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Abstract

The thesis has a main application topic, directly related to face based biometric
identification, which proceeds in two substantial steps, first face localization in the
image, second face classification based on features extracted from the image. Re-
garding face localization, we have focused on the problem of skin identification in a
novel imaging device, namely the hyperspectral cameras that allow a fine sampling
of the light spectrum, so that the information gathered at each pixel is a high di-
mensional vector. The problem can be treated as classification problem, where we
have proposed the use of active learning strategies to provide an interactive robust
solution able to provide high accuracy in a short training/testing cycle. Also it can
be treated from the point of view of spectral unmixing, wher endmember induc-
tion algorithms find close representatives for the decomposition of the image into
regions of high abundance of skin-related spectra. Of special interest is the con-
tribution in this thesis regarding the application of lattice computing algorithms
for endmember induction, which are combined with sparsity numerical methods
in order to perform endmember selection which competitive with other classical
algorithms in terms of quality of skin detection. Regarding face recognition, we
have contributed new methods for feature extraction, based on lattice computing
algorithms and hybridizations with linear techniques, as well as the robust applica-
tion of extreme learning machines, as a new paradigm of artificial neural networks.
Experimental results on benchmark databases are competitive with state of the art
approaches.
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Chapter 1

Introduction

This introductory chapter is aimed to provide a quick overlook of the thesis. It
provides the motivation and an overview of the Thesis contents in Section 1.1.
Section 1.2 lists the contributions of the Thesis. 1.3 enumerates the publications
achieved along the works. Section 1.4 describes the actual contents of the chapters
in the Thesis.

1.1 Motivation

The works leading to the realization of this thesis have been a meandering path
of collaborations, as can be quickly ascertained perusing through the list of pub-
lications. The main thread of these collaborations and publications have been the
application of Machine Learning approaches to image processing, though some
tangential works, such as reward prediction in Multi-Agent Reinforcement Learn-
ing or the modeling of subconscious social intelligence, have also ended in suc-
cessful collaboration and publications. At the time of writing this thesis, the aim
has been to focus on what we believe are the most relevant lines of work. There-
fore, the thesis has a practical approach focused on contributing on the following
Artificial Intelligence applications:

* Detection of the presence of humans on images, specifically hyperspectral
images

* Biometrics: Human identification via face recognition using Machine Learn-
ing algorithms.

The works presented here lead to new computational methods to achieve better face
recognition under dire circumstances and to enable person detection using hyper-
spectral imagery. From the point of view of computational innovations, the thesis



2 CHAPTER 1. INTRODUCTION

follows the line of research of the Computational Intelligence Group on the devel-
opment of Lattice Computing algorithms and applications, specifically for hyper-
spectral image unmixing and feature extraction in grayscale images. Another big
research interest of the thesis has been the application of a relatively new approach
to neural network training, that of Extreme Learning Machines.

1.1.1 Person detection

Detection of people is a practical need in many circumstances. A good example is
survivor detection after natural disasters. In that kind of scenario, relying on nor-
mal photography and classical computer vision techniques may not be enough. The
work presented here proposes the use of hyperspectral imagery to solve this task.
However, there is a notable lack of publicly -even privately- available databases
useful for this task. Therefore, we have laid and followed an experimental pipeline
that starts collecting and preprocessing the data and ends proposing effective com-
putational tools.

Appendix A explains the hyperspectral image capture process as well as the
preprocessing steps leading to the collection of the experimental dataset used in
this thesis. Then, the research forks into two main goals:

* Developing semi-supervised Active Learning techniques that allow us to la-
bel the data. These experiments simultaneously demonstrated that skin can
in fact be segmented in hyperspectral images. We proposed a uncertainty
measure to be used by an ensemble of classifiers in order to select the most
interesting samples. This allowed to quickly and consistently segment the
skin regions of the data.

* Studying endmember induction and unmixing techniques. We have throughly
explored the state of the art endmember induction algorithms and compared
them with the Lattice Computing methods. This works also proposes a end-
member selection method that reduces the dimensionality of the output from
Lattice Auto Associative Memories (LAAM).

These two lines of research allowed to conclude that we can perform skin detec-
tion on hyperspectral images. Moreover, lattice methods show equal if not better
performance compared to classic algorithms.

1.1.2 Face recognition

Face recognition [22] is one of the most relevant applications of image analysis.
The challenge to build an automated system which equals human ability to recog-
nize faces has been a central case study in Artificial Intelligence since its inception.
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Many industrial applications, most of them in the security field, require increasing
system accuracy and robustness. Two main problems have been identified in face
recognition: (1) face authentication, which is a binary classification problem, stated
as providing confirmation that a user is who claims to be, and (2) face identification,
which is a multiclass classification problem stated as the finding the identity of a
user searching through a face image database corresponding to many potential user
identities. This Thesis works focus on the face identification problem. This initial
problem can be extended to gaze, expression or mood recognition [122]. Taken
as pattern recognition problem, face recognition provides a perfect benchmarking
framework to test feature extraction techniques and classifiers.

There are many challenges facing the classic yet unsolved problem of face
recognition. The real life applications usually record face data under less that ideal
circumstances. This challenge calls for versatile methods. This Thesis is focused
on developing Lattice Computing techniques that no only are suitable for recogniz-
ing faces, but also can overcome the problems common in unbalanced databases.
The computational techniques that make use of lattice algebra are not mainstream.
They have been used mainly in three or four dimensional data, e.g hyperspectral
or medical imagery. Therefore, the practical problem at hand has been tackled
using Lattice Computing techniques and studying the fusion of Lattice and linear
techniques.

Feature Extraction.

This Thesis has studied feature extraction techniques based on Lattice Computing.
We have used Lattice Independent Component Analysis (LICA), and developed
a linear-lattice feature fusion scheme that improves face recognition. We have
studied the interplay between these linear and lattice feature extraction methods
empirically, obtaining promising results. We present a fusion of feature extraction
methods that greatly improves recognition.

Classification.

Another novel computational tool are Extreme Learning Machines (ELMs). They
are fast and accurate Neural Network learning tools. For the first time, we have
explored ELMs capabilties for face recognition, showing very good performance.
Moreover, we have combined the Lattice Computing algorithms with ELMs, de-
parting from classical face recognition approaches. This thesis explores the ELMs
performance versus the state of the art algorithms like Random Forests and Sup-
port Vector Machines. We also compared the ELM learning approach with other
methods like Back Propagation or Scaled Conjugate Gradient learning.
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1.2 Contributions

This Thesis is very application-oriented. Therefore, the main contributions are
practical:

* A new hyperspectral database. The scenes have subjects on them an were
taken under diverse conditions.

» Extensive experimentation on person detection using hyperspectral imaging
techniques.

» Extensive application of Lattice Computing to biometrics and hyperspectral
imaging.

» Exhaustive study of face recognition under undesirable conditions.
* First time application of ELMs to face recognition.
» Exploration of fusion of Lattice Computing methods to linear features.

The contributions of the Thesis from a methodological point of view are the fol-
lowing ones:

¢ Provides a review of the state of the art in three research areas: active learn-
ing, hyperspectral image unmixing and face recognition algorithms.

* Provides a experimental methodology that has a common denominator: try-
ing to learn things from unbalanced and noisy data. The experimental set-
ting of this thesis is not ideal, and the contributions are consciously directed
towards utilizing computational intelligence techniques under difficult unde-
sirable circumstances.

* The presented results and methods are compared with well known bench-
mark databases and algorithms respectively. The metrics and parameters
used to evaluate the results are thoroughly explained in the different chap-
ters and in appendix B. We have tried to be as transparent as possible, and
all the algorithms are freely available on-line.

From a computational point of view, this Thesis has the following contributions:

* A novel Active Learning scheme using Random Forests and uncertainty cal-
culation that allows fast accurate semi-supervised image segmentation.

* A endmember selection methodology to reduce the output of the Lattice
Computing endmember induction algorithm WM.
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* Various fused feature extraction methods formed by LICA and linear meth-

1.3

ods.

A robust feature extraction and classification scheme, using LICA along with
ELMs, that provides great results when working with unbalanced databases.

Publications

. Ion Marques, Manuel Graiia, Anna Kaminska-Chuchmala, Bruno Apolloni,

“An Experiment of Subconscious Intelligent Social Computing on household
appliances”, Neurocomputing (accepted) 2014.

Borja Ayerdi, Ion Marqués and Manuel Graiia, “Spatially regularized semisu-
pervised Ensembles of Extreme Learning Machines for hyperspectral image
segmentation”, Neurocomputing (in press) 2014.

Ion Marques, Manuel Grafia, “Hybrid Sparse Linear and Lattice Method for
Hyperspectral Image Unmixing”, Proceedings of HAIS 2014, Salamanca,
Spain, Lecture Notes in Computer Science, vol 8480, pp 266-273, 2013.

Ifigo Barandiaran, Odei Maiz, lon Marqués and Manuel Grana, “ELM for
Retinal Vessel Classification”, Proceedings of ELM 2013, Beijing, China,
Adaptation, Learning, and Optimization, vol 16, pp 135-143, 2013.

Borja Fernandez-Gauna, Ion Marqués, Manuel Grafia, “Undesired State-
Action Prediction in Multi-Agent Reinforcement Learning. Application to
Multicomponent Robotic System control”, Information Sciences, vol 232,
pp 309-324, 2013.

Ion Marqués, Manuel Graiia, “Greedy sparsification WM algorithm for end-
member induction in hyperspectral images”, Proceedings of the IWINAC
2013, Mallorca, Spain, Lecture Notes in Computer Science, vol 7931, pp
336-344, 2013.

Manuel Graia, Ion Marqués, Alexandre Savio, Bruno Apolloni, “A domestic
application of Intelligent Social Computing: the SandS project”, Proceed-
ings of the SOCO 2013, Salamanca, Spain, Advances in Intelligent Systems
and Computing, vol 239, pp 221-228, 2013.

. Ion Marqués, Manuel Grana, “Fusion of lattice independent and linear fea-

tures improving face identification”, Neurocomputing, vol 114, pp 80-85,
2012.
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9. Ion Marqués, Manuel Grafia, “Image security and biometrics: A review”,
Proceedings of the HAIS 2012, Salamanca, Spain, Lecture Notes in Com-
puter Science, vol 7209, part I1, pp 436-447, 2012.

10. Ton Marqués, Manuel Graifia, “Face recognition with Lattice Independent
Component Analysis and Extreme Learning Machines”, Soft Computing,
vol 16, num 9, pp1525-1537, 2012.

11. Ion Marqués, Manuel Graiia, “Experiments on Lattice Independent Compo-
nent Analysis for Face Recognition”, Proceedings of the IWINAC 2011, La
Palma, Spain, Lecture Notes in Computer Science, vol 6678, pp 286-294,
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1.4 Structure of the Thesis

The contents of the Thesis are divided in two blocks. The first one is centered
on hyperspectral imaging and person detection. The second block encompasses
the works on face recognition. All the chapters are self-contained, each having an
Introduction and Theoretical background, sections describing Experimental Design
and Results, and a Conclusion. The chapters of the Thesis are organized as follows:

1. Chapter 2 reports a review on Active Learning and proposes a iterative im-
age segmentation process applied to the task of partitioning skin regions on
hyperspectral images.

2. Chapter 3 surveys the hyperspectral unmixing problem. It presents several
endmember induction algorithms with the goal of characterizing skin pixels.
It reports the application of several state of the art and Lattice Computing
techniques.

3. Chapter 4 is centered on exploring different feature extraction methods for
face recognition. Feature fusion is explored and a Lattice-linear fusion scheme
is proposed.

4. Chapter 5 expands the reach of the previous chapter, exploring the capabil-
ities of different algorithms to correctly recognize faces under undesirable
conditions. It is demonstrated that a combination of Lattice-based feature
extraction and non-iterative neural network learning shows the most promis-
ing results.
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5. Appendix A presents the hyperspectral database developed for person detec-
tion. It explains the capture process and also describes the employed prepro-
cessing techniques.

6. Appendix B offers more ample explanations of some methodological details
from the experiments presented in chapters 2 and 3.

7. Appendix C gives a theoretical overview of Lattice Computing.

8. Appendix D reports the development of ELMs and explains the algorithm
concisely.



CHAPTER 1. INTRODUCTION



Chapter 2

Skin Segmentation via Active
Learning

Determining what hyperspectral image pixels belong to skin regions is a first nec-
essary step in process of people detection in an image. In this Chapter this task is
approached as an interactive segmentation problem. The motivation of the works
reported in this Chapter is explained in Section 2.1. The computational methods
used in the experiments are detailed in Section 2.2. Section 2.3 describes the partic-
ulars of the experimental design. The experimental results of this work are exposed
in section 2.4. Finally, section 2.5 offers a concluding discussion on the matter at
hand.

2.1 Introduction

Image segmentation is the process of partitioning visual data into meaningful pieces.
It is one of the big challenges that remains open in computer vision. The ideal sce-
nario, that in which the segmentation is done without human interaction, is prac-
tically unfeasible. There is not an objective function nor a measure of success
that could be used to assess the performance of a segmentation algorithm. This
means that there will be a human interaction step at some point. For once, human
visual assessment of the data is necessary to add semantics to the image. That
translates into manually developing a ground truth, or ideal segmentation of the
data. Therefore, the performance of any method will be measured by comparing
the segmentation results with that ideal segmentation created by the human. This
approach is addressed in the literature as interactive image segmentation.

This supervised machine learning problem can be addressed using Active Learn-
ing. It is a useful tool when dealing with data containing scarce labeled samples,
making the application of conventional learning techniques based on a static dataset

9
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unusable. The Active Learning approach, formally described in section 2.2.2, con-
sists of two elements: a training algorithm and a query or method. The training
algorithm is used to build classifiers from the small set of labeled data. The query
method is used to select unlabeled which will be labeled by an oracle and added to
the training set. This iterative process goes on until stopping criteria are met. The
mentioned oracle can be a human expert, although the human input can be substi-
tuted by a computational method. Learning without reliable labeling information
was proposed recently in [34]. They explored an scenario where the non-expert
oracle was asked “whether a pair of instances belong to the same class”.

In some cases data is received sequentially. Thus, the sample selection is done
one by one with some threshold value. Some recent researches focus on batch
mode Active Learning, where a batch of data points is simultaneously selected
from an unlabeled set [16]. On the other hand, pool-based sampling occurs when
a set of data is available and the samples must be chosen from that pool. There
are two main querying strategies to choose the samples for training [35]. If a
single learner is used the choice depend on the selected measuring strategy. This is
called querying by a single model. Some Active Learning schemes use ensembles
of classifiers and they apply a query by committee method: Each member of the
committee presents a labeling hypotheses. There is a voting of the label of the
candidates. The sample whose labeling decision shows the biggest disagreement
within the committee will be queried and labeled by the oracle.

The learner or learners hypothesis can be built with different criteria, which
were thoroughly reviewed in [121] and more recently in [35]. One family of
methods is uncertainty reduction. On this approach the sample whose classifi-
cation result shows the highest uncertainty is chosen. In the case of probabilistic
model for classification, those samples with posterior probability nearest to that of
a random sampling would be chosen. It can also be uses information entropy, the
margin between the highest and the second highest probability for an instance, ex-
pected gradient length, variance reduction or least confidence. The problem with
these methods is that they can easily include outliers in the learning process [117].
Avoiding this is the motivation behind other methods that take into account instance
correlations . The expected error reduction approach tries to predict the future gen-
eralization error for all the samples, in order to choose the one that will lower the
error the most. It is a computationally expensive approach. Other collection of
methods that try to overcome the outliers problem are density-weighted strategies.
The main idea is that new instances should not only be chosen considering uncer-
tainty, but also how representative those samples are of the input distribution. Some
classic approaches explore the feature correlations, using clustering techniques to
pre-select the most representative data samples before the querying. Techniques for
combining the representativeness and informativeness of samples have also been
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recently explored [66].

The methodology proposed on this chapter segments the image iteratively, re-
quiring the input of the user on every step. The idea is to use a few labeled data
points and segment the whole image with what we can learn from these points.
Then, the user labels some more points considered difficult to segment. The pro-
cess continues, augmenting the knowledge about the data in an interactive way
while focusing on the difficult parts of the image. The advantages of this scheme
is that it can be used to assist on the creation of the ground truth of the data. In our
case, we previously labeled all the data manually. We have therefore assessed the
validity of our method substituting the human interactor with an uncertainty-based
query-by-commitee Active Learning setting. The algorithm uses an uncertainty
measure as an indicator of which difficult pixels should it focus on the next itera-
tion.

The need of these method rises notably when the data at hand is not labeled. It
is the case of this work, as the hyperspectral images were collected in-situ and the
ground truth, i.e a binary segmentation of skin and non-skin regions, is not avail-
able. Doing a very laborious manual segmentation, it was considered interesting
to tests these interactive segmentation processes. Firstly, it effectively allows us to
confirm if the methods are accurate. Secondly, it allows us to see the conflictive
or difficult areas of the data. Finally, it can be a way of validating the manual seg-
mentation. On the other hand, these first experiments also serve as a starting points
towards answering the following question: It is feasible to to detect skin regions
in hyperspectral images using the collected data, as described in appendix A, in a
semi-supervised way?

2.2 Computational methods

The experimental design involves interactive active learning via classification and
quantification of uncertainty. The basics of active learning, the selected classifica-
tion algorithm and the measuring of uncertainty are explained in this section.

2.2.1 Random Forest Classifiers

Random Forest (RF) algorithm is a classifier ensemble [13] that encompasses bag-
ging [12] and random decision forests [4, 57], being used in a variety of applica-
tions. RF captures complex interaction structures in data, and are proposed [13] to
be resistant to both overfitting of data when individual trees are very deep and no
pruned, and under-fitting when individual trees are too shallow. RF became popu-
lar due to its simplicity of training and tuning while offering a similar performance
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to boosting. Consider a RF as a collection of decision tree predictors

{h(x, ¥ );k=1,....,K},

where y; are independent identically distributed random vectors whose nature de-
pends on their use in the tree construction, and each tree casts a unit vote to find
the most popular class of input x.

Given a dataset of N samples, a bootstrapped training dataset is used to grow a
tree h(x; Y;) on a randomly selected subset of instances with replacement from the
original training sample. RF also employs random feature selection. At each node
of the decision tree, d variables are selected at random d< d. Each decision tree
is grown using CART methodology without pruning. This tree growing approach
recursively picks the best data split of each node with the criteria of how well
separates the classes contained in the parent node.

The independent identically distributed random vectors y; determine the ran-
dom dimension selection and data sample bootstrapping prior to tree training,
which are the source for individual tree diversity and uncorrelation of their out-
puts. This uncorrelation between the trees and the strength of the individual trees
determine the generalization error of the forest.

The trained RF can be used for classification of a new input x by majority
voting among the class prediction of the RF trees. Note that in RF the Law of
Large Numbers insures convergence as k — oo, therefore avoiding overfitting.

2.2.2 Active Learning fundamentals

The performance of supervised classifiers strongly depend on the information pro-
vided by the data used to train the classifier, so that the appropriate selection and
labeling of the training set may be a cumbersome task requiring extensive man-
ual inspection and analysis of the data, typically requiring some visualization tool
and labeling of each data sample. Besides, noisy samples may interfere the class
statistics, which may lead to poor classification performances and/or over-fitting.
For these reasons, a training set must be constructed in a smart way, meaning that
it must consists of the minimal set of samples allowing to compute correctly the
class boundaries, therefore it must contain the most informative data samples. In
the machine learning literature this approach is known as Active Learning.

Active Learning [26, 132] focuses on the interaction between the user and the
classifier. Let X = {x,-,yi}f:1 be a training set consisting of labeled samples, with
x; € R and y; € {1,...,N}. Letbe U = {x; f:l”Jrl € RY the pool of candidates,
with u > [, corresponding to the set of unlabeled samples to be classified. The
classifier would be feed with the samples x; and the targets y; in a classic classi-
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fication scheme. Actively learning on the other hand involves trying to indicate
which input vector should be selected from the training set, in order to improve the
learning capabilities of the classifier. We can consider that, for a given learning
task whose target function is f, there are some areas where the function is more
easily learned and some that are more difficult to classify. Measuring how difficult
a sample is to classify is not trivial, and is discussed below. The Active Learning
approach tries to focus on those difficult to classify regions -similarly to boosting
techniques- but interactively.

Generally, an Active Learning process can be summarized as follows: In a
given iteration 7, the Active Learning algorithm selects from the pool U’ the ¢
candidates that will, at the same time, maximize the gain in performance and reduce
the uncertainty of the classification model when added to the current training set
X'. The selected samples ' = {x,, }{_, C U are labeled with labels {y, }?_, by an
oracle, which can be a human operator in interactive segmentation, or the available
ground truth when performing cross-validation experiments. Finally, the set S’ is
added to the current training set (X'*! = X’ US') and removed from the pool of
candidates (U'T! = U’\S"). The process is iterated until a stopping criterion is
met, such as the achieved accuracy reaching a preset threshold 6,,,,,.

2.2.3 Classification uncertainty in RF classifiers

RF classifiers allow a committee approach for the estimation of unlabeled sample
uncertainty [132]: assume that we have built a committee of k base classifiers, i.e.
a RF with k trees. The output of the committee members provide k labels for each
candidate sample x; € U. The data sample class label is provided by the majority
voting. Our heuristic is that the standard deviation o (x;) of the class labels is
the measure of the classification uncertainty of x;. Let us consider an ordering of
the pool of candidates U* = {xji}ii;’“, where 6 (x;,) > 0 (Xj,,,). The standard
deviation query-by-bagging heuristic selection of samples to be added to the train
set is stated as the following selection:

S'={x;, 1! _, 2.1)
Standard deviation of predicted class labels is a natural multiclass heuristic mea-
sure of classification uncertainty. A candidate sample for which all the classifiers
in the committee agree has a zero prediction standard deviation, thus its inclusion
in the training set does not bring additional information. In other words, belongs
to an “easy” to classify region of the data. On the contrary, a candidate with maxi-
mum disagreement between the classifiers results in maximum standard deviation,
so it is “difficult” to classify it. Therefore, its inclusion will be highly beneficial.
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2.3 Experimental design

The goal is to classify image pixels into two classes, the target region and the back-
ground. The Active Learning system returns to the user the unlabeled pixels whose
classification outcome is most uncertain with the current classifier. After manual
labeling by the user, pixels are included into the training set and the classifier is
trained again. On our experiment, we first manually label all the images. We use
this ground truth to simulate the manual input of the user. This shortcut avoids
intermittent work-flow.

For each RF, we begun with 5 training samples. The RF consisted on £k = 100
trees, sampling v/d variables as candidates at each split. We selected on each run
q = 20 uncertain pixels candidates using the criterion defined above. The ideal
situation is that in which the performance measuring statistics converge towards
the optimum value when the number of active learning runs increases. We run
each image up to 40 times to asses this principle. The selection of 40 maximum
runs is justified by time constrains. Additionally, the tendency of our accuracy
parameters is clear with just 40 runs, as can be seen in figures 2.1 and 2.2.

The experiments on active learning have some peculiarities which do not en-
courage the use of a cross validation scheme. There is a small initialization step,
followed by an iterative growth of the training set, based on some criterion. Thus,
we have performed 100 repetitions of each experiment and reported the mean and
standard deviation values of CR, precision and sensitivity. The pipeline shown in
figure 2.3 serves as a visual help to explain the conducted Active Learning experi-
ments.

2.4 Experimental results

The 7 images with the 4 preprocessing schemes show high Correct Rate (CR), as
shown in table 2.1. There are not noticeable changes from one coordinate system
to the other. There are no big differences, due to the size disparity of background
and skin regions. Variances, shown in parenthesis, are low for all images, except
for image CS5 reflectance with hyperspherical coordinates. Table 2.2 shows the
precision (precision) of the learning process. Overall, cartesian coordinates seem
to show the best capability of avoiding false positives. Image Al seems to drop
the worst results. It is noticeable that when using hyperspheric coordinates, image
C5b drops significantly worse results when using reflectance. We can see that gen-
erally the precision for reflectance value in hyperspheric space are worse than their
radiance counterparts. This difference does not appear in cartesian coordinates.
Regarding Sensitivity, looking at table 2.3 it is clear that image Al is the most dif-
ficult to segment. It also reinforces the conclusion that hyperspheric coordinates
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Figure 2.1: Performance indicator on increasing active learning iterations for a)
radiance and b) reflectance values, averaged over the 7 images.
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Figure 2.3: Active Learning experimental design flowchart. The preprocessing is
detailed in appendix A.
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No smoothing Smoothing
Radiance Reflectance Radiance Reflectance
A1l | 0.9890 (0.0007) | 0.9888 (0.0010) | 0.9888 (0.0009) | 0.9882 (0.0011)
| B2 1 0.9891(0.0015) | 0.9890 (0.0027) | 0.9919 (0.0008) | 0.9922 (0.0004)
T | A3 ]0.9949 (0.0013) | 0.9953 (0.0011) | 0.9965 (0.0004) | 0.9963 (0.0005)
§ C4 | 0.9977 (0.0024) | 0.9985 (0.0001) | 0.9984 (0.0003) | 0.9983 (0.0004)
% C5 | 0.9935 (0.0025) | 0.9948 (0.0005) | 0.9961 (0.0014) | 0.9965 (0.0005)
éé C5b | 0.9945 (0.0014) | 0.9939 (0.0018) | 0.9962 (0.0011) | 0.9961 (0.0010)
A5 | 0.9985 (0.0002) | 0.9974 (0.0027) | 0.9984 (0.0001) | 0.9984 (0.0001)
mean | 0.9939 (0.0014) | 0.9940 (0.0014) | 0.9952 (0.0007) | 0.9951 (0.0005)
Al | 0.9863 (0.0007) | 0.9838 (0.0006) | 0.9872 (0.0005) | 0.9854 (0.0004)
'g B2 | 0.9915 (0.0010) | 0.9906 (0.0012) | 0.9931 (0.0004) | 0.9924 (0.0009)
8 A3 | 0.9871 (0.0019) | 0.9896 (0.0021) | 0.9916 (0.0014) | 0.9929 (0.0011)
§ C4 | 0.9989 (0.0000) | 0.9989 (0.0000) | 0.9989 (0.0000) | 0.9990 (0.0000)
%_ C5 | 0.9971 (0.0002) | 0.9727 (0.0081) | 0.9972 (0.0001) | 0.9873 (0.0116)
é C5b | 0.9970 (0.0001) | 0.9964 (0.0002) | 0.9971 (0.0001) | 0.9965 (0.0003)
2 | A5 | 0.9980 (0.0002) | 0.9970 (0.0003) | 0.9980 (0.0001) | 0.9974 (0.0002)
mean | 0.9937 (0.0006) | 0.9899 (0.0018) | 0.9947 (0.0004) | 0.9930 (0.0021)

Table 2.1: Correct rate obtained by active learning for each image.

for reflectance values drop the performance of radiance data. Image A3 shows the
biggest standard deviation, which indicates that for this image the initial random
selection of training pixels is crucial.

Overall, the smoothing process has two effects: effectively enhancing the seg-
mentation performance of the method and reducing the variance between exper-
iment runs. Regarding precision on cartesian coordinates, it halves the standard
deviation by halve while enhancing the average smoothing capabilities by 9.44%.
Changes in sensitivity are not so noticeable. Results of data in hyperspheric co-
ordinate are also generally better, but thee difference on standard deviation is not
as relevant. There are some cases where the smoothing shows clear positive ef-
fects. For instance, it enhances precision and sensitivity values for image A3 while
reducing the variability.

Figures 2.4 to 2.10 illustrate the segmentation results for cartesian and hyper-
spectral coordinates. Each image is selected from the best smoothing/not smooth-
ing and reflectance/radiance results for each image as shown in tables 2.3 and 2.2.
The ground truth is shown in black (background) and white (skin). Red pixels in-
dicate true positives, while blue pixels denote false positives. We show the image
corresponding to the method that dropped the best precision for each hyperspectral
cube. Looking at individual images, we can see that Al has the lower Sensitivity
values in table 2.3. It can be observed in figure2.4 that there are noticeable white
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No smoothing Smoothing

Radiance Reflectance Radiance Reflectance
Al | 0.8402 (0.0418) | 0.8401 (0.0585) | 0.8248 (0.0510) | 0.7948 (0.0634)
| B2 | 0.8832(0.0346) | 0.8839 (0.0500) | 0.9396 (0.0196) | 0.9471 (0.0116)
T [ A3 [0.9295(0.0128) | 0.9299 (0.0113) | 0.9419 (0.0160) | 0.9347 (0.0177)
§ C4 | 0.9349 (0.1036) | 0.9657 (0.0043) | 0.9706 (0.0025) | 0.9663 (0.0074)
% C5 | 0.8621 (0.0546) | 0.8904 (0.0131) | 0.9304 (0.0368) | 0.9398 (0.0131)
g C5b | 0.8697 (0.0350) | 0.8566 (0.0401) | 0.9207 (0.0332) | 0.9159 (0.0260)
A5 | 0.9550 (0.0090) | 0.9201 (0.0899) | 0.9564 (0.0038) | 0.9580 (0.0049)
mean | 0.8964 (0.0416) | 0.8981 (0.0382) | 0.9263 (0.0233) | 0.9224 (0.0206)
Al | 0.7135(0.0252) | 0.7041 (0.0331) | 0.7383 (0.0252) | 0.7662 (0.0338)
“g B2 | 0.9283 (0.0253) | 0.9118 (0.0284) | 0.9607 (0.0066) | 0.9502 (0.0183)
S A3 | 0.7553 (0.0427) | 0.8480 (0.0319) | 0.8159 (0.0310) | 0.8817 (0.0143)
_Té‘ C4 | 0.9728 (0.0023) | 0.9708 (0.0026) | 0.9737 (0.0012) | 0.9723 (0.0020)
f:; C5 | 0.9536 (0.0066) | 0.5555 (0.0836) | 0.9550 (0.0025) | 0.7743 (0.1653)
é C5b | 0.9307 (0.0026) | 0.9241 (0.0039) | 0.9355 (0.0020) | 0.9256 (0.0098)
Z | A5 | 0.9351(0.0081) | 0.9121 (0.0109) | 0.9385 (0.0046) | 0.9286 (0.0086)
mean | 0.8842 (0.0161) | 0.8323 (0.0278) | 0.9025 (0.0104) | 0.8856 (0.0360)

Table 2.2: Precision obtained by active learning.
No smoothing Smoothing

Radiance Reflectance Radiance Reflectance
Al | 0.5706 (0.0210) | 0.5658 (0.0267) | 0.5769 (0.0133) | 0.5752 (0.0169)
| B2 | 0.8655 (0.0106) | 0.8641 (0.0051) | 0.8702 (0.0099) | 0.8703 (0.0129)
T | A3 [ 0.8984 (0.0461) | 0.9120 (0.0338) | 0.9414 (0.0115) | 0.9439 (0.0077)
§ C4 | 0.9349 (0.0195) | 0.9405 (0.0084) | 0.9243 (0.0200) | 0.9242 (0.0284)
% C5 | 0.9569 (0.0021) | 0.9584 (0.0015) | 0.9521 (0.0054) | 0.9522 (0.0037)
§ C5b | 0.9689 (0.0025) | 0.9690 (0.0018) | 0.9611 (0.0066) | 0.9639 (0.0040)
A5 | 0.9702 (0.0043) | 0.9702 (0.0027) | 0.9646 (0.0046) | 0.9623 (0.0043)
mean | 0.8808 (0.0152) | 0.8829 (0.0114) | 0.8844 (0.0102) | 0.8846 (0.0111)
Al | 0.5549 (0.0210) | 0.3597 (0.0247) | 0.5815 (0.0197) | 0.4144 (0.0189)
"g B2 | 0.8741 (0.0087) | 0.8684 (0.0085) | 0.8789 (0.0066) | 0.8709 (0.0067)
S A3 | 0.8542 (0.0404) | 0.7991 (0.0543) | 0.9343 (0.0079) | 0.8850 (0.0314)
E" C4 | 0.9590 (0.0037) | 0.9583 (0.0023) | 0.9580 (0.0025) | 0.9624 (0.0023)
3_:; C5 | 0.9568 (0.0015) | 0.9569 (0.0025) | 0.9595 (0.0033) | 0.9526 (0.0029)
é‘ C5b | 0.9750 (0.0016) | 0.9638 (0.0037) | 0.9739 (0.0016) | 0.9664 (0.0027)
Z | A5 | 0.9677 (0.0029) | 0.9457 (0.0066) | 0.9663 (0.0020) | 0.9446 (0.0078)
mean | 0.8774 (0.0114) | 0.8360 (0.0147) | 0.8932 (0.0062) | 0.8566 (0.0104)

Table 2.3: Sensitivity obtained by active learning for each image.
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areas. It is confirmed visually that A1 poses the biggest challenge in terms of skin
segmentation. The scene was windy, which can move not only the vegetation but
also the subjects clothes and hair. It can be observed that big areas of the arms
are not correctly segmented. Refer to Appendix A for further details on the image.
Regarding precision, we see that image C4 has the highest value, with a precision
of 0.9706. This is illustrated by the lack of blue pixels. Notice that in all of the im-
ages, but more prominently in images C4, C5, C5b and AS, there are several blue
pixels in areas that intuitively we would denominate as skin. This might be con-
sequence of the human error induced in the manual segmentation process. Every
human segmentation step involves the possibility of miss-labeling a sample, there-
fore dragging that error across the Active Learning iterations. Moreover, slight
movements of the subjects during the image acquisition can also introduce spatial
noise that leads to these erroneous labels.

2.5 Conclusion

The experimental framework presented in this Chapter enabled the exploration of
diverse computational aspects when dealing with skin detection. Firstly, it was
shown that it is possible to segment skin in hyperspectral images, even in situa-
tions where noise is very present. Secondly, an Active Learning methodology was
proposed to label and segment the images. Lastly, the accuracy of the proposed
system was tested with varying image preprocessing steps. Overall, the results can
be summarized as follows:

* The calculation of reflectance normalization using white standards present
on the scene adds noise and lowers the segmentation capability of the method.

* Representing the images in cartesian space is better suited than converting
the data to hyperspherical coordinates.

* The smoothing of data enhances the segmentation results.

* The segmentation process is not robust to motion noise, such as appears in
image A1 due to the wind conditions.

Therefore, obtaining a good skin segmentation depends on choosing a good im-
age representation, preprocessing and computational techniques. However, results
show that many errors are located in skin areas bordering non skin regions. This
phenomenon can be partially caused by the manual segmentation step, where due
to chromatic similarities it is difficult to asses whether one pixel is skin or not.
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Figure 2.4: Al active learning segmentation results for cartesian (top) and hyper-
spherical (bottom) coordinates.
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Figure 2.5: B2 active learning segmentation results for cartesian (top) and hyper-
spherical (bottom) coordinates.
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Figure 2.6: A3 active learning segmentation results for cartesian (top) and hyper-
spherical (bottom) coordinates.



24 CHAPTER 2. SKIN SEGMENTATION VIA ACTIVE LEARNING

Figure 2.7: C4 active learning segmentation results for cartesian (top) and hyper-
spherical (bottom) coordinates.
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Figure 2.8: C5 active learning segmentation results for cartesian (top) and hyper-
spherical (bottom) coordinates.
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Figure 2.9: C5b active learning segmentation results for cartesian (top) and hyper-
spherical (bottom) coordinates.
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Figure 2.10: AS active learning segmentation results for cartesian (top) and hyper-
spherical (bottom) coordinates.
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Chapter 3

Skin Endmember Induction and
Spectral Unmixing

The typical unsupervised hyperspectral scenario involves two steps: a) Inducing a
set of endmembers E from the hyperspectral image and b) estimating the fractional
abundances «. This subject is introduced in section 3.1 and a brief state of the art
is provided. The details on the unmixing process as a whole and the calculation of
the abundances are presented in section 3.2. The set of algorithms used to induce
endmembers is detailed in section 3.3. The conclusions are reported in section 3.6.

3.1 Introduction

The analysis of hyperspectral images usually involves several computational tech-
niques. There is a non trivial set of steps that cover the work-flow from the ob-
tention of the raw data to the moment were the information is ready to be worked
upon. These steps usually involve sensor calibration, radiometric correction, data
geo-registration and atmospheric correction for remote-sensing images and prepar-
ing the correspondent metadata for each image.

There are some instances where the first step of processing the prepared data is
Dimensionality Reduction (DR). DR tries to find a low-dimensional representation
of the hyperspectral data. This representation should reduce the computational load
requirements for the data. Moreover, the DR process should enhance the result
of the following processing steps. It is desirable that at least it does not impair
them. Signal Subspace Identification (SSI) [3] is the standard way of reducing
dimensionality. It can be performed reducing the spatial or spectral resolution.

The first approach -Space transformation SSI- can be attained by such well
known algorithms like Principal Component Analysis (PCA), Maximum Noise
Fractions (MNF) or Singular Value Decomposition (SVD). This second order statis-

29
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tic methods may not be suitable, as hyperspectral images contain many subtel ma-
terials with sizes smaller than a pixel [7]. Other hyperspectral DR methods involve
Independent Component Analysis (ICA) [137], Progressive dimensionality reduc-
tion by transform (PRDT) [20] and manifold and tensor based techniques [5, 6].
A limitation of these linear techniques is that they can not discover the nonlin-
ear structure of the input data. Therefore, some recent approaches address the
problem of modeling the nonlinear data structure of the underlying data manifold.
Some of these methods use isometric feature mapping (ISOMAP) [129], locally
linear embedding (LLE)[116, 33], or novel distance measures to deal with non-
linearity[100]. Other techniques make use of a-priori information about the data.
Recent semi-supervised methods include using Local Scaling Cut Criterion (LCU)
[148] or dual-geometric subspace projection (DGSP) [142].

The second family of DR algorithms are Band Selection SSI. Recent devel-
opments focus on signal quality, like the minimum noise band selection (MNBS)
method proposed in [125]. A volume-gradient-based band selection (VGBS) method
is proposed in [37]. Algorithms based on sparsity measures are also proposed, us-
ing linear regression model with L1 regularization (LASSO model) [124] or evo-
lutionary strategies to select band matched to Multitask Sparsity Pursuit (MTSP)
to evaluate selection performance [143].

The task after preprocessing the data is to induce the underlying endmembers
of the data, either selecting some image pixel spectra as the best approximation
to the endmembers or computing estimations of the endmembers on the basis of
transformations of the image data. Geometric methods search for the vertexes of
a convex polytope that covers the image data. One of the most popular methods
is N-FINDR, proposed in [140]. Other more recent algorithm is orthogonal sub-
space projection (OSP)-based automatic target generation process (ATGP) [97].
Both of them have been tested in this work, and they are detailed in section 3.3.
Other approach is to use lattice computing [110, 41, 108, 42], where a connection
between linear mixing model algebraic properties and lattice independence is es-
tablished. Some of these algorithms have been used for the experiments presented
in this work. They are detailed in section 3.3. There are methods that do not use the
strict theoretical definition of endmembers. The most popular among these heuris-
tic methods is is the Pixel Purity Index (PPI) algorithm introduced in [71]. The
Fast Iterative PPI algorithm (FIPPI) improves PPI in several aspects, it is described
in section 3.3.

Recent endmember extraction techniques focus on one of these concepts: In-
troducing genetic algorithms [149, 45], using Ant Colony Optimization (ACO)
methods[146, 145] or improving existing simplex-based methods [17, 138]. The
integration of spatial and spectral information in unmixing has also seen consid-
erable attention, and a comprehensive survey on the subject has been published in
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[123]. Hybrid approaches where endmember induction and spectral unmixing are
performed simultaneously are also being developed [31, 144, 32].

Once the endmembers are selected the next step is Spectral Unmixing. The
idea behind spectral unmixing is that a single pixel is a mixture of one or more
endmember spectra corresponding to the aggregation of materials in the scene
due to reduced sensor spatial resolution. The section 3.2 details the linear mix-
ing unmixing (LSU) that has been used in this work. It is the most used and well
researched approach. There is a recent trend on using Nonnegative Matrix Fac-
torization (NMF) [78] to solve the linear unmixing problem. However, there are
other unmixing approaches. Non-linear spectral unmixing (NLSU) has attracted
increasing attention in recent years. An algorithm based upon a combination of a
data description in terms of (approximate) geodesic distances was proposed in [55]
and later expanded to obey obeys the positivity and sum-to-one constraints [56].
Other approach interprets a single pixel as both a mixture of endmember spectra
and nonlinear variations in reflectance, and a joint mixture resulting from the lin-
earity and nonlinearity in hyperspectral data; transforming the unmixing problem
into a Constrained Nonlinear Least Squares Algorithm (CNLS) [99].

Semi-supervised unmixing has also received significant attention lately. The
idea behind this approach is that observed image signatures can be expressed in the
form of linear combinations of known spectral collections or libraries. This com-
binatorial problem can be efficiently faced with sparse regression (SR) techniques
[70]. The classic SR techniques like like Orthogonal Matching Pursuit (OMP),
Basis Pursuit (BP) or iterative spectral mixture analysis (ISMA) are thoroughly
explored in [70]. More recent techniques include sparse NMF [82], constrained
Ip — I, optimization [23] or a hierarchical Bayesian approach [130]. Although re-
formulating the unmixing problem as a SR case was motivated by semi-supervised
learning, in [85] we attempt to transfer the approach to unsupervised unmixing.

3.2 Spectral unmixing

Recent developments in spectral unmixing of hyperspectral images represent a step
forward in the progress of compound analysis of remote sensing images. The ex-
perimental setting on this chapter aims to apply those techniques to the skin de-
tection problem. We intuitively propose that one or more endmembers should dis-
tinctively allow us to differentiate between skin and non skin regions. The goal
is to extract the endmembers of the images and identify those pertaining to skin
regions. The advantage of succeeding in this endeavor is threefold: We asses the
suitability of the state of the art methods for endmember extraction, we develop
unmixing pipelines able to successfully select interesting endmembers and finally
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we identify endmembers that can be used to detect skin in different conditions.

3.2.1 Linear unmixing model

We translate this intuitive idea into the Linear Mixing Model (LMM) [75]. It states
that, given a hyperspectral image H, whose pixels are vectors in L-dimensional
space, it spectral signature is characterized by a set of endmembers, E = {e 1,€2,...,€ }
The spatial-spectral characterization is a tuple (E, @), where , @ is an ¢ x 1 vector

of fractional abundances resulting from the unmixing process. For each pixel, the
linear model is written as

x=Ea+n 3.1

where x is a is a L X 1 column vector of measured reflectance values and n
represents the noise affecting each band.

Under a linear mixture model framework, as seen in 3.1, the ¢ dimensional
abundance of a pixel x can be estimated by solving a least squares problem with
no constrains:

min |Ea —x|?, (3.2)
X

which has a can be analytically approximated by solving the equation system

a=E'x, (3.3)

where E indicates the pseudo-inverse of the endmember matrix E, which can
be calculated as ET = (ETE)~'E”. Using unconstrained abundance estimation has
the advantages of implementation simplicity and fast execution time. However,
this model carries the disadvantage that lacks physical meaning. It allows the oc-
currence of negative abundances, and it makes no sense to have a negative quantity
of a given element in a pixel. It can also happen that the sum of abundances in
a given pixel is not unitary. One would think that the sum of the abundances on
a pixel would be 1. Two constrained are usually imposed in order to impose the
aforementioned physical soundness. These are the abundance nonnegativity con-
straint (ANC) and abundance sum-to-one constraint (ASC), respectively defined
as

0 >0,¥i=1,...,q (3.4)

q
Ya=1 (3.5)
i=1
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A least squares problem constrained by both ANC and ASC is called Fully
Constrained Least Squares (FCLS) abundance estimation method. Given the im-
age endmembers, enforcing the ANC and ASC conditions on Spectral Unmixing
requires solving the so-called FCLS problem. It can be a very computationally ex-
pensive process. The Nonnegativity Constrained Least Squares (NCLS) approach
is a less constrained approach than the classic FCLS [52, 53] in that it only applies
the ANC constraint. It can be argued that many factors can add noise to the data
on the acquisition process. Consequently, although the ANC constrain wold still
be necessary, imposing ASC loses its physical significance. The experiments pre-
sented in this chapter solve the NCLS problem via the classic method described in
[77].

3.2.2 Sparse unmixing model

Having a large set of endmembers, unmixing is equivalent to finding an optimal
subset of signatures that can best model each mixed pixel in the scene. This can
be understood as a combinatorial problem where the presence of an endmember
in a pixel is very small compared to the dimensionality of the data and size of
the endmember candidate pool. Consequently, hyperspectral unmixing can be re-
formulated as a sparse approximation problem. Sparse unmixing of hyperspectral
data is a very active research area[70].

The sparse signal approximation problem can be summarized as follows: Let
have a data matrix X. We define a matrix & € R?*l called the dictionary. The
g columns of & are referred as atoms. In this work, a set of endmembers set of
endmembers, E = {e 1,€2,..., eq} will be the dictionary ®. Therefore, each of the
q induced endmembers corresponds to one atom of the dictionary. The problem is
to find a mixing matrix Y so that

X = dY +¢, (3.6)

where matrix Y optimizes certain sparsity measure. This matrix Y is in fact the
collection of abundance images obtained by the unmixing process.

One of many methods to achieve this sparsification is to use Conjugate Gra-
dient Pursuit [11]. The conjugate gradient method is a popular directional opti-
mization method. This method calculates a similar decomposition as the QR fac-
torization; and it’s guaranteed to solve quadratic problems in as many steps as the
dimension of the problem. The conjugate gradient method, used as a directional
pursuit method, is explained in algorithm 1. For clarity, we denote y the set of
elements that compose matrix Y.
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Algorithm 1 Pseudo-code specification of the Conjugate Gradient Pursuit algo-
rithm.

1. ¥ = X is the initial residual error. T = @ is an index set. y(llo =0 is the
initial set of output sparse vectors. bg = 1 is a term needed to calculate new
conjugate gradients.

2. Fori=1,2,3,... util stopping criterion is met:
(a) Calculate gradient g for y restricted to I':
gr = Pf (X —Ppryly').

(b) Select the best element index:

Y = arg; max|gpi|.

(c) Update the index set: . . .
'=r"'1uy.

(d) Calculate the gram matrix Gy :
G’r‘i — ®%1¢Fi'

(e) We denote D+ the matrix containing all conjugate update directions
from iteration i — 1, with an additional row all zeros. We calculate the
update direction dp:

b= (D.GrDr) ' (G{:Drgr).

dri = bogri + Drb.

(f) Calculate new set of vectors yL.:

Ci:q)ridr*i,
o (r)
a =
IR
el

yi?,- = y;_;l + aidri.

(g) Calculate new residual error r':

3. Outputr and y.
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3.3 Endmember Induction Algorithms

Several endmember induction algorithms (EIAs) have been used. Some of them
well known and widely used in the literature, like N-FINDR endmembers induc-
tion algorithm [140] and Fast Iterative Pixel Purity Index (FIPPI) endmembers in-
duction algorithm [19]. ATGP endmembers induction algorithm, presented in [97],
was also used. Two methods based on Lattice Computing, developed by the GIC
research group, have been also applied -Incremental lattice Source Induction Al-
gorithm (ILSIA) endmembers induction algorithm [44] and Endmember Induction
Heuristic Algorithm (EIHA) endmembers induction algorithm [42]. WM endmem-
bers induction algorithm has also been tested [114], and a sparsified WM (sWM)
algorithm is proposed.

3.3.1 N-FINDR

N-FINDR is a geometric algorithm exploiting the fact that equation 3.1 defines a
convex set. The data is considered to form a simplex where each vertex represents
the spectral signature of a pure endmember. These M vertexes or endmembers are
extracted in the following manner:

1. The data is projected down to an M — 1 dimensional subspace using PCA.
2. An initial randomly selected set of M + 1 pixels is chosen from the data. The

formula for the volume of simplexes from all combinations of M pixels from
this set is as follows:

|det (E)|
VE)=—"= 3.7
(B) = Gy 3.7)
where the augmented matrix of endmembers is:
1 1 - 1
E= ] . (3.8)
el e2 e eM

e; is the column vector containing the bands of endmember i.

3. N-FINDR searches (non-exhaustively) for the largest simplex that can be
constructed within the data, by “inflating” the simplex inside the data. This
means getting the maximum determinant value.
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3.3.2 ATGP

The ATGP algorithm generates target pixels via orthogonal subspace projections
(OSP). The process of obtaining M endmembers is as follows:

1. The pixel with maximum energy is selected as the initial endmember e.

2. Until a set of target pixels ey, ...,e) is extracted, we repeat the following
process to iteratively extract each e;:

(a) Calculate the OSP P =1—U (UTU) ' U with U = [e; e,...¢; 1] to
every pixel of the data.

(b) e; will be the target signature that has maximum orthogonal projection
- I
in(eje...e_1)

3.3.3 FIPPI

Standard PPI suffers from computational complexity problems. The algorithm
proposed in [19] overcomes this weakness, and more importantly, is fully unsu-
pervised.These M endmembers are extracted as follows:

1. The data is projected down to an M dimensional subspace using PCA.

M
2. Let {skewerj(o)} be the set containing those target pixels generated by

ATGP, as described in the preceding subsection.
(k)

3. At iteration k we calculate skewerj , as follows:

(a) All pixels are projected into skewerj(k), to find those in extreme posi-

tions, to form an extrema set Scyx¢, (skewerj(k)>.

(b) Find pixels that produce largest Npp; <x§k)> , defined by

Nppr (x) =Y i ISem (skewerﬁ-k))

1, ifxes (3.9
0, fx¢s
and let them be denoted {xg.k) }
o) e Ui o)
(c) Havingqs ewer; skewer; X; Now, (xﬁ."))>0 if ¢ skewer;

{skewerj(kH)} then we stop adding endmembers to the skewer set.
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(k+1)

4. Pixels with Npp; (X j > > ( are the desired endmembers.

3.34 EIHA

EIHA [42] is a heuristic algorithm . It has a gain parameter & which has impact on
the number of endmembers found. Low values imply large number of endmem-
bers. The method is detailed in algorithm 2 -notice that G is the standard variation
of a pixel x;, which corresponds to the additive noise of the spectra.

Algorithm 2 Endmember Induction Heuristic Algorithm (EIHA)

1. Center the data X = {xj,...,Xn}.
2. Initialize the set of vertices E = {e; } with a randomly picked sample.
3. Construct Mgg and Wgg.

4. For each pixel x;

(a) compute the noise corrections sign vectorsx;” = (xf +ad > 0) and
X, = (X: — (X? > 0)

]
(b) compute y© = Mgg N X;"
(¢) compute y~ = Wgg M x;

(d) if y© ¢ X ory~ ¢ X then x¢ is a new vertex to be added to E, execute
once 3 with the new E and resume the exploration of the data sample.

(e) if y© € X and x{ > e+ the pixel spectral signature is more extreme than
the stored vertex, then substitute e+ with x;.

(f) if y~ € X and xj < e, the new data point is more extreme than the
stored vertex, then substitute e, with x{.

5. The final set of endmembers is the set of original data vectors x; correspond-
ing to the sign vectors selected as members of E.

3.3.5 ILSIA

The objective of the algorithm is to extract a set of SLI vectors from the input
dataset. If SLI was the only criteria to be tested to include input vectors in the set
of lattice sources, then a large number of lattice sources would be detected. That
being the case, there would be little significance of the abundance coefficients be-
cause many of them will be closely placed in the input vector space. To avoid that
the algorithm applies the results on Chebyshev-best approximation [44] discarding
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input vectors that can be well approximated by a fixed point of the LAAM con-
structed from the current set of lattice sources. The method is detailed in algorithm
3:

Algorithm 3 Incremental Lattice Source Induction Algorithm (ILSIA)

1. Initialize the set of lattice sources E = {e;} with a randomly picked pixel-
vector in the input hyperspectral image X = {xy,...,xn}.

2. Construct the LAAM based on the strong lattice independent (SLI) vectors:
WEeE.

3. For each data vector x;;j=1,...,.N

(a) if Xx; = Wgp M X; then X; is lattice dependent on the set of lattice
sources X, skip further processing.

(b) if ¢(WeeM (u+e*),x;) < 6, where e = Wy, Ax; and pu =
1 ((Wge 2 e*) M x;), then skip further processing.

(c) test max/min dominance to ensure SLI, consider the enlarged set of
lattice sources E' = EU {x j}

L =pp=0
ii. fori=1,....K+1
1ii. S1 =92 =0
A forj=1,...,K+1land j#i
d =x; —ej; m; = max(d); my = min(d).
st =81+ (d==m),s, =82+ (d ==my).
B. pu; =y + (max (s;) == K) or 4, = tp + (max (sp) == K).
iv. If y =K+1 or gy =K+ 1 then E' = EU{x;} is SLIL go to
2 with the enlarged set of lattice sources and resume exploration
from j+ 1.

4. The final set of lattice endmembers is E.

3.3.6 WM

The WM algorithm was proposed in [108, 113]. Given an hyperspectral image
H, it is reshaped to form a matrix X of dimension N x L, where N is the number
of image pixels, and L is the number of spectral bands. The algorithm starts by
computing the minimal hyperbox covering the data, % (v,u), where v and u are
the minimal and maximal corners, respectively, whose components are computed
as follows:
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vk:méinxf anduk:mgxxf;k: ,...,L;E=1,...,N. (3.10)

Next, the WM algorithm computes the dual erosive and dilative Lattice Auto-
Associative Memories (LAAMs), Wxx and Myy, as described in appendix C.

The columns of Wxyx and Mxx are scaled by v and u, forming the additive
scaled sets W = {wk}llgzl and M = {mk}izl:

W=+ W mt = v+ MA Yk =1,... L, (3.11)

where WX and M* denote the k-th column of Wy and My, respectively. Finally,
the set E=W UM U {v,u} contains the vertices of the convex polytope covering
all the image pixel spectra represented as points in the high dimensional space.

The algorithm is simple and fast but the number of induced endmembers, the
amount of column vectors in V, can be too large for practical purposes. Further-
more, some of the endmembers induced that way can show high correlation even if
they are affine independent. To obtain a meaningful set of endmembers, we search
for an optimal subset of V in the sense of minimizing the unmixing residual error
and the number of endmembers.

Algorithm 4 WM endmember induction algorithm

1. L is the number of the spectral bands and N is the number of data samples.
2. Compute V= [vy,...,vr] and u = [uy,...,ur,

S

Vi = minxf;uk = maxx;
¢ ¢
forallk=1,....Land & =1,...,N,
3. Compute the LAAMs

-

E=1 =1
where X is any of the M or [ operators.

4. BuildW = {wl,...,wL} and M = {ml,...,mL} such that

W=+ Womf = v+ M k=1,... L.

5. Return the set E=WUMU{v,u}.
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3.3.7 sWM

The main problem that WM faces is that it proposes a large set of candidates. Many
of those candidates are highly correlated with each other. If the number of bands
is L, then the set of endmember candidates E will have 2L 4 2 signatures. The
algorithm proposed here, called Sparse WM (sWM for short), aims to reduce the
number of endmembers. It would reduce the complexity of the problem so that a
small set of induced endmembers can be considered a dictionary for unmixing the
data following a sparse strategy seen in section 3.2.2.

The endmember selection procedure follows a clustering rationale. The idea
is that highly correlated endmembers will form a cluster. Loosely correlated end-
members will correspond to different elements present in the scene. First, the
proposed method finds the number of underlying endmember clusters. Secondly, it
clusters the data into that number of groups. Thirdly, it calculates the endmember
closest to the centroid of said clusters. These endmembers will conform the final
set of endmembers E.

The initial set of endmember candidates is |E|, where E is obtained via WM as
described in algorithm 4. The number of cluster is selected via clustering the data
fitted in a Gaussian Mixture Distribution (GMD). Let’s suppose that the set E is a
mixture of Gaussians. Then, the maximum likelihood estimates of the parameters
of the Gaussian Mixture Model (GMM) can be calculated using an Expectation
Maximization (EM) algorithm. This fitting is used to cluster the endmembers. The
accuracy of this partitioning of the data is evaluated calculating the sum of the
silhouette of all the endmember candidates. The silhouette value for each end-
member is a measure of how similar that endmember is to endmembers in its own
cluster, when compared to endmembers in other clusters. This process is repeated
fitting the GMM with k = 2,3,...,20 components. The resulting clustering with
a given k that results in the biggest sum of silhouettes is considered the best fit.
Consequently, the underlying number of clusters is deduced to be that k value.

The final clustering process is conducted via k-means. The well known algo-
rithm is used with the previously calculated number of clusters &, using correlation
distance and replicating the clustering multiple times in order to retain the best fit-
ting partition. After that, the endmembers closest to the centroids form the final
endmember set E. This endmembers will be later used as the dictionary to solve
the unmixing problem reformulated as a sparse regression problem.

3.4 Experimental design

The experiments have been designed towards assessing the quality of unmixing
that different algorithms provide. The underlying logic is that, after extracting
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endmembers and calculating abundances, the reconstructed hyperspectral image
X = Ea should be as equal to the original image X as possible. This criterion has
been measured using three error calculations: Mean Squared Error (MSE), Mean
Average Error (MAE) and Mean Angular Distance (MAD). These measurements
are detailed in appendix B. The experimental design, for each image X and each
EIA f can be summarized as follows:

1. Calculate the set of induced endmembers E = f (X).

2. Calculate the abundances « such that X ~ Ea by solving the NCLS problem
of the form min, |[Ect —X||* where o = 0.

3. Reconstruct the image X = Ea .
4. Calculate the reconstruction errors MSE, MAE and MAD.

Additionally, it is interesting to see if the different methods can propose a viable
skin endmember -i.e. a pure endmember that best represents the human skin pixels.
The assessment of this condition has been evaluated with the following procedure:

1. For each image X, calculate the average skin pixel.

2. For every EIA, from all the proposed endmembers, calculate the correlation
distance to that average skin pixel.

3. The best skin endmember will be that which minimizes the correlation dis-
tance to the average skin pixel.

3.4.1 Parameter selection

The main problem that hyperspectral unmixing faces, from an experimental point
of view, is choosing the number of endmembers present on the data. Regarding
this issue, the algorithms that have been used on these experiments can be divided
in three groups:

* Algorithms requiring an explicit number of endmembers:

NFINDR, FIPPI and ATGP require a number of endmembers to be speci-
fied. Instead of setting an arbitrary number, all three methods are preceded
by an analytical algorithm that chooses the number of endmembers. The
Harsanyi—Farrand—Chang (HFC) [18, 49] was chosen for that task. This
method, also known as the Neyman—Pearson detection theory-based eigen-
threshold method, was first proposed in [49]. It can be summarized as fol-
lows: Let the eigenvalues generated by the sample correlation matrix and
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the sample covariance matrix be denoted by correlation eigenvalues and co-
variance eigenvalues, respectively. The component dimensionality is equal
to the total number of eigenvalues. Consequently, each eigenvalue corre-
sponds to a component dimension and gives an idea of the significance of
that particular component in terms of energy or variance. A null hypothesis
is proposed, which indicates the case of the zero difference: For components
without signal source, the corresponding correlation eigenvalue and covari-
ance eigenvalue in these components should reflect only noise, in which case,
correlation eigenvalue and covariance eigenvalue are equal. The alternative
hypothesis indicates the case that the difference is greater than zero. When
the Neyman—Pearson test is applied to a pair of correlation eigenvalue and its
corresponding covariance eigenvalue, a failure of the test implies that there
is a signal source in this particular component. The number of times the
test fails indicates how many signal sources are present in the image. The
method is detailed in algorithm 5.

* Algorithms requiring a threshold value parameter:

ILSIA requires a Chebyshev-best approximation tolerance threshold. The
bigger this number, the smaller the set of induced endmembers is. Similarly,
EIHA requires a perturbation tolerance threshold. Equally, higher values re-
duce the number of induced endmembers. The relation between these values
and the number of endmembers depends on the nature of the data. There is
not an analytical way of establishing a threshold value that would drop a de-
sired amount of endmembers. One approach could be to calculate HFC and
then run the endmember induction algorithm, varying the threshold, until the
number of endmembers indicated by HFC is obtained. Evidently, this would
be very time consuming. Therefore, we have set these threshold values man-
ually. The threshold for ILSIA in radiance response images was let to the
default 0. In the case of EIHA, the threshold was set to 125. The reflectance
images were unmixed using a threshold of 12 for ILSIA and 2750 for EIHA.
The goal was to achieve a reasonable execution time and consequently a
not-too-big set of endmembers.

* Algorithms without parameters:

It is immediately deduced from the description of WM algorithm in section
3.3 (see algorithm 4) that for a hyperspectral image with L bands the number
of induced endmembers will be 2L + 2. The images that were tested have
128 bands, thus WM will propose 258 endmember candidates. Regarding
sWM, the quantity of endmembers will always be smaller than that of WM.
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Algorithm 5 Harsanyi—Farrand—Chang (HFC) eigenthresholding method for the
estimation of the number of endmembers in hyperspectral imagery.

1.

2.

Lets have hyperspectral image X = {xi,...,xn} C RE.

Calculate the sample correlation matrix Ry ., and the sample covariance ma-
trix Kz« .

Calculate the set of eigenvalues for both matrices, sorting them in descending
order. Lets denote the sets Ag and Ag.

Calculate the difference and variance matrices D = Ap — Ax and ¥ =
2(AZ+A%)
-5 -

. Calculate the L normal inverse cumulative distribution functions 7;, i =

1,...,Lusing zero mean and variances X = {0y, ..., 0} at the corresponding
probabilities with desired probability p = 107>. The normal inverse function
at zero mean is defined as

5 =F ' (p|0,0;) = {5 : F (p|0,0;) = p},

whose result is the solution of

. The number of endmembers, M, is given by the number of times the the cor-

relation eigenvalue is greater than its corresponding covariance eigenvalue
-implying that there is an endmember contributing to the correlation eigen-
value in addition to noise- with a tolerance threshold t. Therefore, for the
set X:

L
M:Z(di>Ti),di€D

i=1




44CHAPTER 3. SKIN ENDMEMBER INDUCTION AND SPECTRAL UNMIXING

That number is calculated by the algorithm and is manually bound to lay
between 2 and 20.

Both FIPPI and NFINDR algorithms have a loop that can run indefinitely. In order
to avoid excessive execution time, it was established a maximum iteration cap of
100- M -a hundred times the number of endmembers to be induced that is calculated
using HFC. Consequently, it is possible to end the execution of either FIPPI or
NFINDR having extracted less endmembers that the amount suggested by HFC.
The used implementation of FIPPI does not have a stopping rule depending on M,
so it is also possible that the final set of endmembers is bigger than M.

Using correlation distance in sWM endmember selection process is risky. If a
endmember candidate would have a standard deviation close to zero, the endmem-
ber should not be considered in the clustering process. One of the candidates that
WM selects is the minimal corner v = [vy,...,vL] , where v; = ming xf. It is sen-
sible to consider that each wavelength can measure zero radiance in a given pixel.
If that would be the case, then v = 0 and therefore std(v) = 0. As a measure of
precaution, it is reasonable to let v out of the k-means calculations. The number
of underlying clusters was selected following the procedure described in section
3.3.7. The results of calculating the sum of silhouettes is illustrated in figures 3.1
and 3.2.
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2 4 6 8 10 12 14 16 18 20
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Figure 3.1: Sum of silhouettes calculated for every radiance image, with different
cluster sizes. The maximum of each image is selected as the number 00f endmem-
bers in sWM algorithm.
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Figure 3.2: Sum of silhouettes calculated for every reflectance image, with dif-
ferent cluster sizes. The maximum of each image is selected as the number of
endmembers in sSWM algorithm.

3.5 Experimental results

The unmixing results were evaluated taking into consideration the computational
cost, the ability to induce a small set of endmembers, the reconstruction error and
the capabilities of extracting skin endmembers.

WM is the fastest algorithm, foolowed by sWM and EIHA, as can be seen in
table 3.1. However, both WM and sWM take constant time, meaning that it does
not depend on algorithm parameters. EIHA on the other hand can be more costly
if the threshold parameter is lower. ATGP, FIPPI and ILSIA are notably slower. It
is inportant to notice that the higher the tolerance parameter ILISA has, the fewer
endmembers it proposes, taking more time to execute. Regarding NFINDR, it is
known to be a very slow algorithm that needs a maximum number of iteration to
be set if the computational cost is to be compared to that of other algorithms.

The parameter estimation is the main throwback of EIHA and ILSIA. The same
value for all seven radiance and reflectance images was used on this experiments,
as stated in section 3.4.1. Table 3.2 shows the disparate number of endmember
induced from different images. The method sWM is capable of selecting a reduced
set of endmembers from the standard WM prodedure, form 258 to between 2 and
8. Finally, table 3.3 shows that NFINDR and ILSIA are the algorithms that take
the most time per induced endmember, while WM is the fastest one.
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Radiance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM
Al 2392.40 | 385.19 | 597.39 | 59.12 | 963.10 | 31.88 | 79.74
B2 2967.55 | 27891 | 73940 | 46.95 | 986.38 | 31.61 | 71.90
A3 2079.12 | 220.52 | 426.79 | 4599 | 835.26 | 29.55 | 71.50
Cc4 738.38 | 168.82 | 14520 | 85.83 | 569.18 | 29.63 | 72.22
(O8] 2748.32 | 302.95 | 691.80 | 48.11 | 1131.19 | 31.98 | 74.06
C5b | 5405.33 | 302.28 | 958.15 | 61.32 | 1160.06 | 31.82 | 73.20
AS | 16543.12 | 374.57 | 1275.34 | 48.13 | 352.76 | 31.83 | 70.78
mean | 4696.32 | 290.46 | 690.58 | 56.49 | 856.85 | 31.19 | 73.34
Reflectance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM
Al 4350.35 | 476.46 | 1052.09 | 5.55 632.63 | 32.97 | 73.04
B2 950.48 | 179.43 | 25430 | 71.83 | 605.65 | 28.99 | 73.70
A3 1073.90 | 207.75 | 343.91 | 320.30 | 598.18 | 28.87 | 73.66
Cc4 65.95 40.15 28.09 37.51 | 621.69 | 28.77 | 74.87
C5 1315.04 | 171.38 | 240.16 | 100.79 | 601.21 | 28.89 | 74.59
C5b 59347 | 14698 | 197.17 | 82.88 | 597.59 | 2891 | 74.37
A5 1070.99 | 206.06 | 367.22 | 133.62 | 606.10 | 28.88 | 73.29
mean | 1345.74 | 204.03 | 354.71 | 107.49 | 609.01 | 29.47 | 73.93

Table 3.1: Unmixing hyperspectral images: Execution times.

Radiance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM

Al 39 39 38 198 18 258 4
B2 38 38 87 131 16 258 4
A3 30 30 65 170 15 258 5
C4 22 22 5 332 10 258 4
C5 41 41 32 106 17 258 7
C5b 41 41 96 101 18 258 4
A5 51 51 95 100 6 258 2

Reflectance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM

Al 43 43 128 2 6 258 8
B2 25 25 48 198 10 258 2
A3 28 28 63 46 6 258 8
C4 6 6 12 73 12 258 2
C5 23 23 47 356 5 258 2
C5b 20 20 45 283 4 258 2
A5 28 28 60 449 9 258 2

Table 3.2: Unmixing hyperspectral images: Number of induced endmembers.
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Radiance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM
Al 61.344 9.877 | 15.721 | 0.299 | 53.506 | 0.124 | 19.935
B2 78.093 7.340 | 8.499 | 0.358 | 61.649 | 0.123 | 17.976
A3 69.304 7.351 | 6.566 | 0.271 | 55.684 | 0.115 | 14.300
C4 33.563 7.674 | 29.041 | 0.259 | 56918 | 0.115 | 18.056
C5 67.032 7.389 | 21.619 | 0.454 | 66.541 | 0.124 | 10.580
C5b | 131.837 | 7.373 | 9.981 | 0.607 | 64.448 | 0.123 | 18.300
AS 324375 | 7.345 | 13.425 | 0.481 | 58.793 | 0.123 | 35.390
mean | 109.364 | 7.764 | 14.979 | 0.390 | 59.648 | 0.121 | 19.220
Reflectance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM
Al 101.171 | 11.080 | 8.219 | 2.775 | 105.439 | 0.128 | 9.130
B2 38.019 7.177 | 5298 | 0.363 | 60.565 | 0.112 | 36.849
A3 38.353 7420 | 5.459 | 6.963 | 99.696 | 0.112 | 9.207
Cc4 10.991 6.691 | 2341 | 0.514 | 51.807 | 0.112 | 37.436
C5 57.175 7451 | 5.110 | 0.283 | 120.243 | 0.112 | 37.294
C5b 29.674 7.349 | 4382 | 0.293 | 149.396 | 0.112 | 37.184
A5 38.250 7.359 | 6.120 | 0.298 | 67.344 | 0.112 | 36.646
mean | 44.805 7.790 | 5.276 | 1.641 | 93.499 | 0.114 | 29.107

Table 3.3: Unmixing hyperspectral images: Execution time per induced endmem-
ber

Tables 3.4, 3.5 and 3.6 show the reconstruction error results. Regarding radi-
ance images, it is clear that EIHA and ATGP are the methods that allow the better
reconstruction. Regarding reflectance images, the results are more similar for all
the algorithms. However, it is important to note that this error measures -explained
in appendix B- reconstruct the image using the Linear Mixing Model, therefore
inside the scope of linear algebra. This is detrimental for WM and sWM, which
use exclusively lattice algebra. The proper reconstruction method would involve
using M and (A operators over the Wxx and Myy auto-associative memories re-
spectively. Nevertheless, the reconstruction process was limited to linear algebra
for the sake of comparability.

The capability of extracting skin endmember was similar for all methods. The
results for radiance images are shown in figures 3.3 to 3.9. The correlation dis-
tances, seen in table 3.7, show similar results in all experiments. It is interesting
to note that despite the small number of induced endmembers, sSWM still has com-
parable results to those of other methods. The graphics pertaining to reflectance
images -figures 3.10 to 3.16- offer less visual help understanding the results. The
irregularity shown in these plots can be consequence of many factors, the main
hypothesis being that the signal recieved in white standard area used to calculate
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Radiance images

NFINDR | ATGP FIPPI | EIHA | ILSIA WM sWM mean
Al 30.97 29.17 37.80 18.32 | 38.82 217.67 200.87 81.95
B2 79.91 62.32 84.88 50.29 | 268.55 | 722.62 | 1001.02 324.23
A3 106.25 81.12 152.54 | 43.50 | 595.83 | 2534.26 | 3525.47 | 1005.57
C4 521.13 | 217.25 | 24403.30 | 89.08 | 6656.58 | 9036.79 | 76799.92 | 16817.72
C5 148.00 53.54 260.50 | 41.68 | 143.29 | 357.49 964.14 281.23
C5b 73.22 54.10 70.17 43.56 | 221.72 | 413.65 550.63 203.86
AS 73.17 51.96 57.75 41.91 | 258.04 | 415.29 | 1109.52 286.81
mean | 147.52 78.49 | 3580.99 | 46.91 | 1168.97 | 1956.82 | 12021.65
Reflectance images
NFINDR | ATGP FIPPI | EIHA | ILSIA WM sWM mean
Al 24.45 28.80 19.52 47.61 | 49.94 43.86 43.60 36.82
B2 5.32 5.72 4.57 2.18 5.94 5.77 7.59 5.30
A3 45.60 47.54 39.87 44.96 | 66.45 67.80 69.68 54.56
C4 27.20 20.94 17.42 4.93 14.95 22.84 56.74 23.57
C5 26.41 29.24 25.54 10.12 | 35.53 29.53 34.12 27.21
C5b 20.80 22.29 18.85 7.68 24.14 21.06 24.13 19.85
A5 25.11 26.80 26.56 10.75 | 34.43 33.52 39.06 28.03
mean 24.98 25.90 21.76 18.32 | 33.05 32.05 39.27

Table 3.4: Mean squared reconstruction error (MSE) of unmixed hyperspectral images.
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Radiance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM SWM | mean
Al 0.0443 | 0.0436 | 0.0382 | 0.0331 | 0.0420 | 0.1643 | 0.1569 | 0.0746
B2 0.0123 | 0.0077 | 0.0058 | 0.0051 | 0.0259 | 0.0309 | 0.0430 | 0.0187
A3 0.0118 | 0.0104 | 0.0114 | 0.0069 | 0.0204 | 0.1544 | 0.2176 | 0.0618
C4 0.0016 | 0.0008 | 0.0525 | 0.0004 | 0.0065 | 0.0189 | 0.1720 | 0.0361
C5 0.0211 | 0.0037 | 0.0078 | 0.0030 | 0.0154 | 0.0148 | 0.0323 | 0.0140
C5b 0.0050 | 0.0036 | 0.0037 | 0.0029 | 0.0217 | 0.0158 | 0.0253 | 0.0112
A5 0.0057 | 0.0041 | 0.0036 | 0.0035 | 0.0210 | 0.0193 | 0.0436 | 0.0144
mean | 0.0146 | 0.0106 | 0.0176 | 0.0079 | 0.0218 | 0.0598 | 0.0987
Reflectance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM SWM | mean
Al 0.1763 | 0.2076 | 0.1477 | 0.3086 | 0.3716 | 0.2705 | 0.2761 | 0.2512
B2 0.1934 | 0.2100 | 0.1838 | 0.0577 | 0.1260 | 0.0523 | 0.0938 | 0.1310
A3 0.2401 | 0.2536 | 0.2302 | 0.2112 | 0.2650 | 0.2348 | 0.2619 | 0.2424
C4 0.1142 | 0.0889 | 0.0685 | 0.0196 | 0.0668 | 0.0856 | 0.2126 | 0.0937
C5 0.3450 | 0.3660 | 0.3553 | 0.1111 | 0.1860 | 0.1000 | 0.1301 | 0.2277
C5b 0.3547 | 0.3635 | 0.3466 | 0.1089 | 0.2138 | 0.1024 | 0.1304 | 0.2315
AS 0.2539 | 0.2810 | 0.3332 | 0.1148 | 0.1906 | 0.1021 | 0.1373 | 0.2019
mean | 0.2396 | 0.2529 | 0.2379 | 0.1331 | 0.2028 | 0.1354 | 0.1775

Table 3.6: Mean angular distance (MAD) reconstruction error of unmixed hyperspectral images.
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Figure 3.3: Average skin pixel (shadowed areas cover values under standard devi-
ation) drawn in in blue, and the endmembers closest to the mean for each of the
ElAs, for radiance image Al.

the reflectance is quite noisy. Numerical results from 3.7 are more enlightening.
The results are worse than those obtained over radiance images. The best algorithm
seems also to be EIHA. Agian, despite inducing in some cases only 2 endmembers,
the results of sSWM are comparable to those of the other algorithms.
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Figure 3.4: Average skin pixel (shadowed areas cover values under standard devi-
ation) drawn in in blue, and the endmembers closest to the mean for each of the
EIAs, for radiance image B2.
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Figure 3.5: Average skin pixel (shadowed areas cover values under standard devi-
ation) drawn in in blue, and the endmembers closest to the mean for each of the
ElAs, for radiance image A3.
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Figure 3.6: Average skin pixel (shadowed areas cover values under standard devi-
ation) drawn in in blue, and the endmembers closest to the mean for each of the
ElAs, for radiance image C4.
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Figure 3.7: Average skin pixel (shadowed areas cover values under standard devi-
ation) drawn in in blue, and the endmembers closest to the mean for each of the
ElAs, for radiance image C5.
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Figure 3.8: Average skin pixel (shadowed areas cover values under standard devi-
ation) drawn in in blue, and the endmembers closest to the mean for each of the
ElAs, for radiance image C5b.
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Figure 3.9: Average skin pixel (shadowed areas cover values under standard devi-
ation) drawn in in blue, and the endmembers closest to the mean for each of the
ElAs, for radiance image AS.
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Radiance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM
Al 0.029 0.041 | 0.043 | 0.023 | 0.038 | 0.127 | 0.128
B2 0.013 0.015 | 0.019 | 0.013 | 0.057 | 0.025 | 0.044
A3 0.021 0.031 | 0.037 | 0.015 | 0.234 | 0.053 | 0.086
Cc4 0.004 0.006 | 0.078 | 0.001 | 0.033 | 0.053 | 0.231
Cs 0.062 0.027 | 0.069 | 0.006 | 0.013 | 0.095 | 0.112
C5b 0.061 0.012 | 0.020 | 0.006 | 0.098 | 0.098 | 0.109
A5 0.044 0.005 | 0.058 | 0.006 | 0.055 | 0.077 | 0.137
mean 0.033 0.020 | 0.046 | 0.010 | 0.075 | 0.076 | 0.121
Reflectance images
NFINDR | ATGP | FIPPI | EIHA | ILSIA | WM | sWM
Al 0.483 0.538 | 0.409 | 0.332 | 0.755 | 0.722 | 0.722
B2 0.499 0.616 | 0.541 | 0.541 | 0.497 | 0.667 | 0.698
A3 0.707 0.686 | 0.689 | 0.464 | 0.800 | 0.745 | 0.789
Cc4 0.520 0.484 | 0.422 | 0.190 | 0.335 | 0.253 | 0.389
C5 0.598 0.681 | 0.635 | 0.536 | 0.668 | 0.713 | 0.875
C5b 0.610 0.677 | 0.585 | 0.506 | 0.540 | 0.728 | 0.865
A5 0.681 0.709 | 0.615 | 0.530 | 0.705 | 0.751 | 0.950
mean 0.585 0.627 | 0.557 | 0.443 | 0.614 | 0.654 | 0.755

Table 3.7: Correlation distance to the mean skin pixel of the closest induced end-
member.

3.6 Conclusion

The unmixing of hyperspectral images presents many challenges. Perfectly pre-
processed and broadly used hyperspectral data is usually the ideal scenario. In
this work the data was manually collected and labeled, adding complexity to the
unmixing process. Noise and the conditions of image retrieval make difficult to
obtain clean unmixing results. The conducted experiments show differences in
performance in different images. Nevertheless, this set of experiments allows us
to test the capabilities of unmixing algorithms under these circumstances. The re-
sults vary greatly depending on the number of extracted endmembers. The results
were first evaluated using three measurements of reconstruction error. Overall,
Lattice Computing methods show equal or better unmixing capabilities. EIHA is
the algorithm that results in the smallest reconstruction error. The next unit of
measurement was the ability to detect endmembers representing human skin. All
methods showed good results, EIHA being again the most accurate. The proposed
endmember selection step added to WM, called sWM, showed comparable results,
taking into account the small number of endmembers. Summarizing, this experi-
ments demonstrate that, in a situation where human detection is needed and visual
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Figure 3.10: Average scaled and centered skin pixel (shadowed areas cover values
under standard deviation) drawn in in blue, and the scaled and centered endmem-
bers closest to the mean for each of the EIAs, for reflectance image Al.
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Figure 3.11: Average scaled and centered skin pixel (shadowed areas cover values
under standard deviation) drawn in in blue, and the scaled and centered endmem-
bers closest to the mean for each of the EIAs, for reflectance image B2.
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Figure 3.12: Average scaled and centered skin pixel (shadowed areas cover values
under standard deviation) drawn in in blue, and the scaled and centered endmem-
bers closest to the mean for each of the EIAs, for reflectance image A3.
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Figure 3.13: Average scaled and centered skin pixel (shadowed areas cover values
under standard deviation) drawn in in blue, and the scaled and centered endmem-
bers closest to the mean for each of the EIAs, for reflectance image C4.
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Figure 3.14: Average scaled and centered skin pixel (shadowed areas cover values
under standard deviation) drawn in in blue, and the scaled and centered endmem-
bers closest to the mean for each of the EIAs, for reflectance image C5.
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Figure 3.15: Average scaled and centered skin pixel (shadowed areas cover values
under standard deviation) drawn in in blue, and the scaled and centered endmem-
bers closest to the mean for each of the EIAs, for reflectance image C5b.
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Figure 3.16: Average scaled and centered skin pixel (shadowed areas cover values
under standard deviation) drawn in in blue, and the scaled and centered endmem-
bers closest to the mean for each of the EIAs, for reflectance image AS.

or thermal information alone are not sufficient, it is possible to unmix hyperspectral
data and extract significant endmembers belonging to skin regions.
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Chapter 4

Face Recognition in Unbalanced
Databases

Most researches that aim towards more capable face recognition focus on develop-
ing algorithms that achieve increasingly better results. The limitation of this scope
is that the experiments are usually conducted over well balances neat databases.
The face images are all equally sized, taken under the same circumstances, all sub-
jects have the same number of photographs taken, with similar poses, etcetera. Real
world applications call for algorithms that can function under ugly circumstances,
i.e when dealing with unbalanced databases. Section 4.1 gives an introduction to
Chapter contents. Feature extraction and classification algorithms are presented
in Sections 4.2 and 4.3, respectively. The experimental design is detailed in Sec-
tion 4.4. Computational experiment results are reported in Section 4.5. Finally, a
concise discussion is presented in section 4.6.

4.1 Introduction

In statistical learning approaches, each face image is viewed as a point (vector) in a
d-dimensional space. The face images often belong to a low dimension manifold.
The high dimensionality of the data imposes the need for feature extraction pro-
cesses previous to face classification. Therefore, the goal is to choose and apply the
right statistical tool for the extraction and analysis of the manifold where the face
images lie in this high dimensional space. These tools must define the embedded
face space in the image space and extract the basis functions from the face space.
Ideally, patterns belonging to different classes (identities) will occupy disjoint and
compact regions in the feature space, which will be easy to discriminate by means
of statistical or bio-inspired classifier systems. In the best case a linear discriminant
would be enough to obtain good classification performance results. The earliest ap-
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proach applied Principal Component Analysis (PCA) for feature extraction [133],
other approaches use the variations of the Linear Discriminant Analysis (LDA)
[150, 101, 141, 103, 15], or the Locality Preserving Projections (LPP) [50]. Other
successful statistic tools include Bayesian networks [90], bi-dimensional regres-
sion [74], generative models [54], and ensemble based and other boosting methods
[81]. In this Chapter we propose Lattice Independent Component Analysis (LICA)
[43], using a Endmember Induction Algorithm (EIA) [134] based on Lattice Com-
puting [38] to perform feature extraction and dimension reduction. This is a new
approach to face recognition, although Lattice Computing approaches have been
previously applied to fMRI imaging [40, 44], mobile robot localization [135] and
hyperspectral image analysis [43, 109].

The classification system development process involves training a classifier
from a data sample and testing the trained system on independent samples to guess
the correct class. Translated into the face recognition paradigm, it means to train
the system on a set of identified faces and then try to assign each new unknown
face image to the correct identity. Extreme Learning Machine (ELM) constitute
an innovative category of neural-network based classification and regression tech-
niques [63]. Different kinds of ELM variations have been recently used in fields
as diverse as sales forecasting [126], antiviral therapy [98], metal temperature pre-
diction [131] or arrhythmia classification [76]. ELMs have been also applied in
biometrics, specifically for on-line face detection [94] and fingerprint classifica-
tion [87]. We provide a formal short review in Appendix 4.

Unbalanced class distribution of the data set [67], i.e. quite different a pri-
ori probabilities of the class intances, leads to big performance problems in most
conventional classification building methods, because they tend to be biased to the
most frequent class. However, most face recognition algorithms and classifiers are
tested over well balanced databases like ORL, Yalefaces or Multi-PIE. Under such
1deal circumstances, most classifiers and feature extraction methods mentioned be-
fore work successfully [22]. It is reasonable to think that the environments or
devices that require face recognition will not always provide such well balanced
databases. Therefore, it is relevant to address the face recognition task in these
unfavorable conditions. We have used Color FERET database [96, 95] to create 4
unbalanced experimental databases. We have tested LICA and other well known
algorithms for feature extraction using ELM as the classifier construction method
for fair comparison of the feature extraction, i.e. avoiding bias due to classifier con-
struction method. Additionally, the performance of ELM has been compared with
other classifiers. The aim of these experiments was to test the proficiency of both
LICA and ELM in the recognition of faces of a complex and unbalanced database.
Experimental results indicate that, among the tested methods, LICA is the most
effective feature extraction algorithm for face recognition under high subject-per-
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class variability. Experimental results also reveal that ELM is the classifier less
sensitive to high class-variation induced noise.

4.2 Feature extraction algorithms

Feature extraction is the process of mapping the original data into a more effective
feature space. The extracted features must preserve the best class separability pos-
sible in addition to dimension reduction. That is, if we have some data X, we find
coefficients Y such that

X=AY, “4.1)

Y =A"1.X, (4.2)

where A is the matrix of basis vectors for the feature extraction transformation.
The data in X is therefore projected by its inverse A~! into coefficients Y living in
a more convenient feature space. We have tested some of the most widely used fea-
ture extraction algorithms: Principal Component Analysis (PCA) [133], Indepen-
dent Component Analysis (ICA) [9, 93, 92, 28, 91, 88, 47] and Linear Discriminant
Analysis (LDA) [8] along with Lattice Independent Component Analysis (LICA)
[43]. Both PCA and LDA both try to find orthogonal projection directions with
greatest variance of the prejection coefficients. While PCA is an unsupervised ap-
proach LDA is a supervised algorithm, using class label information. ICA sources
need not be orthogonal, because it maximizes the source statistical independence.
Finally, LICA is a Lattice Computing approach based on lattice independence.
These algorithms are explained in more detail below.

4.2.1 Principal Component Analysis (PCA)

The PCA finds othogonal projection axes of the data in the order of decreasing
projection variance. These directions are called principal components. Therefore,
A~ is formed by the principal components of the covariance matrix of X.

Let be a data-set composed of N images of n pixels, denoted by X = {x pi=1...

R™N where each x ; 1s an image column vector. We center the data by subtracting
the mean column. We want to find the eigenvectors a solving the eigen-problem:

Aa=Xa (4.3)
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The Singular Value Decomposition of X given by X = U -S-VT where matrix U
is the matrix of the eigenvectors of XX, § is the diagonal matrix of the eigenvalues.
The data matrix X can be projected into a reduced spaced of dimensionality m
by computing ¥ = U’ X, where U, denotes the matrix composed of the first m
columns of U.

4.2.2 Linear Discriminant Analysis (LDA)

PCA is unsupervised because it doesn’t use the class information of data sample
points. Linear Discriminant Analysis (LDA) searches for optimal class discrimi-
nation projections given data-set

X:{X’J‘.;]’:1,...,N;k:{1,...,C}}ER"XN (4.4)

where data data samples are partitioned into C classes, x are n-dimensional vectors.
Each class has m; samples. Assume that the mean has been extracted from the
samples, as in PCA. The objective function for the LDA can be defined [15] as

a’Sya
Ay = argmfxm, 4.5)
Sp=Y meu* (k)" (4.6)
k=1
Y (A E ) () @.7)
S\mc e NeS )7 '
S =Y xi(x)", (4.8)

where u is the total sample mean vector, ¥ is the mean vector of the k-th class
and xf.‘ is the i-th sample in k-th class. The total scatter matrix S; and between-class
scatter matrix S can be expressed in matrix form, if the sample vectors of each
class are grouped together:

Sy = XWywXT, (4.9)

S, =xxT, (4.10)

where Wy, is a diagonal matrix defined as
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Finally, we can state LDA as the following eigenproblem:

Spa = AS;a, (4.13)

which is equivalent to
XWyonXT (XXT)"'a=Aa. (4.14)

The solution of this eigenproblem provides the eigenvectors needed to project
the data in an analogous manner of PCA. When there are many variables, for in-
stance if samples are images and observations are pixels, some previous dimen-
sionality reduction must be performed.

4.2.3 Independent Component Analysis (ICA)

ICA is a generative model which aims to describe how the data is generated by
mixing non-Gaussian, mutually statistically independent latent variables with and
unknown mixing matrix [68]. Let us denote x the n-dimensional observed data
vector and B the n X M mixing matrix. The mixing model is formulated for ICA as
follows:

x = Bs, (4.15)

s = Vx, (4.16)

where V = B! and s are the independent sources. If we consider the whole
sample, the equation is rewritten as

S=VX 4.17)
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where X = {x;;j=1,...,N} € R™" | each x; being a face image column
vector.

It has been shown that the mixing model is completely identifiable, up to a per-
mutation and scale of the sources, if the sources are statistically independent and
at least M — 1 of them are non-Gaussian. In the case of M gaussian variables, the
matrix B is not identifiable. It is also required that the number of sources is smaller
than or equal to the number of available observations, i.e. M < n. The mixing and
unmixing matrices can be estimated following three approaches: maximizing the
nongaussianity, minimizing the mutual information and maximizing the likelihood.
Quantitative measures of random variable nongaussianity are kurtosis, negentropy
or approximations of negentropy. If the component are constrained to be uncorre-
lated, ICA estimation by minimization of mutual information is equivalent to max-
imizing the sum of nongaussianities. The constraint of uncorrelatedness simplifies
the computations considerably. In the maximum likelihood estimation approach,
the log-likelihood it’s usually used, which is equivalent to entropy maximization,
or “infomax”.

There are two possible ways of performing face recognition with ICA. We can
treat the images as random variables and pixels as observation. This approach
maximizes the independence of pixels It has been argued that it will produce better
object recognition, since it implements recognition by parts [79]. Other approach is
to treat pixels as variables and images and observations. Treating the face recogni-
tion problem from a wholistic approach, it has been demonstrated that it performs
better [30]. In this work we chose the second option. We have used the DTU:ICA
toolbox developed by the Technical University of Denmark [29].

Mean-field ICA

This method estimates sources from the mean of their posterior distribution and
the mixing matrix (and noise level) is estimated by maximum a posteriori (MAP)
[69]. The latter requires the computation of a good approximation to the correla-
tions between sources. For this purpose, [69] propose three increasingly advanced
mean-field methods: the variational (also known as naive mean field) approach,
linear response corrections, and an adaptive version of the Thouless, Anderson and
Palmer (TAP) mean-field approach [93, 92].

We have empirically searched for the best of those approaches on our problem.
The followed criteria was recognition accuracy, constrained to a feasible execution
time. The selected method uses a constant prior mixing matrix and noise covari-
ance as well as a non-analytic power law source prior. The Mean-field method used
was linear response correction.
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ICA Infomax

The “infomax” framework original purpose was to maximize the output entropy
of a neural network with non-linear outputs [9]. It is closely connected to the
maximum likelihood estimation. For a data matrix X = {x;;j=1,...,N} e R"V,
the log-likelihood function has the form [68]

r n
L=Y"Y logfj(vjx(i))+1t-log|detV| (4.18)
i=1 j=1
where V.= {vi,...,v,} € R™" is the inverse of the source mixing matrix B. In
our case, the function used is

t n
L=t-log|detV|— Z Z log f(v;x(i)) + N -n-log(m) (4.19)
i=1j=1

where f(x) = cosh(x).

ICA with Molgedey and Schuster decorrelation algorithm

ICA with the Molgedey and Schuster decorrelation algorithm (ICA-MS) uses the
decorrelation algorithm presented in [88] to uncorrelate a some superimposed sources
X and X;;, where ts stands for time-shifted. The problem was reduced to solve the
eigenproblem of correlation matrices X, X T and XXT. The solution is found by
solving the eigenvalue problem of the quotient matrix Q = X, X7 (XX7)~! [48].
The delay time is estimated using autocorrelation differences.

4.2.4 Lattice Independent Component Analysis (LICA)

Lattice Independent Component Analysis is based on the Lattice Independence dis-
covered when dealing with noise robustness in Morphological Associative Memo-
ries [112], later renamed Lattice Associative Memories introduced in Apendix C.
Works on finding lattice independent sources (aka endmembers) for linear unmix-
ing started on hyperspectral image processing [43, 115]. Since then, it has been
also proposed for functional MRI analysis [40, 44] or mobile robot location [135]
among others.

Under the Linear Mixing Model (LMM) the design matrix is composed of end-
members which define a convex region covering the measured data. The linear co-
efficients are known as fractional abundance coefficients that give the contribution
of each endmember to the observed data:

M
y=)Y aisi+w=Sa+w, (4.20)
i=1
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where y is the d-dimension measured vector, S is the d x M matrix whose columns
are the d-dimension endmembers s;,i = 1,..,M, a is the M-dimension abundance
vector, and w is the d-dimension additive observation noise vector. Under this
generative model, two constraints on the abundance coefficients hold. First, to be
physically meaningful, all abundance coefficients must be non-negative a; > 0,i =
1,..,M, because the negative contribution is not possible in the physical sense. Sec-
ond, to account for the entire composition, they must be fully additive Zﬁ‘i] a;=1.
As a side effect, there is a saturation condition a; < 1,i=1,.., M, because no isolate
endmember can account for more than the observed material. From a geometrical
point of view, these restrictions mean that we expect the endmembers in S to be
an Affine Independent set of points, and that the convex region defined by them
covers all the data points.

The Lattice Independent Component Analysis (LICA) approach assumes the
LMM as expressed in equation 4.20. Moreover, the equivalence between Affine
Independence and Strong Lattice Independence [109] is used to induce from the
data the endmembers that compose the matrix S. Briefly, LICA consists of two
steps:

1. Use an Endmember Induction Algorithm (EIA) to induce from the data a set
of Strongly Lattice Independent vectors. In our works we use the algorithm
described in [43, 40]. These vectors are taken as a set of affine independent
vectors that forms the matrix S of equation 4.20.

2. Apply the Least Squares or Full Constrained Least Squares estimation to
obtain the abundance vector of the LMM.

The advantages of this approach are (1) that we are not imposing statistical assump-
tions to find the sources, (2) that the algorithm is one-pass and very fast because it
only uses lattice operators and addition, (3) that it is unsupervised and incremental,
and (4) that it can be tuned to detect the number of endmembers by adjusting a
noise-filtering related parameter. When M < d the computation of the abundance
coefficients can be interpreted as a dimension reduction transformation, or a feature
extraction process.

Our input is a matrix of face images in the form of column vectors. In the lin-
ear mixing model (LMM), we represent the a face image as a linear combination
of endmember faces. The weight of each endmember face (abundance) is propor-
tional to its fractional contribution to the construction of the observed face image.
In other words, the induced SLI vectors (endmembers) are selected face images
which define the convex polytope covering the data. A face image is defined as
a A,xp matrix composed by a-b = N pixels. Images are stored like row-vectors.
Therefore, column-wise the data-set is denoted by ¥ = {y pi=1...,N } e R™N
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Algorithm 6 LICA feature extraction for face recognition. E* denotes the pseudo-
inverse of the matrix E.

1. Build a training face image matrix Xrg = {xj;j =1,... ,m} € RV*™m_ The
testing image matrix is denoted Xrg = {x.,-;j =1,... ,m/3} e RVxm/3,

2. Obtain a set of k endmembers using an EIA over X7x: E = {ej;j =1,... ,k}
from Xrg. Varying EIA parameters will give different E matrices. The algo-
rithm has been tested with o values dependant on database size.

3. Unmix train and test data: Yrg = E*XZ, and Yrp = E*X] ..

, where each y; is a pixel vector. Firstly, the set of SLI X = {x;} € R"*X is initial-
ized with the maximum norm pixel (vector) in the input data-set Y. We chose to use
the maximum norm vector as it showed experimentally to be the most successful
approach. The method is summarized in algorithm 6.

The algorithm for endmember induction, the EIA, used is the one in [43] which
has tolerance parameter o controlling the amount of endmembers detected. In the
ensuing experiments we have varied this parameter in order to obtain varying num-
bers of endmembers on the same data. Further explanations on Lattice Computing
theory are available in appendix C.

4.3 Classification

One of the goals of this work is to compare the performance of Extreme Learning
Machines (ELM) with other classifiers. Details on ELMs are reported in Appendix
D. In the experiments in this Chapter basic ELM [64] and feature mapping or
regularized ELM (ELM-FM ) [63] were used. We have chosen two competing
state of the art classification algorithms. One is an ensemble classifier based on
decision trees - Random Forest [14]. The other is a Support Vector Machine variant
introduced in [120] called v—SMYV. We have used the implementations of Random
Forest and v—SMYV provided in Weka [46, 21]. In the following subsections, we
describe the classifiers in more detail. Additionally, we have also compared ELM
with Feed-forward Neural Networks (FFNNs) trained with two standard learning
algorithms as provided in Matlab.

4.3.1 Random Forest

A random forest is a classifier consisting of a collection of tree-structured classi-
fiers h(x,0),k = 1,... where the ®; are independent identically distributed ran-
dom vectors and each tree casts a unit vote for the most popular class at input x
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[14]. Random Forest select inputs randomly. This randomness is chosen so that
the correlation between two different members of the forest is minimized. A Ran-
dom Tree is formed by selecting at random, at each node, a small group of input
variables to split on. In our case, this number was set to logra + 1, where a is the
number of attributes. The tree grows using CART methodology to maximum size.
Trees are not pruned.

4.3.2 Support Vector Machines

Support Vector Machines (SVMs) are linear or non-linear (with a kernel trick)
non-probabilistic binary classifiers [27]. The class of SVM that we have used was
introduced in [120]. When it is a regression method we call it SVR, when it is
a classifier it’s called SVC. The main idea behind SVMs is to build a hyperplane
that best separates members of different classes. Let be (x1,y;) ... (x,y;), our two-
class labeled data set. It is said to be linearly separable if there exists a vector w
and scalar b so that for all the elements of the training set

yilw-xj+b) > 1. 4.21)

In the v — SVM classification algorithm [120, 119], the optimization problem
presented is to minimize

1 l
tw.g.p) =5 Wl +vp Y& (422)
i=1

where ||w||* is a term that characterizes the model complexity, the & are some
variables and v and p are two constants. This function is subject to the constraints

yi((xiw)+b) >p—§& (4.23)

§&=>0,p=>0. (4.24)

The decision function, defining ¢; that are 0 < ¢; < %, and using a kernel k,
takes the form

!
f(x) =sgn (Z o yik(x,x;) +b> . (4.25)
i=1
SVMs are binary classifiers, so we use one-against-one approach for multi-
class classification. Details on the computation of b and p and justification of the
preference of v — SVM over classic SVM are thoughtfully explained on [120].
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Figure 4.1: Example of the rotation that we allowed. Images from Color FERET
database [96].

4.4 Experimental design

We have performed two separate but related experiments. The goal was to obtain
answers to two questions about ELMs:

1. Used as a preprocessing step for ELMs, is LICA a better than or comparable
to other state-of-the-art feature extraction algorithms when dealing with big,
unbalanced face databases? and

2. Can ELMs outperform state-of-the art classifiers in such experimental envi-
ronment?

We based our experimental designs on the Color FERET database [96, 95].
Color FERET contains 10344 face images, varying in scale, rotation and light-
ing. There are also occlusions caused by glasses or hair. Some of the images
are grayscale, but the vast majority are RGB. We chose frontal and mildly rotated
images - with a rotation of 15 ,22.5 and 45 degrees. Representative face image
samples can be seen in figure 4.1. This left us with 5175 facial photo candidates to
build our experimental databases. Classes correspond to subject identities. These
databases have a highly unbalanced class size distribution, as is illustrated in figure
where we plot a histogram of the number of samples per class in the first selected
database. Following the detection process described below, we made three ad-
ditional face image subset selections, resulting in four experimental databases of
5169, 3249, 832 and 347 images respectively. Table 4.1 shows a summary of each
database’s main features.

The faces were not suitable for recognition, because of the noise produced by
different backgrounds and the differences in scale. Therefore, we used the detec-
tion algorithm developed in [136, 80] and available in Scilab SIVP. The algorithm
usually detects several faces in a photography of a single subject. We added a face
selection process based firstly on candidate’s size. A second step checked if in the
middle row’s average color composition the red channel was predominant. This
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Figure 4.2: Histogram showing the class distribution of the DB 1 database.

DB 1 DB2 | DB3 | DB4
Number of samples 5169 3249 832 347
Number of classes 994 635 265 79
Mean (samples per class) 4.3924 | 3.1396 | 5.2835 | 5.2002
Standard deviation (samples per class) | 5.8560 | 3.4498 | 4.9904 | 4.5012
Median (samples per class) 2 2 4 4
Mode (samples per class) 2 2 2 2

Table 4.1: Summary of the 4 databases used in our experiments.
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Figure 4.3: Detection example. Orange squares show the first and second candi-
dates. First candidate’s middle row’s RGB values are R=41.95 G=41.97 B=46.60.
Second candidate’s are R=133.03 G=106.84 U=79.49.

method works well under average lighting conditions and regardless of skin color.
We did not modify the face area selected by the algorithm. We allowed a partial oc-
clusion of the faces, up to a 20% of the face area. There were 18 detection failures.
We also removed 6 detected faces because the provided ground-truth deviated from
reality. Overall, this method achieved a success rate of 99.65%. The process is il-
lustrated in figure 4.3. The next step was to scale images to 100x100 pixels using
bicubic resampling. Then we needed to do a conversion from RGB to grayscale
prior to feature extraction. We used a Gr =0.85-R+0.10- G+ 0.05 - B conversion
method which is reported to be the optimal grayscale conversion formula for face
recognition [24].

Feature extraction was performed using the algorithms mentioned on section 4.2.
PCA has no parameter whatsoever. LDA usually needs a previous dimension re-
duction phase. We performed Singular Value Decomposition (SVD) over the data
retaining the maximum amount of eigenvectors. Both ICA Infomax and ICA-MS
also require a the same preprocess. Mean-field ICA has several parameters, like
prior mixing matrix, noise covariance, etc. We found that constant mixing matrix
and noise covariance, as well as power law tail source prior. This method showed
empirically the best results in a reasonable time.

Classifiers were also empirically tuned. The parameter of the ELMs was the
number of hidden nodes, in addition to the ridge parameter A in the case of ELM-
FM. Random Forest only required to fix the number of trees. In the case of SVMs,
we chose v — SVM because it showed better recognition rate that C-SVM. The



74 CHAPTER 4. FACE RECOGNITION IN UNBALANCED DATABASES

v parameter was also set empirically. Both the v — SVM kernel function and the
ELM activation function were sigmoidal. We also tested two FFNNs with Back-
propagation algorithm. One uses Resilient Backpropagation Algorithm (RPROP)
[104] and the other Scaled Conjugate Gradient Algorithm (SCG) [89]. The five
classifiers were tested with the four experimental databases described above, tun-
ing their parameters to obtain the best accuracy possible. We performed 2-fold
cross-validation. The recognition results are obtained based on 20 repetitions. In
other words, in each of the 20 trials we randomly choose the 50% of the members
of each class, having both testing and training set a similar size (not equal, because
some classes contain an odd number of images).

4.5 Experimental results

Experiments were run on a Intel 15 2400 processor and 8 GB of RAM memory.
Random Forest is resource greedy, and it’s performance is limited by the amount
of trees that computer’s memory allows to grow. Other classification and feature
extraction processes do not pose any computational resource-related problem. The
following two subsections describe the results obtained, each corresponding to one
of the two questions raised earlier in the section 4.4.

4.5.1 Results of LICA using Extreme Learning Machines

The computational experiments covered systematic dimensionality reduction up to
86, 107, 32 and 21 dimensions for databases DB 1, DB 2, DB 3 and DB 4, respec-
tively. Working with dimensions above those limits did not show any increase in
the accuracy of the algorithms. For ICA and PCA selecting the target dimension
reduction was immediately accomplished selecting the desired sources and eigen-
vectors, respectively. For LICA that exploration implies varying the value of the o
parameter and observing the number of endmembers detected. All feature extrac-
tion methods were evaluated in a wrapper scheme using an ELM for classification.
The average number of hidden nodes was 1290 for DB 1, 870 for DB 2, 275 for DB
3 and 142 for DB 4. Extended information about the parameters of the classifiers
are provided in table 4.2.

Figure 4.5 shows the recognition rate for the smallest database DB 4. The
database has high average number of images per class (5.2002) with a standard
deviation of 4.5012. Most classes have 2 samples. The results show that LDA
and PCA converge quickly to their maximum hit-rate. This small database with
high class size variability seems to be unsuitable for some ICA methods, such as
the Mean field ICA and the M&S ICA. Although showing worst results than LDA
in 0 to 5 dimension space, LICA based classification obtains the best recognition
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Classifier Parameter DBI DB?2 DB3 DB4
ELM hidden nodes 1290 870 275 142
ELM-FM A 2800 7900 4700 8400
v 0.08 0.085 0.115 0.08
v—SVM cost, kernel degree, € 1, 3, 0.001
Random Forest number of trees 60 60 .m@. 208
nF, max. tree depth 14, unlimited
mG, 81, iy, epochs, Mf, Ir, Ad ,Amax, g 5-107%, 1.005, 0.015, 100, 5, 0.01, 0.5, 50, 0
FENN RPROP min. performance gradient 1-10°%[1-107[1-10°8 1-1073
change in weight for second derivative approximation 0.5 0.05 0.5 0.5
FFNN SCG regulation the indefiniteness of the Hessian 0.005 | 0.0005 | 0.005 0.005
epochs, Mf, g 100, 5,0

Table 4.2: Summary of the main parameters of the classifiers in our experiments. € is the tolerance of the termination criterion, nF is the
number of randomly chosen attributes, mG is the minimum performance gradient, Ai is the increment to weight change, iy is the initial
weight change, Mf is the maximum validation fails, Ir is the learning rate, Ad is the decrement to weight change, Amax is the maximum
weight change and g is the performance goal.
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Figure 4.5: ELM recognition rate on DB 4 (347 subjects).

rate for dimensions above 5. Notice that LDA is a supervised dimension reduction
algorithm, so that the remaining algorithms have a strong handicap against LDA.
Figure 4.6 provides the recognition results for the next bigger database DB 3. LICA
is also the best feature extraction algorithm in this case, improving PCA and LDA.
The ICA algorithms perform badly in this database. The change from DB 3 to
DB 2, as shown in table 4.1, lies in the addition of much more classes with few
samples. This makes the DB 2 database even more unbalanced and complex than
DB 3 and DB 4. The performance of all feature extraction algorithms drops heavily.
Nevertheless, LICA continues to offer the best results, followed by LDA, as seen
in figure 4.7. The change from DB 2 to DB 1 is different. DB 1 has many more
subjects with more than two samples, thus rising both the sample-per-class mean
and standard deviation. The most sensitive algorithm to the cited change is LICA.
While the other methods see a 10-20% drop in their hit-rate at most, LICA drops
about a 40%. The most efficient algorithms when testing DB 1 are LICA and
LDA, as shown on figure 4.8. We must remind the reader that LDA is a supervised
feature extraction method, while LICA is unsupervised. The main conclusion of
this collection of computational experiments is that LICA-ELM outperforms the
remaining feature extraction algorithms.

4.5.2 Results of ELM compared to other classifiers

In order to evaluate the resilience of ELMs to unbalanced datasets such as those in
face recognition problems, we extracted the LICA features from all the databases
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Figure 4.6: ELM recognition rate on DB 3 (832 subjects).
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Figure 4.7: ELM recognition rate on DB 2 (3249 subjects).
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Figure 4.8: ELM recognition rate on DB 1 (5169 subjects).

and tested the five classifiers described in section 4.4. Other algorithms Naive-
Bayes, Multinomial Naive-Bayes, Radial Basis Function Networks or Multilayer
Perceptrons were discarded after pilot experiments on the DB1 database that re-
sulted in very low recognition (below 1%). The recognition results are summa-
rized in Table 4.3. We report the mean and standard deviation test accuracy over
the databases, for all LICA feature dimensions.

The figure 4.9 plots the obtained results. The FFNNs, Random Forest and
v — SVM obtain systematically decrease their accuracy results as the size of the
database increases. When testing the two small databases, v —SVM improves Ran-
dom Forest. The FFNN SCG algorithm reports better results that FFNN RPROP.

DB 4 DB 3 DB 2 DB 1
ELM [64] 0.7093 (0.0385) | 0.8782(0.0199) | 0.5834 (0.0126) | 0.4735 (0.0061)
ELM-FM [63] 0.9035 (0.0237) | 0.8721 (0.0153) | 0.5834 (0.0143) | 0.4830 (0.0056)
Random Forest [14] | 0.7719 (0.0100) | 0.7506 (0.0489) | 0.3457 (0.0135) | 0.2431 (0.0126)
v —SVM [120] 0.8713 (0.0012) | 0.8509 (0.0334) | 0.3572(0.0148) | 0.2111 (0.0094)
FFNN RPROP [104] | 0.8494 (0.0217) | 0.7800 (0.0201) | 0.1448 (0.0084) | 0.3719 (0.0228)
FFNN SCG [89] 0.8692 (0.0198) | 0.8166 (0.0244) | 0.1205 (0.0024) | 0.2110 (0.0338)

Table 4.3: Testing accuracy average (variance) for 4 Color FERET database subsets
on features computed by the LICA feature extraction algorithm.
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Figure 4.9: Recognition rate on the 4 databases using ELM, Randon Forest, v —
SVM, FFNN BPROP and FFNN SCG on features extracted with LICA.

It is interesting that ELM obtains the worst accuracy result in the DB 4 case but
the best one in the remaining databases. ELM-FM algorithm, adding a regular-
ization method, overcomes this disadvantage. ELM-FM obtains the best results in
the small database and similar results than those of ELM in the other databases.
ELMSs systematically are more robust against introducing more classes and sam-
ples while maintaining the samples per class ratio. The experiments with DB 2 and
DB 1 represent a big rise on complexity and database size. ELM is the algorithm
that best deals under these circumstances. Specially in the DB 1 scenario, where
it doubles the other algorithm’s recognition rate. It’s also noticeable that standard
FFNNs perform poorly in those big complex databases. Particularly, FFNN SCG
seems unable to train properly DB 2 and DB 1.Besides, we can assert that ELM’s
total time of training and testing was several magnitudes smaller.

4.6 Discussion

We have applied LICA and five well known feature extraction procedures to rec-
ognize faces on four subsets of a well known face database. We have also tried
ELM and two widely used classifiers. The databases on which the experiments
have been performed were unbalanced, large and complex. We draw the following
conclusions from the obtained results:

* LICA is a better feature extraction algorithm for face recognition under the
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mentioned circumstances. It shows a better recognition rate in conjunction
with ELM classifier than the rest of methods. LICA also is less likely to drop
its effectiveness when we use smaller databases with high subject to class
ratio variability. ICA methods depend highly on the number of samples of
the database. LDA’s results are more consistent, specially when dealing with
the biggest database and high subject per class standard deviation. Overall,
Lattice Computing-based LICA algorithm its approach to feature extraction
is effective, being more competitive with large unbalanced databases, such
as those common in face recognition applications.

* The joint use of LICA and ELM has retrieved the best recognition results.
We can suggest that Lattice-based Endmember Induction Algorithms could
be best fitted to work with ELMs than other statistical tools (PCA, LDA)
or independent component extraction algorithms (ICA Infomax, ICA M&S,
Mean-field ICA).

* It is stated in [67] that Naive-Bayes is more robust to higher levels of class
noise then Random Forest and C-SVM. However, we have found that when
dealing with large unbalanced face databases, Naive-Bayes is far outper-
formed by ELM, v —SVM and Random Forest. The same applies to Multi-
nomial Naive-Bayes, Radial Basis Function Networks or Multilayer Percep-
trons. Results were so bad that they do not deserve publication here. There
is no implementation bias as far as we applied the standard implementation
found in Weka.

e Of all tested classifiers, ELM and ELM-FM are the most robust methods
for large databases with high class-variation induced noise. It shows simi-
lar results than Random Forest or v — SVM when the databases are small.
When the size is increased, ELM show an improvement of 124% and 95%
over the results of v —SVM and Random Forest respectively. Furthermore,
FFNNs with standard learning algorithms show worse performance than the
rest of the classifiers. It is noteworthy that the regularization step added by
ELM-FM to the basic ELM greatly increases the recognition accuracy in the
smallest database.

The composition of LICA feature extraction and ELM classification show promis-
ing results in the domain of face recognition. More experiments over highly unbal-
anced databases could be performed on future works. It would also be valuable to
test the various ELM algorithms apart from basic-ELLM available in the literature
[72, 62]. We think that it would be interesting to explore further the interplay be-
tween Lattice Computing-based feature extraction methods and Extreme Learning
Machines.



82 CHAPTER 4. FACE RECOGNITION IN UNBALANCED DATABASES



Chapter 5

Feature Fusion Improving Face
Recognition

Information fusion is a research area that has received a lot of attention lately. In
the case of face recogntion, it is interesting to be able to combine methods that
extract features differently, in order to better characerize the underlying nature of
face images. This chapter proposes a fusion scheme of linear and lattice computing
based features, introduced in Chapter 3, to improve face identification. The subject
is introduced in Section 5.1. Section 5.3 proposes the feature fusion methodology.
The experimental designed is explained in section 5.4. The results are shown and
discussed in Section 5.5. Finally, some conclusions are exposed in Section 5.6.

5.1 Introduction

In machine learning approaches either statistical or biologically inspired, each im-
age is represented as a vector identifying a point in a high dimensional space. The
strong regularities in the face images induces to think that they are located in a low
dimension manifold embedded in the high dimensional face image space. There-
fore, a lot of effort has been addressed to define feature extraction processes which
uncover this low dimensionality face space through linear and/or non-linear sub-
space projections. The goal is that the projected face images belonging to different
classes occupy disjoint and compact regions in the feature space which can be eas-
ily separated by linear or non-linear discriminant functions. These projections are
often defined by a collection of basis functions, so that face images are expressed
as a linear combination of them. The basis functions can be found through linear or
non-linear process. Linear approaches which have been applied to this problem in
the literature are Principal Component Analysis (PCA) [133], Linear Discriminant
Analysis (LDA) [151], or the Locality Preserving Projections (LPP) [50]. Chap-

83
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Figure 5.1: Flow diagram of the feature extraction and fusion process. We perform
a linear feature extraction process (either PCA or LDA) over the whole input data.
Concurrently, we extract class conditional endmembers and abundances. The last
step performs feature fusion merging selected features computed in one or other
process.

ter 3 shown that some lattice computing [38] approaches are successful instances
of non-linear induction processes of basis functions from data [43, 40, 39]. The
Lattice Independent Component Analysis (LICA) [39, 40] looks for lattice inde-
pendent vectors in the data which are used to perform a linear unmixing of the data
obtaining the data features as the fractional abundance coefficients of the data sam-
ples. Applying LICA to face recognition problems, we have found [83, 84] that
LICA features provide classification accuracy comparable to Independent Compo-
nent Analysis (ICA), LDA and PCA. The contribution of this Chapter is the fusion
of LICA and linear features to obtain improved results in face identification exper-
iments. LICA features and linear features are computed in independent processes.
Linear features are appended to the LICA features to form the complete feature
vector. When there is some ranking on the basis functions, such as the eigenvalues
associated to the eigenfaces, the LICA features correspond to the high rank linear
features, i.e. highest eigenvalues. Besides, we implement a class conditional LICA
performing independent searches for lattice independent vectors in each class re-
stricted dataset, obtaining class specific LICA features. We test our algorithm with
four face databases, different test and training set sizes and different number of
features. The fusion approach shows better overall results than traditional feature
extraction methods.

5.2 Lattice-based feature extraction

5.3 Feature fusion

The whole process of feature fusion is illustrated by the flow diagram in figure 5.1.
A face image I,x,, 1s a matrix composed of a-b = N pixels. To build the dataset we
transform the images into 1D vectors x € R which compose row-wise the dataset
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matrix X:
X={xi=1,....,m;c€{1,2,...,C}} e RV (5.1)

where 7 is the number of face images, x{ is the i-th face vector which belongs to
class ¢, and C the number of face classes (i.e. subjects). Let X be the submatrix
corresponding to the set of face image samples belonging to class c:

X‘={x{eX;j=1,....M} e RMV, (5.2)

where M is the number of face image samples belonging to that class. For each
class ¢ we compute a set of class conditional endmembers L applying an endmem-
ber induction algorithm (EIA), as described on section 5.2, to the class restricted
dataset X¢. Its noise-related o parameter controls to what extent an endmember
candidate can be regarded as different to an already chosen endmember. The num-
ber of induced endmembers will depend on the dataset and can be different for each
subset within the same data base. They are used to calculate the abundance matrix
of each class restricted dataset by straightforward unconstrained least squares (#
denotes the matrix pseudo-inverse)

A¢ = (L) x<T, (5.3)

where A° = {a%i=1,...,M} € RM>*M are the class restricted abundance coef-
ficients, and M, the number of endmembers found for this class. On the other
hand, the whole data set X is used to compute a mixing matrix W applying a linear
feature extraction algorithms, such as PCA [133], 2DPCA [73], 2D2PCA [147],
kernel PCA [118] or LDA [51]. The data features obtained by linear projection are
given by

Yy =wx’ (5.4)

where Y = {y¢;i=1,...,n;c € {1,2,...,C}} € R¥" is the feature matrix, when
each face image is transformed into a feature vector y§ of dimensionality d. The
final feature fusion step involves substituting the first linear features from Y with
the corresponding abundances in Y. Formally, the new i-th feature vector z; € R4
of a face of class c is defined as

z; = aj, | st Yial (5.3)

where the operator || denotes the concatenation of vectors, appending the second
vector to the end of the first one, the index j(i) is the index in the set of class
restricted data corresponding to the i-th vector in the dataset, and y; ; denotes the
k-th component of the i-th feature vector. The final feature matrix collecting all the
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Table 5.1: Summary characteristics of the used databases. *Variations in AT&T data
base are less pronounced.

Name Number Number Variations
of images | of subjects
AT&T Database 400 40 Pose, expression, light*
of Faces[1]
MUCT Face 3755 276 Pose, expression, light
Database [86]
PICS (Stirling) [2] 312 36 Pose, expression
Yale Face 165 15 Expression, light, glasses
Database [10]

transformations of the face images is

Z=A{z;i=1,...,mcc{l1,2,...,C}} e R

5.4 Experimental design

We have performed our experiments on four public face databases, whose features
are described in table 5.1. Images form Yalefaces database have a big white back-
ground area. We did a face detection pre-process to Yalefaces in order to remove
the unnecessary background. The rest of the databases were left unchanged. Some
details regarding the realization of the feature extraction processes:

* When dealing with small databases, LDA may encounter the so-called small
sample size problem [36]. This problem arises when there are less samples
than features. We have addressed this problem reducing the dimensionality
of the data prior to the LDA algorithm. We have tested PCA, 2DPCA and
2D2PCA methods for this purpose.

* The EIA that we used for endmember extraction has an ¢ parameter, as
stated in section 5.3. We set this parameter manually to 3.9 for Yale databases,
3.5 for AT&T and MUCT databases and 10 for PICS database, obtaining
sensible sets of endmembers.

* Values of features obtained with different extraction algorithms belong to
different scales. In fact some of them differ in several orders of magnitude.
To address this problem, we have performed the z-score normalization of the
final feature vectors, subtracting the mean of the training data and dividing
it by the standard deviation. The training data mean and standard deviation
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values are the ones used to normalize the testing data to avoid circularity
effects.

The feature fusion approach has been tested building and validating Extreme Learn-
ing Machine (ELM) [64, 65] classifier. ELM is a fast, simple and effective single-
layer feed-forward neural network learning scheme. Hidden node bias and input-
to-hidden-unit weights are randomly chosen. Given a unit activation function,
number of hidden nodes and targets, the output weights are given by a least-squares
solution. ELMs have been successfully used for face recognition [84] and show
promising performance compared to other classifiers [62, 63]. Further insight into
ELMs is offered in appendix D.

We evaluated the feature fusion approach in a cross validation scheme where
we have defined several random partitions of the data into train and test sets, specif-
ically partitions where the training data correspond to 30%, 40%, 50%, 60% and
70% of the data have been applied. Training and testing samples were selected
randomly without replacement. Each partition size was repeated 20 times. This
variation of training data size is relevant to ascertain that classification accuracy
does not depend only on the appropriate size of the training set. We performed
more experiments using half of the samples for training and the other half for test-
ing. We tested the performance of our approach across different feature space
dimensionality. We tested 1 to 96 features in steps of 5.

5.5 Experimental results

Table 5.2 shows the average cross validation results for the ELM classifiers ac-
cording to the random design described in the previous section, using 100 features.
Bold values correspond to the winner in the comparison between LICA feature
fusion and the conventional linear feature extraction. The results show that fea-
ture fusion enhances the recognition accuracy regardless of the train and test set
sizes. Feature fusion obtained better results in 33 out of 35 cross validation ex-
periments for the AT&T database. The accuracies shown in table 5.2 are pretty
high, because AT&T is a simple and well balanced database, with very slight vari-
ations of pose, expression and lighting. The best standard method in this database
is 2DPCA, with a 91.25% recognition rate when the testing samples are the 30%.
The fusion with LICA features increases this accuracy to a 96.92%. The MUCT
database is more difficult: The number of subjects per class is unbalanced and the
images have notable pose, expression and illumination variations. The database
is also the largest of the four. The recognition results are poor, as expected from
the literature. Nevertheless, LICA feature fusion improves the results in each cross
validation experiment. The best method in this database is 2DPCA+LDA, with
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AT&T PCA 2DPCA 2D2PCA kernel PCA PCA + LDA 2DPCA + LDA 2D2PCA + LDA
test size stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused
30% 0.6842 | 0.9583 | 0.9125 | 0.9692 | 0.5904 | 0.5863 | 0.7396 | 0.7929 | 0.7229 | 0.8879 | 0.9071 | 0.9300 | 0.9083 | 0.9254
40% 0.6428 | 0.9459 | 0.9044 | 0.9656 | 0.5525 | 0.5659 | 0.7025 | 0.7575 | 0.6800 | 0.8503 | 0.8825 | 0.9031 | 0.8744 | 0.9034
50% 0.6013 | 0.9185 | 0.8875 | 0.9492 | 0.5187 | 0.5225 | 0.6765 | 0.7338 | 0.6273 | 0.7910 | 0.8515 | 0.8592 | 0.8505 | 0.8557
60% 0.5542 | 0.8952 | 0.8577 | 0.9350 | 0.4806 | 0.4706 | 0.6348 | 0.6915 | 0.5625 | 0.7246 | 0.8063 | 0.8248 | 0.7910 | 0.8144
70% 04998 | 0.8389 | 0.8046 | 0.8927 | 0.4109 | 0.4177 | 0.5832 | 0.6332 | 0.4632 | 0.6279 | 0.7095 | 0.7446 | 0.6961 | 0.7257
MUCT PCA 2DPCA 2D2PCA kernel PCA PCA + LDA 2DPCA + LDA 2D2PCA + LDA
test size stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused
30% 0.1171 | 0.8643 | 0.2369 | 0.7574 | 0.4375 | 0.5183 | 0.0554 | 0.1819 | 0.3069 | 0.8999 | 0.9214 | 0.9606 | 0.9192 | 0.9601
40% 0.1187 | 0.8567 | 0.2354 | 0.7322 | 0.4244 | 0.4987 | 0.0563 | 0.1855 | 0.3048 | 0.8798 | 0.8918 | 0.9401 | 0.8951 | 0.9423
50% 0.1185 | 0.8402 | 0.2176 | 0.6880 | 0.3798 | 0.4669 | 0.0545 | 0.1770 | 0.3041 | 0.8427 | 0.8467 | 0.9140 | 0.8444 | 0.9157
60% 0.1190 | 0.8229 | 0.2022 | 0.6495 | 0.3621 | 0.4340 | 0.0562 | 0.1761 | 0.3009 | 0.8102 | 0.8038 | 0.8840 | 0.8010 | 0.8837
70% 0.1230 | 0.7711 | 0.1719 | 0.5595 | 0.2945 | 0.3656 | 0.0540 | 0.1592 | 0.2815 | 0.7349 | 0.7072 | 0.8147 | 0.7063 | 0.8173
PICS PCA 2DPCA 2D2PCA kernel PCA PCA + LDA 2DPCA + LDA 2D2PCA + LDA
test size stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused
30% 0.1630 | 0.8356 | 0.6529 | 0.7846 | 0.3558 | 0.3702 | 0.5370 | 0.5899 | 0.1726 | 0.6558 | 0.6514 | 0.6447 | 0.6875 | 0.6822
40% 0.1672 | 0.8018 | 0.6109 | 0.7471 | 0.3391 | 0.3361 | 0.4854 | 0.5507 | 0.1613 | 0.5931 | 0.5964 | 0.5891 | 0.6077 | 0.5869
50% 0.1720 | 0.7694 | 0.5740 | 0.6734 | 0.3049 | 0.3165 | 0.4379 | 0.4957 | 0.2066 | 0.5272 | 0.5049 | 0.5040 | 0.5280 | 0.5263
60% 0.1831 | 0.7529 | 0.5506 | 0.6843 | 0.3009 | 0.3220 | 0.4417 | 0.4826 | 0.1937 | 0.5303 | 0.5034 | 0.4877 | 0.5294 | 0.4986
70% 0.2310 | 0.7053 | 0.4889 | 0.6075 | 0.2625 | 0.2844 | 0.3716 | 0.4305 | 0.1736 | 0.4647 | 0.4055 | 0.4144 | 0.4293 | 0.4269
Yalefaces PCA 2DPCA 2D2PCA kernel PCA PCA + LDA 2DPCA + LDA 2D2PCA + LDA
test size stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused stand. fused
30% 0.7989 | 0.9744 | 0.8111 | 0.9267 | 0.5700 | 0.6667 | 0.4880 | 0.5122 | 0.6744 | 0.8833 | 0.5933 | 0.6756 | 0.4611 | 0.5600
40% 0.8083 | 0.9775 | 0.7808 | 0.9133 | 0.5633 | 0.6200 | 0.4892 | 0.5208 | 0.6325 | 0.8292 | 0.5917 | 0.6275 | 0.4100 | 0.5150
50% 0.7250 | 0.9511 | 0.7256 | 0.8889 | 0.4811 | 0.5444 | 0.4611 | 0.5228 | 0.5456 | 0.7039 | 0.4844 | 0.5339 | 0.3239 | 0.4283
60% 0.6919 | 0.9243 | 0.7081 | 0.8686 | 0.4471 | 0.5290 | 0.4614 | 0.5071 | 0.4790 | 0.6452 | 0.4233 | 0.4781 | 0.2971 | 0.3586
70% 0.6650 | 0.8929 | 0.6842 | 0.8279 | 0.3854 | 0.4792 | 0.4313 | 0.4933 | 0.4200 | 0.5300 | 0.3625 | 0.3950 | 0.2571 | 0.2987
Table 5.2: Average recognition accuracy with ELM classifier using 100 features for a) AT&T, b) MUCT, ¢) PICS and d) Yalefaces

databases. Bold numbers indicate the best method (standard vs fused with LICA). Asterisks indicate statistically significant differences
using two-sample paired ¢-tests with a 0.05 significance level.
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92.14% recognition accuracy. Feature fusion raises the accuracy to 96.06%. The
PICS database lacks illumination variations, but includes frontal and profile photos
as well as expression changes. The LICA feature fusion approach performs better
than the standard approach in 25 out of 35 cross validation experiments. Notice
that the results in the table for this database are very poor, maybe due to the curse
of dimensionality. The Yalefaces results show that LICA feature fusion approach
always introduces improvement. The best standard method is 2DPCA with 81.11%
recognition accuracy. Enhancing 2DPCA with LICA features provides a 92.67%
accuracy, but the fusion of LICA and PCA reaches a peak 97.44%. Overall, the
experiments show that the fusion method achieves better recognition rates in 128
cases out of 140. Our fusion approach using LICA shows better performance than
standard methods, regardless of the tests-training set sizes, extraction method used
or the tested database.

In order to assess the statistical significance of the differences of recognition
accuracy due to feature fusion, we perform paired ¢-tests between each linear fea-
ture extraction and its fusion with LICA based features using a 0.05 significance
level. The LICA feature fusion approach wins in 126 cases and loses in only 6
cases. There are 8 draws. Most defeats occur in the PICS database with 2D2PCA
or 2D2PCA+LDA methods.

We explore the performance of the methods along different feature dimension-
ality to assess how the pattern recognition algorithm improves or worsens when
we consider more features. This allows us to obtain some useful information: How
much time and memory space requires an algorithm to obtain acceptable results,
the performance degradation induced by additional features due to the curse of
dimensionality, and the consistency of the LICA feature fusion method improved
performance. Figure 5.2, 5.3, 5.4 and 5.5 provide the plot of the classifier average
accuracy for increasing feature vector dimensionality. Solid lines correspond to
the fusion of LICA features and the linear features obtained with the legend named
method. Dotted lines correspond to the features obtained from the bare linear meth-
ods. In most cases, the peak recognition accuracy is obtained with less than 50
features. In general, the effect of LICA feature fusion is twofold: (1) accuracy is
increases, in some cases dramatically, and (2) the best performances are obtained
with a lower number of features. For some linear feature extraction algorithms the
Hughes effect, i.e. decrease of the algorithm’s performance when adding new di-
mensions to the data, is very strong. This is most notable for 2D2PCA algorithm.
The LICA feature fusion does not alleviate this effect for the worst cases.

In Table 5.2 we reported the worst results for the PICS database dropping the
accuracy to near random choice results. The examination of the effect of the di-
mensionality increase for this database in figure 5.4 shows the general decrease
of all methods for dimensionalities above 40, thus the results in Table 5.2 for 100
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Figure 5.2: Recognition rate using ELM classifier for the AT&T database. Dot-
ted lines correspond to standard feature extraction methods. Solid lines show the
results of the proposed feature fusion approach.

features correspond to the worst scenario for this database. The most spectacular
increase in accuracy is provided by the fusion of PCA and LICA features, however
the 2DPCA+LDA and 2DPCA+LDA fused with LICA, provide the best recogni-
tion rates using few features. The nature of the kernel is always a relevant issue
when using kernel PCA. We have tested different databases and used the same
polynomial kernel. As we can see, results vary greatly.

5.6 Conclusion

This Chapter proposes the fusion of class conditional LICA features with linear
features to obtain improved face identification results. Class conditional LICA
computes the LICA features on class restricted data, obtaining a more accurate
representation of the local data structure corresponding to each class. The fusion
process aims to complement the descriptive power of LICA features with the con-
ventional subspaces spanned by linear features. We have employed the same state-
of-the-art classifier approach, the ELM, for the final classification avoiding any bias
due to classification construction. The experimental results proved that our method
enhances the performance of linear feature extraction algorithms specifically we
have performed computational experiments involving PCA, 2D2PCA, 2D2PCA,
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Figure 5.3: Recognition rate using ELM classifier for the MUCT database. Dot-
ted lines correspond to standard feature extraction methods. Solid lines show the
results of the proposed feature fusion approach.
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Figure 5.4: Recognition rate using ELM classifier for the PICS database. Dot-

ted lines correspond to standard feature extraction methods. Solid lines show the
results of the proposed feature fusion approach.
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Figure 5.5: Recognition rate using ELM classifier for the Yalefaces database. Dot-
ted lines correspond to standard feature extraction methods. Solid lines show the
results of the proposed feature fusion approach.

kernel PCA and three variations of LDA. We performed the computational exper-
iments on four face databases. The improved results are consistent under various
settings: Different training and testing set sizes and different dimensionality. Over-
all, the LICA-fused 2D2PCA+LDA shows the best performance overall.

These experiments leave some open questions for further research. It would
be interesting to study the influence of different Endmember Induction Algorithms
and their parameters. We could also consider testing our approach with other state-
of-the-art classification algorithms, such as classifier ensembles. It seems that fus-
ing essentially different methods like LICA and PCA derivatives is a good approach
towards better face recognition systems.



Appendix A

A Hyperspectral Image Database
for Person Detection

Advances on computational methods have evolved around different applications
and types of data. The experiments reported in the the chapters of this thesis de-
voted to skin detection in hyperspectral images have been performed over a very
specific dataset. The generation and preprocess of said data is not a negligible part
of the work done in the thesis.

The motivation for seeking to generate our own data comes from the lack of
available hyperspectral image databases focused on person detection. The intro-
duction of this work explained why is that skin detection is relevant, and the mo-
tives behind the use of imagery technology whose spectral resolution goes beyond
classic RBG images. However, taking usable hyperspectral images depends not
only on the availability of a hyperspectral camera and the knowledge of how to
use it- desirable climatic conditions are necessary. We were fortunate to create an
optimal framework for the capture and preprocess of the images that we needed:
A proper research collaboration agreement with a research group that not only of-
fered their full collaboration, but was geographically located in a convenient place.
The data was collected in El Paso, Texas, United States of America by the author
of this dissertation in collaboration with Miguel Velez-Reyes, Ph. D., Professor
and Chair Electrical & Computer Engineering at the University of Texas at El Paso
(UTEP) and his students Stephanie M. Sanchez and Mohammed Q. Alkhatib. The
remaining of this appendix aims to explain the details concerning the dataset. The
image capture technicalities are detailed in section A.1. Section A.2 explains nor-
malization and smoothing processes.
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A.1 Data collection

The hyperspectral data was obtained using a SOC710 camera. It has a spectral
coverage of 400 to 1000 um, a spectral resolution of 4.6875 um and a dynamic
range of 12 bits. It delivers 696 pixel per line images, and 128 bands. We set an
integration time of 20 milliseconds and an electronic gain of 2 (twice the gain). In-
creasing the integration time compensates for poor lightning, but it also increases
the capture time, which can produce smear. Increasing the integration time elec-
tronically can provide a good trade-off between data acquisition speed and getting a
meaningful dynamic range. Obtaining one 696x520 image cube takes around 23.2
seconds. The images were collected in El Paso, Texas along the moths of April
and May of 2014. The temperatures ranged between 21°C and 31°C, with com-
pletely clear skies. This condition avoided illumination variations due to passing
clouds. Moreover, dry weather minimizes moisture and water, which can produce
complex radiance responses. The collection time was around noon to minimize
the influence of shadows. The only light source was the sun. This stable light-
ing conditions and the short image acquisition times allowed minimizing spectral
variations due to illumination changes. However, in some cases wind moved back-
ground foliage branches, thus introducing some undesirable motion noise. Once
established the ideal lighting conditions, we aimed to obtain images including the
following elements:

* A person showing parts of exposed skin. The data is designed for experi-
ments aiming to skin detection regardless of the body part, and especially
not depending only on the presence of a face, which is usually the main per-
son detection landmark. It is also interesting not to include the whole body
in a position which could be seen as the ideal person detection setup.

* For the same reasons, we also included the presence of hair, glasses or other
elements that might partially occlude the skin sections.

* Different subjects with different skin colors, preferably dark skinned. It is
most difficult to detect dark skin in RGB images, as color information can
hardly be taken advantage of. Therefore, it was desirable to include diverse
skin tones, emphasizing in dark colors.

* The presence of small shadows, both on skin and non-skin surfaces. The
shadows should have the size that allows us to analyze their effect on skin
detection without covering all the skin.

* Backgrounds formed by man made objects, vegetation or both. Man made
objects have distinctly different spectral signatures from vegetation, so both
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kind of backgrounds were included. Figure A.1 illustrates the difference of
skin, cloth and vegetation spectra taken from image C4.

* White standard surface present in all images, in order to calculate spectral
radiance, by normalization to true white.

We took images of three subjects with diverse color skins. The subjects were
located in places with both artificial structures like concrete or rocks and natu-
ral backgrounds like grass or flowers. The images are named using this subject-
background data scheme, as shown in table A.1. Note that skin color are assessed
via the Fitzpatrick scale, Type III being sun sensitive light intermediate caucasian
skin, Type IV minimally sun sensitive mediterranian/hispanic darker skin, and Type
V darker sun insensitive skin. Lighter Types I and II and very dark Type VI were
not present.

The validation experiments require a reference ground truth. This is a binary
image selecting which pixels in the hyperspectral image are skin and which pixels
correspond to other elements. This segmentation was performed manually. Figures
A2, A3, A4, A5, A6, A7 and A.8 show the false RGB image alongside the
manual segmentation of each hyperspectral cube.

A.2 Data cube preprocessing

This section describes the preprocessing steps. Firstly, it states how the reflectance
values were calculated. Then, the coordinate system change from Cartesian to
Hyperspeherical is explained. Finally, a noise analyisis of the images is presented
along with the smoothing filter employed to reduce noise effect.

A.2.1 Reflectance normalization

The sensor of a hyperspectral camera provides a fine resolution spectral sampling
of the total radiance reflected by the surface. The empirical line (EL) approach to
reflectance normalization assumes that within each image, there are at least two
target areas of low and high reflectance for the spectral bands recorded by the
sensor. We can use a single white target object as reference assuming surfaces of
zero reflectance will produce zero radiance. The bright reference target can be a
Lambertian surface, i.e. a surface whose radiance is isotropic; and we can assume
that the bright target will have unitary reflectance for all the wavelengths. The
reflectance of a single pixel is then computed over the full wavelength range at the
spectral resolution of the camera as:

rR="L (A.1)
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Figure A.1: Radiance and reflectance samples from image C4, corresponding to
three pixels located in the pants of the subject, the left arm, and the bushes.
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Figure A.2: False RGB composite and manual segmentation of image Al.
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Figure A.3: False RGB composite and manual segmentation of image B2.
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Figure A.4: False RGB composite and manual segmentation of image A3.
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Figure A.5: False RGB composite and manual segmentation of image C4.
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Figure A.6: False RGB composite and manual segmentation of image C5.
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Figure A.7: False RGB composite and manual segmentation of image C5b.
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Figure A.8: False RGB composite and manual segmentation of image AS.
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Figure A.9: Representation of a point in a 3-spherical coordinate system, given by
radial distance r, azimuth angle ¢ and elevation angle 6.

where Ly is the radiance of the pixel and Lg is a reference radiance value. The
images collected for this experiments were set up with a “white standard” surface
as reference. We averaged the pixels pertaining to the surface to obtain a reference
radiance value for each image. Then, the radiance of each pixel on each cube was
calculated using equation A.1, hence each image has its own reference radiance
value for normalization.

A.2.2 Hypershperical coordinates

We have explored other coordinate system besides the cartesian representation.
The underlying idea it is to be able to remove the intensity component of the pix-
els, performing our experiments only on the chromatic features of the data. We can
define a spherical coordinate system, akin to the euclidean system, in a three di-
mensional space. A point in a 3-spherical coordinate system is given by the radial
distance r from the origin point, the azimuth and elevation angles, as seen in figure
A9.

This coordinate system can be expanded from a 3-dimensional space to a n-
dimensional space. Any given point represented in an n-dimensional euclidean

space by x = {x1,x2,...,x,} may be represented in an n-dimensional spherical
space by x = {r,¢1,¢,...,0,—1}, where r is the vector magnitude that gives the
radial distance, and {¢;, ¢2,..., 9,1} are the angular parameters. This representa-

tion of a point image is named the hyperspherical coordinates of the point.

Given a hyperspectral image X = {(x1,X2,...,Xa);};_, » Where each pixel is a
d-dimensional array, we can transform each pixel to its hyperspherical coordinates.
The hyperspectral image will be denoted X = {(r, ¢1,¢>,...,04-1);}._, , Where r

is the intensity of each pixel and {@;, ¢,..., 9,1} its chromaticity representation.
The transformation to hyperspectral coordinates is given by the following formula:
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A.2.3 Noise analysis of the dataset

Besides this classic hyperspectral image preprocess steps, we performed some fur-
ther computation over the images. Despite the good capture conditions, there are
some noise inducing conditions, as stated above. Wind is a problem, inducing
spatial noise. Camera calibration, sun reflections, dust and other factors can also
induce noise. To estimate the incidence of noise, we use Signal to Noise Ratio
(SNR). This measurement is calculated by the formula

(A.3)

ignal
SNR = 10-log 10 (Slgnapow).

signal noise

It is usually given in decibels, but we are going to use a linear unit, which
allows to asses the magnitude of the noise more intuitively. We are interested in
seeing if the shape of a spectral signal found in a hyperspectral image differs from
the normal signal shape that we expect. In order to achieve that, we will define
the magnitude of the mean signal as the ideal signal power, and calculate the noise
as the difference between that signal and the every pixel’s signal in the data cube.
Thus, the signal noise will correspond to the disturbances in the expected signal
shape. Let’s define a hyperspectral image as a collection of pixels X = {x;}/_, ,
where each pixel is an array of the form x; = {xi, j}‘;:l ,X; j € R. We propose to
calculate the signal to noise ratio (SNR) of a pixel using the following formula:

SNR (x;) = W (A4)
x{ ‘(x,;,- —fj)z‘

where X = {)Z j}jzl is the mean pixel vector of X. This ratio effectively gives a
noise proportion measure in relation to the desired signal, which in our case is the
mean pixel of the image. In order to asses the total noise present in the image, we
also compute the Aggregate Signal to Noise Ratio (ASNR), which accounts for the
total noise present in the image. It is also interesting to calculate the Mean Signal
to Noise Ratio (MSNR), that gives an idea of the average noise present in a pixel
of an hyperspectral image. These two measurements are given by the following:



A.2. DATA CUBE PREPROCESSING 107

ASNR (X) =¥7_, SNR (x,)

. , A5
MSNR (X) = = SNR() (8.5)

Finally, we calculate the Signal to Noise Ratio Standard Deviation (SNRSD),
which gives an idea of the spatial uniformity of the noise, given by the formula

SNRSD (X) = \/ . ! 1 y (SNR (x;) — MSNR (X)) (A.6)
T hi=l

The noise features calculated for the images of the collection are presented in
table A.2.

A.2.4 Smoothing by RLWR

In order to reduce the noise, we applied a smoothing technique to all the images, the
well known Robust Locally Weighted Regression smoothing [25]. It is a moving
average local method because each smoothed value is determined by neighboring
data points. The method uses a regression weight function using a linear polyno-
mial. Additionally, in order to make the system resistant to outliers, a robust weight
function is used. The method is as follows:

1. For each point x € X, compute the regression weights w; € W

3 3
W,’I<1— ) 5

where x; are the nearest neighbors of x and d(x) is the distance in the abscissa

X — X

d(x)

from x to the most distant neighboring point.
2. Perform local regression using weighted least squares method.

3. Using the residuals r; from the regression process, calculate the robust weights:

(1~ (o)) Il < 6-Ma(r)
0 |ril > 6-Md(|r|)

Wi =

where Md (|r|) is the median absolute deviation of the residuals.

4. Perform local regression using weighted least squares method with the robust
weights.

5. Repeat steps 3 and 4 five times.
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Name Raw images Smoothed images
ASNR MSNR SNRSD ASNR | MSNR | SNRSD
Al 2.36E+06 6.53 29.04 3.24E+06 | 8.94 89.20
< | B2 1.65E+07 | 45.67 1423.14 2.62E+07 | 72.27 | 4935.72
g | A3 | 6.56E+06 | 18.13 219.00 1.09E+07 | 30.00 | 936.02
§| C4 | 6.72E+06 | 18.58 1982.28 7.05E+06 | 19.48 | 2533.75
g1 G5 1.99E+06 5.50 48.09 2.16E+06 | 5.97 124.67
S | C5b | 1.93E+06 5.32 51.47 2.09E+06 | 5.79 128.04
A5 1.97E+06 5.44 53.85 2.16E+06 | 5.96 141.19
- Al 1.51E+08 | 417.57 65888.29 8.94E+06 | 24.71 21.91
g B2 | 420E+08 | 1161.59 | 328190.31 | 1.09E+07 | 30.01 6.97
= A3 | 6.69E4+08 | 1848.66 | 1410270.03 | 1.14E+07 | 31.51 13.67
% Cc4 1.47E+09 | 4074.36 | 11151807.28 | 1.26E+07 | 34.75 12.70
E- C5 | 247E+08 | 682.06 131809.10 | 9.97E+06 | 27.55 9.96
& | C5b | 2.53E+08 | 697.97 137476.46 | 1.00E+07 | 27.66 9.72
= AS | 2.48E+08 | 685.72 132097.62 | 9.98E+06 | 27.57 9.95

Table A.2: ASNR, MSNR and SNRSD values calculated for the hyperspectral
images.

The effects of smoothing on the SNR are shown in table A.2. In the case of carte-
sian coordinates, it is clear how the ASNR and MSNR for the smooth images have
higher values, meaning that the SNR is higher comparing to the non-smoothed
data. Consequently, the smoothing process helps reducing the noise in the hyper-
spectral images. However, it is interesting to note that images B2 and C4 have big
disparities in noise from pixel to pixel. That can be due to the lights and shadows in
image B2 and the spatial noise produced by wind on image C4. Where and when
the images are taken has great influence, which is noticeable in images C5, C5b and
AS. The three of them have similar SNR features, and were taken on the same spot
during a single session. However, converting the smoothed images to hyperspheric
coordinates, as seen at the bottom half of table A.2, reduces considerably the sig-
nal to noise ratio. But, as we have removed the magnitude values and retained the
hyperspheric angles, the validity of these measures can be subject of discussion.
Three sample pixels of skin, concrete and cloth from image B2 are plotted in figure
A.10. The graphs serve as a visual example of the smoothing process.
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Figure A.10: Pixel examples of skin, concrete and cloth from image B2. Thin
lines are the original radiance responses. Thick lines correspond to the smoothed
pixels. The top image corresponds to cartesian coordinates and the bottom one
corresponds to hyperspherical angle values.
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Appendix B

Hyperspectral Imaging
Methodology

This appendix exposes the methodological details of the experiments reported in
this dissertation, concisely explaining the reasons behind the choice of the model
validation technique, algorithm performance evaluating statistical measures and
other methodological issues.

B.1 Segmentation performance evaluation

Skin detection in hyperspectral images can be stated as a binary classification prob-
lem. The dataset described in Appendix 1 is a badly balanced set of data -see Ta-
bleB.1- the ratio of skin labeled samples is very low. The key measures will be
those that indicate how well an algorithm can detect true positives, and how well
it avoids false positives as well as false negatives. We can achieve that, as well as
having an overall impression of the algorithms accuracy, by using the following
three performance measures, explained in skin segmentation context:

* Correct rate (CR) or accuracy, given by the proportion of pixels correctly
labeled as skin or not skin:

CR — True Positives 4+ True Negatives

Total cases

* Precision or positive predictive value, given by the proportion of true skin
pixels among all the pixels classified as skin, in other words, the probability
that a pixel labeled as skin is truly skin:

. True Positives
Precision =

True Positives + False Positives

111
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Image name | Number of pixels | Number of skin pixels | Percentage of skin pixels
Al 7402 2.0879%
B2 15784 4.5601%
A3 10948 3.1193%
C4 361920 5698 1.5996%
G5 11712 3.3443%
C5b 11236 3.2040%
AS 7351 2.0732%

Table B.1: Proportion of skin pixels on each image

* Sensitivity or true positive rate, which relates to the proportion of true skin

pixels among all skin pixels on an image, that is the probability of labeling a

skin pixel as skin:

True Positives
True Positives + False Negatives

Sensitivity =

The analysis of the experiments regard CR as a general indicator of the perfor-
mance. Both Precision and Sensitivity measures are considered the most important

indicators of the methods ability of skin detection.

B.2 Unmixing performance evaluation

Unmixing results can be assessed by several measures, like reconstruction signal
to noise ratio, abundance root mean squared error or differences in spectral angel
distance. The unmixing results shown in this work are evaluated with the following

reconstruction error measures:

* Mean squared error (MSE) as reconstruction error:

The quality of any unmixing process of equally sized images can be assessed
by the sum of the Mean Squared Error (MSE) of the original hyperspectral
image X with respect to the reconstructed one. Having the estimated end-
members E and abundances &, the reconstructed signal will be X = Eé&. The
MSE of a given image X is calculated as follows:

S 112
A X-X
EMSE (X,X) = Hd

B.1)

where d is the number of pixels.

¢ Mean absolute error (MAE) reconstruction error:
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MSE can be sensible to outliers, therefore the need to also calculate the mean
absolute reconstruction error (MAE):

[X—X|

emat (X, X) = 7

(B.2)

* Mean angular distance (MAD) to the skin signatures:
The quality of a proposed skin signature is measured calculating its average
cosine distance to all the skin pixels. The cosine distance between two pixels
x; and X; is given by:

x;x!

dcos (Xi,X;j) =1— / ) (B.3)

) ()

Then, the mean angular error of two images is given by:

N 2
& Y2y deos (Xi,X;
&mcos (va) = ==l NS( )- (B.4)

The rationale behind MAD as an error measurement is that, for a given pixel,
the obtained endmembers and corresponding abundances should enable re-
constructing said pixel with a minimum deviation from the original one.
Given the signal nature of the data, angular distance is an appropriate mea-
surement of this deviation. Averaging the distance for all the pixels gives us
a reconstruction accuracy measure different from the classic MSE and MAE
measurements.
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Appendix C

Fundamentals of Lattice
Computing

This Appendix gathers some definitions and results that are the theoretical back-
ground of lattice computing based endmember induction algorithms.

The work on Lattice Associative Memories (LAMSs) stems from the considera-
tion of the bounded lattice ordered group (R, V,A,+,+') as the alternative to the
algebraic framework (R 1., +, -) for the definition of Neural Networks computation
[105, 106], where R .. = RU{—o0,+co} is the set of extended real numbers, the
operators V and A respectively denote the discrete max and min operators (sup and
inf in a continuous setting), and +,+’ respectively denote addition and its dual op-
eration such that x+'y = y+x, Vx € R, Vy € R.teo; 0+ (—0) = 00 = (—o0) +'c0 and
o0+ (—o0) = —oo = (—o0) + oo, Thus, the additive conjugate is given by x* = —x.

Given a set of input/output pairs of patterns (X,Y) = { (Xé,yé) ;& =1, ..,k},
where X = {X],...,Xk} CR"'and Y = {y],...,yk} C R™ are two finite sets of
pattern vectors, a linear hetero-associative neural network based on the pattern’s

cross correlation [59] is built up as W =} ¢ y5 . <X5>/. Mimicking this construc-
tive procedure authors in [105, 106] proposed the following constructions of LAMs
(denoted in those works as Morphological Associative Memories), the min mem-
ory Wyy and the max memory Myy , both of size m x n:

k

Wir = A\ [y5 x (—x’i)'] and Myy = \k/ [y5 x <—x‘§)/], (eR))

E=1 E=1
where X is any of the I or [A operators, reducing the notational burden since

/ /
y‘g [\ (—x‘g = y‘g A —X‘§> . Here M and [A denote the max and min matrix
product, respectively defined as follows:

115
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C=AMB=¢jleci=\ {axtby}, (C.2)
k=l..n

C=ARB=lcjleci= N {an+bi}. (C.3)
k=1..n
If X =Y then Wxx and Myy are called Lattice Auto-Associative Memories
(LAAMs):

k

Wix = A\ [xé x <—x5)/] and Myy = \k/ [xi X (—xé)/] : (C.4)

E=1 E=1I

LAAMs present some interesting properties: perfect recall for an unlimited
number of stored patterns and convergence in one step for any input pattern. The
following theorems [105, 106] prove these properties:

Theorem 1. Wyx W X =X =Myxy A X.
Wxx MXx=xif Myx A x=x.
IfWxxMz=vand Mxx Mz =, then Wxx Mv=vand Myx N u=u

Definition 2. A vector x € R’ is called a fixed point or stable state of Wyyx iff
Wyxx M x = x. Similarly, x is a fixed point of Myy iff Mxy [N x =x.

Theorem 1 establishes that Wxx and My are perfect recall memories for any
number of uncorrupted input vectors, theorem 1 implies one step convergence, and
theorem 1 says that Wyx and My share the same set of fixed points represented
by Z (X) [127, 111].

Theorem 3. For every x € R, we have Wxx M x = X and Mxx [N X = X, where
X denotes the supremum of X in the set of fixed points of Wxyx, and X denotes the
infimum of X in the set of fixed points of Mxx.

LAAMs are extremely robust to erosive or dilative noise, but not to the pres-
ence of both. A distorted version X" of the pattern x” has undergone an ero-
sive change whenever XV < x?, and a dilative change when X¥ > x?. Particu-
larly, the erosive LAAM, Wyy, is extremely robust to erosive changes, while
the dilative LAAM, Myy, is so to dilative changes. Research on robust recall
[105, 127, 128, 111, 102, 107] based on the so-called kernel patterns lead to the
notion of Lattice Independence (LI) and the recall exact description in terms of
the LAMs fixed points and their basis of attractions. The definition of Lattice In-
dependence is closely tied to the study of the LAAM fixed points when they are
interpreted as lattice transformations, as stated by the following theorems:
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Definition 4. Given a set of vectors {x',...,.x*} C R" a linear minimax combina-
tion of vectors from this set is any vector x €R’._ which is a linear minimax sum
of these vectors:

=2 (3t =V A (0 +56),

jes =1

where J is a finite set of indexes and a¢; € Rie Vj€Jand V& = 1,...,k.

The linear minimax span of vectors {x', ..., x*} =X C R" is the set of all linear
minimax sums of subsets of X, denoted LMS (x',...,x").

Given a set of vectors X = {Xl, ...,xk} C R"* avector x R’ is lattice depen-
dent iff x € LMS (x1 , ...,xk). The vector X is lattice independent iff it is not lattice
dependent on X. The set X is said to be lattice independent iff VA € {1,....k}, x*
is lattice independent of X\ {x*} = {Xéj eX:E#£A

The definition of lattice independence supersedes the early definitions of ero-
sive and dilative morphological independence.

Theorem 5. Given a set of vectors X = {xl , ...,Xk} C R”, a vectory €R’._, is a
fixed point of # (X), thatis Wxx My =y =Mxx Ay, iff y is lattice dependent on
X.

Definition 6. A set of vectors X = {xl , ...,xk} C R" is said to be max dominant if
and only if for every A € {1,...,k} there exists and index j, € {1,...,n} such that

\?(. F)vie (1},

Similarly, X is said to be min dominant if and only if for every A € {1,...,k} there
exists and index j; € {1,...,n} such that

. :/k\( F)vie (1},

The expressions that compound this definition appeared in the early theorems
about perfect recall of Morphological Associative Memories [106, 105]. Their
value as an identifiable property of the data has been discovered in the context of
the formalization of the relationship between strong lattice independence, defined
below, and the affine independence in the classical linear analysis.

Definition 7. A set of lattice independent vectors X = {x',...,x*} C R" is said to
be Strongly Lattice Independent (SLI) iff X is max dominant or min dominant or
both.
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Appendix D

Extreme Learning Machines or
no-prop Neural Networks

Standard Single Layer Feed-forward Neural Network (SLFNs) training is too slow
because of: (1) Usual gradient-based learning algorithms are slow and (2) all the
parameters of the networks are tuned iteratively by using such learning algorithms.
An Extreme Learning Machine (ELM) is a learning method that aims to overcome
these limitations by randomly choosing weights connecting input vectors to hidden
nodes and threshold values of hidden nodes [65, 64]. This Appendix give a brief
historic background and a formal description of ELMs.

D.1 Introduction

ELMs can be included in the broader group of multilayer Neural Network learn-
ing techniques that do not require a back-propagation (BP) algorithm. Many re-
searchers explored the universal approximation capabilities of standard multilayer
feedforward neural networks in the nineties. Hornik proved that SLFNs are univer-
sal approximators [61]. Moreover, if the activation function is continuous, bounded
and nonconstant, then continuous mappings can be approximated in measure by
neural networks over compact input sets [60]. Leshno improved these results and
proved that feedforward networks with a with a locally bounded piecewise con-
tinuous non-polynomial activation function can approximate any continuous func-
tions. In the early 2000s, Huang further advanced these researches and proposed
the ELM as a SLFN learning tool that did not require backpropagation for net-
work parameter tuning [64, 65]. Since then, ELMs have seen great growth, both
in new learning algorithm development and applications. Later in 2013, Bernard
Widrow (co-invertor of the least mean squares filter (LMS) adaptive algorithm that
would later lead to the BP technique) et al. proposed the No-Prop multilayer neural
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network learning algorithm [139]. The difference between ELM and the No-Prop
algorithm lies in the training method for the output layer. The No-Prop algorithm
uses the LMS gradient algorithm to do this. The objective is to minimize Mean
Square Error (MSE). The ELM algorithm does this by essentially inverting the co-
variance matrix of the neuron inputs and multiplying by the vector of crosscorrela-
tions between the neuron’s inputs and its desired response. This is a direct method
for finding a solution that minimizes MSE. No-Prop uses a gradient method and
ELM uses matrix inversion. The experiments conducted in this work use the ELM
method,which is formally described in the next section.

D.2 Formal definition of ELM

Given N arbitrary distinct samples (x;,t;), where x; = [x;1, X2, ..., Xin). € R" are the
data vectors and t; = [t;1,12, ...,tim]T € R™ are the target classes, a standard SLFN
can be mathematically modeled as:

=

I
—

Bigi(w,'xj+bi) :l‘j, (Dl)

where w; = [wi1,wi2, ...,win]T is the weight vector connecting the ith hidden
node and the input nodes, B; = [Bi1, Biz; --- Bim]! is the weight vector connecting
the ith hidden node and the output nodes , b; is the threshold of the ith node and N
is the number of hidden nodes. In matrix form:

=

I
—_

ﬁigi(wixj—l—bi) =t — Hﬁ =T, (D.2)

where these matrices are defined as

gwixi+b1) ... g(wyx;+by)

. L , (D3)
g(W1XN+bi) g(WNxN+bN) NxN
B i

B= : and T = : D.4)
ﬁ}\} Nxm tlj\; Nxm

Matrix H is called the hidden layer output matrix. It’s ith column is the ith
hidden node output. For any SLFN, H is invertible and |[HB —T = 0||. There
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also exists an error € < ||[HB — T || for a given N < N ([65]. The solution to the

traditional SLEN would be: Find f3, w and b so that HI-Alﬁ - TH = minﬁ |HB —T||.
wi,bi,

The ELM learning approach proposes the following: For fixed input weights w;

and the hidden layer biases b;, to train a SLEN is equivalent to finding least-squares

solution B of the linear system
HB =T. (D.5)

The smallest norm least-squares solution of the above system is
B=H'T, (D.6)

where H' is the Moore—Penrose generalized inverse of H. On a side note, H' can
be calculated using Singular Value Decomposition or doing (H” H)~'HT .

Finally, an ELM algorithm can be summarized as follows: Given training set
of N (x;,t;) samples, an activation function g(x), and hidden node number N,

1. Randomly assign w; and b;.
2. Calculate H.
3. Calculate B = H'T.

The ELM described above is the basic ELM which was first proposed on ([64]).
Many more have been developed, in ([63]) -

Random hidden layer feature mapping based ELM, The orthogonal projec-
tion method can be used to obtain H': H' = (HT H)~'H . In that case, we can add
a ridge parameter 1/4 to the diagonal of (HT H). This regularization approach,
known as ridge regression, stabilizes the solution ([58]. Thus, the calculation of
the output weights f3 is:

~1
B = (i +HTH> H'T (D.7)
where [ is an identity matrix the same size as H. This variation of the basic ELM
is called Random hidden layer feature mapping based ELM ([63]). We will call it
ELM-FM for convenience.

In addition to those described above, many more ELMs have been developed:,
([63]): Kernel based ELM, sequential ELMs, incremental ELMs, etc.
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