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Abstract. Detection of Alzheimer's disease on brain Magnetic Reso-
nance Imaging (MRI) is a highly sought goal in the Neurosciences. We
used four di�erent models of Arti�cial Neural Networks (ANN): Back-
propagation (BP), Radial Basis Networks (RBF), Learning Vector Quan-
tization Networks (LVQ) and Probabilistic Neural Networks (PNN) to
perform classi�cation of patients of mild Alzheimer's disease vs. control
subjects. Features are extracted from the brain volume data using Voxel-
based Morphometry (VBM) detection clusters. The voxel location detec-
tion clusters given by the VBM were applied to select the voxel values
upon which the classi�cation features were computed. We have evaluated
feature vectors computed from the GM segmentation volumes using the
VBM clusters as voxel selection masks. The study has been performed
on MRI volumes of 98 females, after careful demographic selection from
the Open Access Series of Imaging Studies (OASIS) database, which is
a large number of subjects compared to current reported studies.

Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder, which is one of the
most common cause of dementia in old people. Currently, due to the socioeco-
nomic importance of the disease in occidental countries it is one of the most
studied. The diagnosis of AD can be done after the exclusion of other forms
of dementia but a de�nitive diagnosis can only be made after a post-mortem
study of the brain tissue. This is one of the reasons why early diagnosis based
on Magnetic Resonance Imaging (MRI) is a current research hot topic in the
neurosciences.

Morphometry analysis has become a common tool for computational brain
anatomy studies. It allows a comprehensive measurement of structural di�erences
within a group or across groups, not just in speci�c structures, but throughout
the entire brain. Voxel-based Morphometry (VBM) is a computational approach
to neuroanatomy that measures di�erences in local concentrations of brain tissue
through a voxel-wise comparison of multiple brain images [1]. For instance, VBM
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has been applied to study volumetric atrophy of the grey matter (GM) in areas
of neocortex of AD patients vs. control subjects [2,17,6]. The procedure involves
the spatial normalization of subject images into a standard space, segmentation
of tissue classes using a priori probability maps, smoothing to correct noise and
small variations, and voxel-wise statistical tests. Statistical analysis is based on
the General Linear Model (GLM) to describe the data in terms of experimental
and confounding e�ects, and residual variability. Classical statistical inference is
used to test hypotheses that are expressed in terms of GLM estimated regression
parameters. This computation of given contrast provides a Statistical Parametric
Map (SPM), which is thresholded according to the Random Field theory.

Machine learning methods have become very popular to classify functional
or structural brain images to discriminate them into normal or a speci�c neu-
rodegenerative disorder. The Arti�cial Neural Networks (ANN) used for this
study were the Feedforward Networks (sometimes called Multilayer Perceptron)
trained with the Backpropagation of errors algorithm (BP), Radial Basis Net-
works (RBF), Learning Vector Quantization (LVQ) and Probabilistic Neural
Networks (PNN) [9]. The Support Vector Machine (SVM) both with linear [11]
and non-linear [13] kernels have been tested in a previous work for the same task
[7]. There are di�erent ways to extract features from MRI for classi�cation: based
on morphometric methods [4], based on regions of interest (ROI) [14,13] or GM
voxels in automated segmentation images [11]. Our approach is to use the VBM
detected clusters as a mask on the Grey Matter (GM) segmentation images to
select the potentially most discriminating voxels. Feature vectors for classi�ca-
tion are either the voxel values or some summary statistics of each cluster. We
considered the feature vector computed from all the VBM clusters together.

A work using ANNs and VBM for AD detection have been reported in [10],
where a single three-layer, feed-forward ANN trained with a backpropagation
algorithm was used as a classi�er over a small set of unpublished proprietary
MRI data. They perform data dimensionality reduction applying a Principal
Component Analysis (PCA) to improve the e�ciency of the classi�er. Although
their results can not be reproduced, this work con�rms that the approach that
we follow is a promising avenue of research.

Section 1 gives a description of the subjects selected for the study, the image
processing, feature extraction details and the classi�er system. Section 1 gives
our classi�cation performance results and section 1 gives the conclusions of this
work and further research suggestions.

Materials and Methods

Subjects Ninety eight right-handed women (aged 65-96 yr) were selected from
the Open Access Series of Imaging Studies (OASIS) database (http://www.oasis-
brains.org) [15]. OASIS data set has a cross-sectional collection of 416 subjects
covering the adult life span aged 18 to 96 including individuals with early-stage
Alzheimer's Disease. We have ruled out a set of 200 subjects whose demographic,
clinical or derived anatomic volumes information was incomplete. For the present



study there are 49 subjects who have been diagnosed with very mild to mild AD
and 49 non-demented. A summary of subject demographics and dementia status
is shown in table 1.

Very mild to mild AD Normal

No. of subjects 49 49
Age 78.08 (66-96) 77.77 (65-94)

Education 2.63 (1-5) 2.87 (1-5)
Socioeconomic status 2.94 (1-5) 2.88 (1-5)
CDR (0.5 / 1 / 2) 31 / 17 / 1 0

MMSE 24 (15-30) 28.96 (26-30)
Table 1. Summary of subject demographics and dementia status. Education codes
correspond to the following levels of education: 1 less than high school grad., 2: high
school grad., 3: some college, 4: college grad., 5: beyond college. Categories of socioe-
conomic status: from 1 (biggest status) to 5 (lowest status). MMSE score ranges from
0 (worst) to 30 (best).

Imaging protocol Multiple (three or four) high-resolution structural T1-weighted
magnetization-prepared rapid gradient echo (MP-RAGE) images were acquired
[5] on a 1.5-T Vision scanner (Siemens, Erlangen, Germany) in a single imaging
session. Image parameters: TR= 9.7 msec., TE= 4.0 msec., Flip angle= 10, TI=
20 msec., TD= 200 msec., 128 sagittal 1.25 mm slices without gaps and pixels
resolution of 256×256 (1×1mm).

Image processing and VBM We have used the average MRI volume for each
subject, provided in the OASIS data set. These images are already registered
and re-sampled into a 1-mm isotropic image in atlas space and the bias �eld
has been already corrected [15]. The Statistical Parametric Mapping (SPM5)
(http://www.�l.ion.ucl.ac.uk/spm/) was used to compute the VBM which gives
us the spatial mask to obtain the classi�cation features. Images were reoriented
into a right-handed coordinate system to work with SPM5. The tissue segmenta-
tion step does not need to perform bias correction. We performed the modulation
normalization for GM, because we are interested in this tissue for this study. We
performed a spatial smoothing before performing the voxel-wise statistics, set-
ting the Full-Width at Half-Maximum (FWHM) of the Gaussian kernel to 10mm
isotropic. A GM mask was created from the average of the GM segmentation
volumes of the subjects under study. Thresholding the average GM segmenta-
tion, we obtain a binary mask that includes all voxels with probability greater
than 0.1 in the average GM segmentation volume. This interpretation is not
completely true, since the data is modulated, but it is close enough for the mask
to be reasonable. We designed the statistical analysis as a Two-sample t-test in
which the �rst group corresponds with AD subjects. In SPM software terms:



the contrast has been set to [-1 1], a right-tailed (groupN > groupAD), correc-
tion FWE, p-value=0.05. The VBM detected clusters are used for the feature
extraction for the classi�cation procedures.

Backpropagation Backward propagation of errors or Backpropagation (BP)
[16,9,8] is a supervised learning method, and it is a non-linear generalization
of the squared error gradient descent learning rule for updating the weights of
the arti�cial neurons in a single-layer perceptron, generalized to feed-forward
networks . Backpropagation requires that the activation function used by the
arti�cial neurons (or "nodes") is di�erentiable with its derivative being a simple
function of itself. The backpropagation of the error allows to compute the gra-
dient of the error function relative to the hidden units. It is analytically derived
using the chain rule of calculus. In on-line learning the weights of the network
are updated at each input data item presentation. We have used the resilient
backpropagation, which uses only the derivative sign to perform the weight up-
dating.

Radial Basis Function Networks Radial basis function networks (RBF) [3]
are ANN that use radial basis functions as activation functions. RBF's consist of
a two layer neural network, where each hidden unit implements a radial activated
function. The output units compute a weighted sum of hidden unit outputs.
Training consists of the unsupervised training of the hidden units followed by
the supervised training of the output units' weights.

Probabilistic Neural Networks A Probabilistic Neural Network (PNN) [19]
is a special type of neural network that uses a kernel-based approximation to form
an estimate of the probability density function of categories in a classi�cation
problem. The distance is computed from the point being evaluated to each of the
other points, and a radial basis function (RBF) (the mentioned kernel function)
is applied to the distance to compute the weight (in�uence) for each point.

Di�erent types of radial basis functions could be used, but the most com-
mon is the Gaussian function. The sigma value of the function determines the
spread of the RBF function; that is, how quickly the function declines as the
distance increased from the point. With larger sigma values the function has
more spread, so that distant points have a greater in�uence. PNN are a kind of
Nearest Neighbor classi�er that uses all the data samples as reference values, the
only functional transformation is the computation of the posterior probability of
the classes as a combination (sum/average) of the evidence given by each data
sample through its RBF window.

The tuning of a PNN network depends on selecting the optimal sigma value
of the spread of the RBF functions. In this paper an exhaustive search for the
optimal spread value in the range (0, 1) for each training set has been done. The
results shown in Table 4 correspond to the best spread value found.



Learning Vector Quantization Learning vector quantization (LVQ) [12,18]
provides a method for training competitive layers in a supervised manner. The
system is composed of an unsupervisedly trained competitive layer which per-
forms a partitioning of the input space. The supervisedly trained output layer
provides the labeling of the input data according to its belonging to an input
region (crisp clustering) or to its degree of membership (soft clustering). In the
original proposition of the LVQ, the competitive units were cluster centers with
the Euclidean distance as the similitude measure. Training of the competitive
units can be performed by Kohonen's Self Organizing Map. Supervised training
was simply the assignment of a label to a competitive unit according to a major-
ity voting on the data samples falling in the partition corresponding to the unit.
LVQ provides �ne tuning of the competitive units using class information. The
basic versions proposed by Kohonen are known as the LVQ1 and LVQ2. Both
start with the unsupervised learning of the competitive units, and its initial ma-
jority voting labeling. In the LVQ1 a supervised training is performed as follows:
for each data sample we compare its label with the one of its corresponding com-
petitive unit, if the labels match (the data item is correctly classi�ed) then the
competitive unit is moved towards the input data sample, otherwise it is moved
in the opposite direction. This rule may cause an unstable and oscillatory be-
havior if the discriminant boundary among classes is very complex. The LVQ2
rule is proposed to improve the learning, sometimes it is recommended to apply
it after the LVQ1. In LVQ2, for each input data sample we �nd the two closest
competitive units. If one correctly classi�es the input and the other belongs to a
wrong class, and the input data lies in a window around the mid-plane between
them, then the correct class unit is moved towards the input and the incorrect
unit is moved away from the input. We have used the simplest implementations.
Other variations using di�erent similitude measures and algorithms to assign the
labels to the output units, can be found in the literature.

Feature extraction We have tested two di�erent feature vector extraction pro-
cesses, based on the voxel location clusters detection obtained from the VBM
analysis. The features were extracted from the output volumes of the segmenta-
tion step in the VBM analysis, they are a GM density volume for each subject.

1. The �rst feature extraction process computes the mean and standard devi-
ation of the GM voxel values of each voxel location cluster, we denote these
features as MSD in the result tables given below.

2. The second feature feature extraction process computes a very high dimen-
sional vector with all the GM segmentation values for the voxel locations
included in each VBM detected cluster. The voxel values were ordered in
this feature vector according to the coordinate lexicographical ordering. We
denote these features as VV in the result tables below.



Results

We evaluated the performance of the classi�ers built with the diverse training and
architecture strategies using 10 times the 10-fold cross-validation methodology.
In this section we present for each experiment the following data: the number of
features extracted from each subject, classi�cation accuracy, sensitivity, which is
related to AD patients and speci�city, which is related to control subjects. The
results shown are the mean values of the classi�cation results from the 10-fold
crossvalidation process, also the standard deviation (stdev) is shown. We will
give results of each di�erent classi�ers: Backpropagation (Table 2), RBF (Table
3), PNN (Table 4), LVQ1 (Table 5) and LVQ2 (6).

The best accuracy result (Table 6) is 83% with the LVQ2, but this result is
not far from the results of LVQ1 and PNN. Which is a very encouraging result,
given that we have not removed �di�cult� subjects from the data collection.
Regarding the usefulness of the features extracted, it is di�cult to make an
assessment, because some algorithms work better with VV than with MSD, and
other have the inverse performance. Training and validation on MSD features
is obviously more time e�cient, and the best result corresponds to this feature
extraction process.

Feature extracted #Features #Hidden units %Accuracy Sensitivity Speci�city

MSD 24 10 78.0 (0.12) 0.69 (0.14) 0.88 (0.13)

VV 3611 10 78.0 (0.11) 0.72 (0.17) 0.84 (0.18)

Table 2. Classi�cation results with a BP network with resilient backpropagation. Mean (Standard

deviation) of 10 crossvalidation.

Feature extracted #Features Spread %Accuracy Sensitivity Speci�city

MSD 24 0.02 66.00 (0.13) 0.65 (0.24) 0.68 (0.14)

VV 3611 0.852 72.5 (0.10) 0.65 (0.21) 0.80 (0.17)

Table 3. Classi�cation results with a RBF network. Mean (Standard deviation) of 10 crossvalida-

tion.

Feature extracted #Features Spread %Accuracy Sensitivity Speci�city

MSD 24 0.02; 77.8 (0.09) 0.62 (0.14) 0.94 (0.1)

VV 3611 0.852 74.2 (0.14) 0.68 (0.20) 0.81 (0.17)

Table 4. Classi�cation results with a PNN network. Mean (Standard deviation) of 10 crossvalida-

tion.



Feature extracted #Features #Hidden units %Accuracy Sensitivity Speci�city

MSD 24 10 81.0 (0.18) 0.72 (0.27) 0.90 (0.14)

VV 3611 10 79.3 (0.13) 0.76 (0.23) 0.82 (0.19)

Table 5. Classi�cation results with a LVQ1 network . Network training parameters:MSD: 200

epochs, goal: 0.01 and learning rate: 0.01; VV : 150 epochs, goal: 0.10 and learning rate: 0.010.Mean

(Standard deviation) of 10 crossvalidation.

Feature extracted #Features #Hidden units % Accuracy Sensitivity Speci�city

MSD 24 10 83.0 (0.12) 0.74 (0.23) 0.92 (0.1)

VV 3611 10 77.0 (0.15) 0.76 (0.23) 0.78 (0.17)

Table 6. Classi�cation results with a LVQ2 network . Network training parameters: MSD: 200

epochs, goal: 0.01 and learning rate: 0.01; VV : 50 epochs, goal: 0.01 and learning rate: 0.005. Mean

(Standard deviation) of 10 crossvalidation.

Conclusions

In this work we have studied several ANN classi�ers applied to classify MRI
volumes of AD patients and normal subjects. The feature extraction processes
is based on VBM analysis. After examining di�erent designs for the SPM of the
VBM we have found that the basic GLM design without covariates can detect
subtle changes between AD patients and controls that lead to the construction
of ANN classi�ers with a discriminative accuracy of 83% in the best case in table
6.

A result of 83% of accuracy is really encouraging considering the number
of subjects in the database. Improvements could be obtained using Adaptive
Boosting including di�erent types of ANNs and Support Vector Machines. The
problem we have found is that the subjects wrongly classi�ed maybe the most
critical ones: old control subjects classi�ed as AD (FP) and subjects with a very
early or mild dementia classi�ed as normal (FN), exactly the ones which are the
target in these studies that try to perform early detection of AD. Further work
may address the use of disease speci�c templates or other type of morphometric
measures, such as Deformation-based Morphometry.
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