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The feature extraction problem I

• Feature extraction is a special form of dimensionality reduction.

• There are common algorithms for dimensionality reduction
which can be applied to reduce the dimensionality of the data:

• Principal component analysis (PCA)
• Independent Component Analysis (ICA)

• Feature extraction methods can be more speci�c to the type of
data we are analysing.

• The meaning of the data is implicit to the feature extraction
method.
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The feature extraction problem in fMRI

Figure:
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The feature extraction problem in fMRI I

• The number of possible feature sets we can extract from fMRI
acquisitions of a determined group is very large.

6/22



The feature extraction problem in fMRI II

• It can depend on:

• Experimental design

• Number of subjects

• Type of experiment we want to perform

• The techniques we can use

• The techniques used in the literature for similar situations
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The feature extraction problem in fMRI III

• Group normalization is an issue in fMRI.

• Finding a feature set with the same meaning and the same size
for all the subjects in our data set is not an easy task.

• In addition, the algorithm should be able to extract the same
features from new unseen subjects.
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Examples I

• Dimension reduction and feature extraction using ICA[1]
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Examples II

• Use average intensity in multiple TRs [2]

• a drawback of this method is a reduction in the number of
samples available for training.
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Examples III

• [3] At each stimulus presentation, a trial t (t = 1, . . . ,T ) is
formed considering Npre and Npost temporal samples (before
and after stimulus onset respectively) of the pre-processed
time course of activity.

• A trial estimate of the response at every voxel v (v = 1, . . . ,V )
is then obtained by �tting a General Linear Model (GLM) with
one predictor coding for the trial response and one linear
predictor accounting for a within-trial linear trend.

• The trial-response predictor is obtained by convolution of a
boxcar with a double-gamma hemodynamic response function
(HRF)
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Examples IV

• Firstly, let S and R be the sets of selected features and the
group of features that might be chosen: we start with S = Ø
and R = {xi} , i = 1..N and the algorithm will stop when R is
empty.

• This algorithm uses an hybrid stepwise selection.

• The forward strategy adds at each step the most informative
feature given the previously selected ones.

• The backward strategy removes from R all the features which
are not informative at this step: we indeed assume that those
features will not be informative in the next steps.

• In order to select a feature, we compute at each step, for each
dimension x in R , the value MI1=MI (S {x} ,Y ), which yields
the amount of information about Y present in S and x . [4]
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Examples V
• To break the complexity of the problem, we �rst perform a
hierarchical clustering of the voxel-based signals, under
connectivity constraints, so that only spatially connected
clusters are created.

• At that stage, we ignore the target information, but use the
variance-minimizing approach of Ward's algorithm [12] in order
to ensure that cluster-based averages provide a fair
representation of the signal within each cluster. Only adjacent
clusters can be merged together.

• The purpose of this procedure is to use the hierarchical
parcellation to guide the search of informative regions within
the volume of interest.

• Thus, at a given level in the hierarchy, the data is reduced to
NC cluster-based averages, which signi�cantly decreases the
computational complexity compared to a voxel-based approach
with Nv � NC voxels. [5]

13/22



Examples VI

• Thus, in order to further reduce the dimensionality of the data,
we parcellate this region in 200 parcels with a variant of Ward's
algorithm, and we average the signal within each parcels.[6]
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Examples VII

• We used PCA to �nd the bases of reduced dimensionality.

• In the present work, we did not exclude any PC in the analysis,
that is, the PCA step is loss�less dimension reduction and
represents only a change of the coordinate system to the
subspace spanned by the measured brain volumes. [7]
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Examples VIII

• After realignment of the functional volumes using SPM5,1 we
use the IBASPM toolbox (Tzourio-Mazoyer et al., 2002;
Alemán-Gómez et al., 2006) to build an individual brain atlas
based on the structural MRI, containing M = 90 anatomical
regions.

• While this is a relatively coarse atlas, it is an essential step to
allow for inter-subject variability and enable inter-subject
decoding with good generalisation ability to unseen subjects �
using group-level normalisation and atlasing is not an option in
this setting.

• Furthermore, the structural atlas serves only as a basis for
computing a much lower resolution functional atlas. Using a
more �ne-grained atlas might result in some regions
disappearing completely in the functional atlas.
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Examples IX

• Another bene�t of using the AAL atlas is that it o�ers a way
of comparing results with several other studies [8]
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Summary

• Feature extraction methods is a special form of dimensionality
reduction.

• In fMRI there are many di�erent algorithms for feature
extraction in the literature.

• The di�culty of a good feature extraction method lies on
�nding:

• Common features for all the subjects in the data set (due to
spatial normalization problems)

• The best �t to the experimental design and classi�cation
objective of our experiment.
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