical grey level appearance modeling. IEEE Transactions
On Medical Imaging, 24(4):477–485, APR 2005.



BIBLIOGRAPHY 129

[81] Swarnajyoti Patra and Lorenzo Bruzzone. A cluster-assumption based batch
mode active learning technique. Pattern Recognition Letters, 33(9):1042 –
1048, 2012.

[82] J.J. Pekar. A brief introduction to functional mri. Engineering in Medicine
and Biology Magazine, IEEE, 25(2):24–26, March-April 2006.

[83] Francisco Pereira, Tom Mitchell, and Matthew Botvinick. Machine learning
classifiers and fMRI: A tutorial overview. NeuroImage, 45(1, Supplement
1):S199 – S209, 2009. Mathematics in Brain Imaging.

[84] I. Pitas and P. Tsakalides. Multivariate ordering in color image filtering.
IEEE Transactions on Circuits and Systems for Video Technology, 1(3):247–
259, 295–6, September 1991.

[85] B. Raducanu, M. Graña, and X. Albizuri. Morphological scale spaces and
associative morphological memories: results on robustness and practical ap-
plications. J. Math. Imaging and Vision, 19(2):113–122, 2003.

[86] Diaz de Leon D.L. Sussner P. Ritter, G.X. Morphological bidirectional as-
sociative memories. Neural Networks, 12:851–867, 1999.

[87] G. X. Ritter, J. L. Diaz de Leon, and P. Sussner. Morphological bidirectional
associative memories. Neural Networks, 12(6):851 – 867, 1999.

[88] G. X. Ritter and P. Sussner. Associative memories based on lattice algebra.
In IEEE International Conference on Systems Man, and Cybernetics, pages
3570–3575. Orlando, Fl, 1997.

[89] G. X. Ritter, P. Sussner, and Diaz-de-Leon, J. L. Morphological associative
memories. Neural Networks, IEEE Transactions on, 9(2):281–293, 1998.

[90] G. X. Ritter and G. Urcid. Lattice Algebra Approach to Endmember Determ-
ination in Hyperspectral Imagery, volume 160, pages 113–169. Academic
Press: Burlington, Massachusetts, 2010.

[91] Gerhard Ritter and Paul Gader. Fixed points of lattice transforms and lattice
associative memories. volume 144 of Advances in Imaging and Electron
Physics, pages 165 – 242. Elsevier, 2006.



130 BIBLIOGRAPHY

[92] Gerhard X. Ritter, Gonzalo Urcid, and Laurentiu Iancu. Reconstruc-
tion of patterns from noisy inputs using morphological associative memor-
ies. Journal of Mathematical Imaging and Vision, 19:95–111, 2003.
10.1023/A:1024773330134.

[93] Gerhard X. Ritter, Gonzalo Urcid, and Mark S. Schmalz. Autonom-
ous single-pass endmember approximation using lattice auto-associative
memories. Neurocomputing, 72(10-12):2101 – 2110, 2009. Lattice Com-
puting and Natural Computing (JCIS 2007) / Neural Networks in Intelligent
Systems Designn (ISDA 2007).

[94] GerhardX. Ritter and Gonzalo Urcid. Learning in lattice neural net-
works that employ dendritic computing. In VassilisG. Kaburlasos and Ger-
hardX. Ritter, editors, Computational Intelligence Based on Lattice Theory,
volume 67 of Studies in Computational Intelligence, pages 25–44. Springer
Berlin Heidelberg, 2007.

[95] G.X. Ritter and L. Iancu. Single layer feedforward neural network based on
lattice algebra. In Neural Networks, 2003. Proceedings of the International
Joint Conference on, volume 4, pages 2887 – 2892 vol.4, jul. 2003.

[96] G.X. Ritter and L. Iancu. A morphological auto-associative memory based
on dendritic computing. In Neural Networks, 2004. Proceedings. 2004 IEEE
International Joint Conference on, volume 2, pages 915 – 920 vol.2, jul.
2004.

[97] G.X. Ritter, L. Iancu, and G. Urcid. Morphological perceptrons with dend-
ritic structure. In Fuzzy Systems, 2003. FUZZ ’03. The 12th IEEE Interna-
tional Conference on, volume 2, pages 1296 – 1301 vol.2, may. 2003.

[98] G.X. Ritter and M.S. Schmalz. Learning in lattice neural networks that
employ dendritic computing. In Fuzzy Systems, 2006 IEEE International
Conference on, pages 7 –13, 2006.

[99] G.X. Ritter and G. Urcid. Lattice algebra approach to single-neuron com-
putation. Neural Networks, IEEE Transactions on, 14(2):282 – 295, mar.
2003.



BIBLIOGRAPHY 131

[100] Urcid-G. Ritter, G.X. Perfect recovery from noisy input patterns with a
dendritic lattice associative memory. In International Joint Conference on
Neural Networks (IEEE/INNS), pages 503–510. San Jose, CA, 2011.

[101] A. Savio, M. García-Sebastián, M. Graña, and J. Villanúa. Results of an
adaboost approach on Alzheimer’s Disease detection on MRI. Bioinspired
applications in Artificial and Natural Computation. J. Mira, J. M. Ferrán-
dez, J.R. Alvarez, F. dela Paz, F.J. Tolede (Eds.) LNCS 5602, pages 114–123,
2009.

[102] A. Savio, M. García-Sebastián, C. Hernández, M. Graña, and J. Villanúa.
Classification results of artificial neural networks for Alzheimer’s Disease
detection. Intelligent Data Engineering and Automated Learning- IDEAL
2009, Emilio Corchado, Hujun Yin (eds) LNCS 5788, pages 641–648, 2009.

[103] A Savio, MT García-Sebastián, D Chyzhyk, C Hernandez, M Graña, A Sis-
tiaga, A Lopez de Munain, and J Villanúa. Neurocognitive disorder detec-
tion based on feature vectors extracted from vbm analysis of structural mri.
Computers in biology and medicine, 41(8):600–610, 2011.

[104] R. I. Scahill, J. M. Schott, J. M. Stevens, M. N. Rossor, and N. C. Fox. Map-
ping the evolution of regional atrophy in alzheimer’s disease: Unbiased ana-
lysis of fluid-registered serial MRI. Proceedings of the National Academy
of Sciences, 99(7):4703, 2002.

[105] J. Serra. Image Analysis and Mathematical Morphology, Volume 1 (Image
Analysis & Mathematical Morphology Series). Academic Press, February
1984.

[106] J. Serra. Image Analysis and Mathematical Morphology, Vol. 2: Theoretical
Advances. Academic Press, 1st edition, February 1988.

[107] J. Serra. Anamorphoses and function lattices. volume 2030, pages 2–11.
SPIE, 1993.

[108] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[109] Ann K. Shinn, Justin T. Baker, Bruce M. Cohen, and Dost Ongur. Functional
connectivity of left heschl’s gyrus in vulnerability to auditory hallucinations
in schizophrenia. Schizophrenia Research, 143(2-3):260 – 268, 2013.



132 BIBLIOGRAPHY

[110] K. Steinbuch. Automat und Mensch. Second Edition, Springer Verlag,
Heidelberg, 1963.

[111] K. Steinbuch. Automat und Mensch. Third Edition, Springer Verlag, Heidel-
berg, 1965.

[112] Piske U.A.W. Steinbuch, K. Learning matrices and their applications. IEEE
Trans. on Electronic Computers, pages 846–862, 1963.

[113] P. Sussner and M.E. Valle. Gray-scale morphological associative memories.
IEEE trans. Neural Networks, 17(3):559–570, 2006.

[114] M. Termenon and M. Graña. A two stage sequential ensemble applied to
the classification of alzheimer’s disease based on mri features. Neural Pro-
cessing Letters, 35(1):1–12, 2012.

[115] D. Tuia, E. Pasolli, and W.J. Emery. Using active learning to adapt remote
sensing image classifiers. Remote Sensing of Environment, 115(9):2232–
2242, 2011.

[116] D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari. A survey of
active learning algorithms for supervised remote sensing image classifica-
tion. Selected Topics in Signal Processing, IEEE Journal of, 5(3):606 –617,
june 2011.

[117] G. Urcid, G.X. Ritter, and J.-C.N. Valdiviezo. Grayscale image recall from
imperfect inputs with a two layer dendritic lattice associative memory. In
Nature and Biologically Inspired Computing (NaBIC), 2011 Third World
Congress on, pages 261–266, 2011.

[118] G. Urcid and J.C. Valdiviezo. Generation of lattice independent vector sets
for pattern recognition applications. In Mathematics of Data/Image Pattern
Recognition, Compression, Coding, and Encryption X with Applications,
volume 6700, pages 1–12. Proc of SPIE, 2007.

[119] Martijn P. van den Heuvel and Hilleke E. Hulshoff Pol. Exploring the brain
network: A review on resting-state fmri functional connectivity. European
Neuropsychopharmacology, 20(8):519 – 534, 2010.



BIBLIOGRAPHY 133

[120] S. Velasco-Forero and J. Angulo. Supervised ordering in Rp: Application to
morphological processing of hyperspectral images. IEEE Transactions on
Image Processing, 20(11):3301–3308, November 2011.

[121] A. Vercammen, H. Knegtering, J.A. den Boer, E. J. Liemburg, and A. Ale-
man. Auditory hallucinations in schizophrenia are associated with reduced
functional connectivity of the temporo-parietal area. Biological Psychiatry,
67(10):912 – 918, 2010. Anhedonia in Schizophrenia.

[122] W Xiong, Y-O Li, H. Li, T. Adali, and V. D Calhoun. On ICA of complex-
valued fMRI: advantages and order selection. In Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference on,
pages 529–532, 2008.

[123] Zhijian Yao, Li Wang, Qing Lu, Haiyan Liu, and Gaojun Teng. Regional ho-
mogeneity in depression and its relationship with separate depressive symp-
tom clusters: A resting-state fmri study. Journal of Affective Disorders,
115(3):430 – 438, 2009.

[124] M. Yaqub, M. Javaid, C. Cooper, and J. Noble. Improving the classifica-
tion accuracy of the classic rf method by intelligent feature selection and
weighted voting of trees with application to medical image segmentation.
Machine Learning in Medical Imaging, pages 184–192, 2011.

[125] Yuan Zhou, Meng Liang, Tianzi Jiang, Lixia Tian, Yong Liu, Zhening Liu,
Haihong Liu, and Fan Kuang. Functional dysconnectivity of the dorsolat-
eral prefrontal cortex in first-episode schizophrenia using resting-state fmri.
Neuroscience Letters, 417(3):297 – 302, 2007.

[126] Yuan Zhou, Ni Shu, Yong Liu, Ming Song, Yihui Hao, Haihong Liu, Chun-
shui Yu, Zhening Liu, and Tianzi Jiang. Altered resting-state functional
connectivity and anatomical connectivity of hippocampus in schizophrenia.
Schizophrenia Research, 100(1-3):120 – 132, 2008.

[127] F. Zhuge, G. D. Rubin, S. H. Sun, and S. Napel. An abdominal aortic an-
eurysm segmentation method: Level set with region and statistical informa-
tion. Medical Physics, 33(5):1440–1453, 2006.

[128] Qi-Hong Zou, Chao-Zhe Zhu, Yihong Yang, Xi-Nian Zuo, Xiang-Yu Long,
Qing-Jiu Cao, Yu-Feng Wang, and Yu-Feng Zang. An improved approach



134 BIBLIOGRAPHY

to detection of amplitude of low-frequency fluctuation (alff) for resting-state
fmri: Fractional alff. Journal of Neuroscience Methods, 172(1):137 – 141,
2008.


