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Introduction
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Introduction

Introduction

@ Previous stability analysis over deterministic versions (all
parameters are non-random)[1, 3].

@ They provide a stability analysis of the stochastic particle
dynamics.

@ Analysis can be carried out on the 1-D case without loss of
generality because each dimension is updated independently
from the others (linked via objective function).

@ Represent the particle dynamics as a nonlinear feedback
controlled system 7
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Basic PSO algorithm

Pseudocode PSO

Initialize particles (positions and velocities)
Do
For each particle
Calculate fitness value
If the fitness value is better than the best fitness value (pbest) in history
Set current value as the new pbest.
end
Choose the particle with the best fitness value of all the particles as the gbest
For each particle
Calculate particle velocity according to equation (1)

Update particle position according to equation (2)

(W

While maximum iterations or minimum error criteria is not attained. @




Basic PSO algorithm

Particle dynamics in 1D

Virl = wvp+ aﬁ') (P(l) - Xt) + Oégg) (P(g) - Xt> (1)

Xt+1 = X+ Viyl (2)

where

v¢ is the particle velocity and x; is the particle position at the
t-th iteration,

p") is the particle’s best position thus far,
p'&) is the best solution among all particles,
w is the inertia factor (not in original definition), and

agl) ~ U0, ], and agg) ~ U0, ], are random parameters @

where c; and ¢, are constants (acceleration coefficients).
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Basic PSO algorithm

Particle dynamics in 1D

The following statements can be derived from the particle dynamics
of (1).
© The system dynamics are stochastic and of order two.
@ The system does not have an equilibrium point if p(&) £ p().
O If p(&) = p() = p is time invariant, there is a unique
equilibrium point at v, =0, x, = p .

An equilibrium point thus exists only for the best particle whose
local best solution is the same as that of the global best solution.
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Basic PSO algorithm

Particle dynamics in 1D

The particle dynamics associated with the best particle or
attraction point:

Viyl = Wve + e (p— Xt)
Xt41 = X+ Vega
where
o = agl) + agg), no uniform distribution but

0<at<(C1+C2)

(5 1 n(8)
°ep= M, is time varying if p(&8) # p(/) and

if ol and a{® are random @
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Basic PSO algorithm

State-space form

Ye+1 = Aye + Bp

e { 1-ar w
yl’_(vt)a A_< N W), B

In the context of the dynamic system theory [1]:

Il
N
22
N———

@ y; is the particle state made up of its current position and velocity,

@ A is the dynamic matrix (or state matrix) whose properties
determine the time behavior of the particle

@ p is the external input used to drive the particle towards a specified
position, and

@ B is the input matrix that gives the effect of the external input on

the particle state. @
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Basic PSO algorithm

Particle dynamics in 1D

By treating the random variable a; as a constant
—> deterministic particle dynamics,
—> a simple time-invariant linear second-order dynamic model.

Standard results from dynamic system theory say that the time
behavior of the particle depends on the eigenvalues (both have
magnitude less than 1) of the dynamic matrix A.

The conditions for convergence are given by [1]:
w<land0<a;<(a+ea)<2(w+1)
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System Characteristics

Characteristics of the particle dynamics

The stability analysis of the particle dynamics can be mapped to
the problem of absolute stability of nonlinear feedback systems,
known as Lure's stability problem.

The stochastic particle dynamics are thus represented as a feedback
controlled dynamic system ;7:

0 Linear System y
G()=C(zI-A)"'B >

Nonlinear
Element [<
Feedback control system representation of particle dynamics.
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System Characteristics

Characteristics of the particle dynamics

The equations governing the dynamics in this new representation,
under the conditions of p being time invariant:

§ex1 = A&+ Bug A - 1 w
( Xt — p ) o 0 w
gt = v
t 1
i = C& B = ( 1 )
o= o C = (10)
where u; is the control input signal, and C is the output matrix.
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System Characteristics

Characteristics of the particle dynamics

Definition [30 /): &, is an equilibrium point of

a dynamical system in the state-space form &1 = f;(&) if it
satisfies . = fi(€,) for every ¢t > 0.

Remark: For the PSO, the dynamical systems with feedback
can be rewritten in the following state-space representation:

{41 = (A — a BC)&, (17)
(A — a,BC) = (1__0? z) . (18)

If w # 0, then (A — a; BC') is nonsingular, hence, the only so-
lution that satisfies {, = (A — @ BC)E, is & = 0. Hence, the
particle dynamics|specified in (13)—(15) have a unique equilib- @

rium point at the origin in the  state space.
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System Characteristics

Characteristics of the particle dynamics

Definition (Controllability| [32]): A system is completely

controllable if the system state z(%¢) at time ¢; can be forced
to take on any desired value by applying a control input u(t)
over a period of time from ¢ until ¢¢. Suppose n, m, and [ are
given integers, A € R"X", B € R"*™ C € R*™, D € RI>*™
and r¢y1 = Az + Buy, and y, = Cxy + Du, represents the
dynamics of the linear systems. Then, the pair (A, B) is said to
be controllable if Rank[B AB ... A" 'B] = n.

(...) The linear part of the PSO system is controllable
The linear plant pair {A, B} is controllable
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System Characteristics

Characteristics of the particle dynamics

Definiton (Observability|[32]): A system is completely ob-

servable if any initial state vector x(ty) can be reconstructed
by examining the system output y(¢) over some period of time
from ¢, until t;. Suppose n, m, and [ are given integers A €
Rexn B e R0 e R D e R and x4 =
Azxzy + Buy, y¢ = Cxy + Duy represents the dynamics of the
linear systems. Then, the pair (C, A) is said to be observable if
Rank[C CA...CA" 1" = n.

(...) The linear part of the PSO system is observable.
The linear plant pair {A, C} is observable.
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Stability Analysis

Stability Analysis

The passivity idea and the Lyapunov stability idea are combined to
analyze the Lure stability problem.
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Stability Analysis

Passive system

Definition [28]: The linear plant has a stable matrix A, if its
eigenvalues lie strictly inside the unit circle in the Z plane or
equivalently |A\;{A}| < 1 for all . Here, A;{-} represents the
ith eigenvalues of A.

Definition [28]: A dynamical system is said to be passive

if there is a nonnegative scalar function V' (£) with V(0) = 0
which satisfies

V(ft+1) - V(ft) < Yty (26)
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Stability Analysis

Lyapunov stability

Theorem (Lyapunov Stability [28]): Let & = 0 be an equi-
librium point of the system. The equilibrium point is|asymptot- |
lically stableif there is a nonnegative scalar function V(£) with
V(0) = 0 which satisfies

V(&+1) — V(&) < 0. (27)

Remark: Lyapunov stability analysis is based on the idea that
if the total energy in the system continually decreases, then the
system will asymptotically reach the zero energy state associ-
ated with an equilibrium point of the system.
A system is said to be asymptotically stable if all the states @
approach zero with time.
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Stability Analysis

Lure stability problem

For linear systems, the passivity property can be related to
a condition in the frequency domain known as positive real
transfer functions.

Definition [28]: The |transfer function|H (#) of a dynamical
system is said to be positive real if and only if the system is
stable and

R{H(e")} >0

for every 6 € [0,2r), where R{-} indicates the real part of its
argument and j = +/—1 is the imaginary number.
©
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Stability Analysis

Discrete-time positive real lemma

An important result that is necessary for the stability analysis
is the |discrete-time positive real lemma| which links the con-
cepts of positive real transfer functions and the existence of a
Lyapunov function.

Lemma (Discrete-Time Positive Real Lemma [33],
[34]): Let H(z) = C(zI — A)™'B + D be a transfer
function, where A is a stable matrix or a semistable matrix with
a simple pole on |z| = 1, {A, B} is controllable, and {4, C'}
is observable. Then, H (z) is strictly positive real if and only if
there exist a symmetric positive definite matrix P, matrices W
and L, and a positive constant ¢ such that [33], [34]

ATPA-P=-L7TL (29)
BTPA=C—-WTL (30) @
D+ DY —BT"PB=wW*W. (31)
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Stability Analysis

Stability analysis

Theorem (Main Result); Let the particle dynamics be repre-
sented by (20)—(22) and satisfy (5) with an equilibrium point at
the origin. Then, the origin is asymptotically stable if |w| < 1,

w # 0, and

14w

o (2(1—2|w|—|—w2))'

Consider the Lyapunov function
V(€) = & P& (32)
where P is a symmetric positive definite matrix. (..) @
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Stability Analysis

Stability analysis

@ The equilibrium point at the origin represents the particle
position reaching the minimum location with zero velocity.

@ Lyapunov stability results give only sufficient conditions and,
hence, can be very conservative.

@ Violation of the stability conditions do not imply instability,
rather that stability cannot be guaranteed.
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Stability Analysis

Stability analysis

The maximum gain that gives sufficient guarantees for the stability
of particle dynamics decreases with the increase in inertia factor
when it is positive. This is in contrast to the previous results
derived under nonrandom constant gain assumptions where the
maximum gain increased with the inertia factor.
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lllustrative examples

lllustrative examples

The stability analysis given in this paper can be interpreted in the
frequency domain and time domain.
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lllustrative examples

Nyquist Plot and Circle Criterion

The circle criterion when applied to the stability of particle
dynamics simply states that the Nyquist plot of the linear plant in
the feedback system representation should lie to the right side of
the point — (1/k) + O in the Z plane .
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Fig. 3. Discrete-time Nyquist plot for inertia factor = 0.8 and limit value for
its real part.
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lllustrative examples

Lyapunov Function and Particle Trajectories

Ideally, the choice for w is for it to lie in the region 0 < w < 1 ( as
in previous analysis).

They will determine a candidate positive definite matrix P in the
Lyapunov function for the chosen inertia factor w. Consider the
system with w = 0.8 then the system state matrix is

1 08
A‘(o 0.8>

For this case, stability requires K < 0.044. A choice of K = 0.04
that satisfies this condition but is close to the limit is made for the
analysis of this particle.

By solving for P from (29)—(31), the solutions are given by

0.008 0.032 0.008 0.032
Pr= ( 0.032 0.4372 > P2= ( 0.032 0.2108 ) @
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lllustrative examples

Lyapunov Function and Particle Trajectories

All simulations are carried out based on (1) and (2) and with initial
conditions of x =1 and v = 0.
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Fig. 5. Lyapunov function with K = 0.04 and w = 0.5.

Fig. 7. Particle trajectories with &' = 0.04 and w = 0.8.



lllustrative examples

Lyapunov Function and Particle Trajectories

The behavior of the particle under conditions that do not guarantee
stability
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Fig. 9. Lyapunov function with K = 2.5 and w = 0.8. Fig. 10. Particle trajectories with K’ = 2.5 and w = 0.8. @
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lllustrative examples

Lyapunov Function and Particle Trajectories

The particles escape from the search region, not monotonically,
but at various times. Movement of particles outside the relevant
search region is undesirable.

To investigate the relationship of the number of times in a
simulation, the particles exceed some search region defined by a
threshold, for specific w values and varying K ; 1000 Monte Carlo
simulations for each design choice were carried out. The relevant
search region was defined as

S={x:|x| <d}

where § is a threshold. (\
o)
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lllustrative examples

Lyapunov Function and Particle Trajectories

Instability count: the number of simulations in which the particle
escaped the region at some time during the particle motion.

MATLAB CODE FOR MONTE CARLO SIMULATION

T=1000; % Simulation time interval

w=0.9; % Inertia factor

K=3.5; % Maximum gain
instabilitycount=0: TABLE I
threshold=100; THRESHOLD AND INSTABILITY COUNT FOR 1000 MONTE CARLO RUNS
for S=1:1000 % Number of Monte Carlo trials
Threshold w=0.8 and K=3.5 w=0.9 and K=2.5 || w=0.95 and K=2
10 93 240 817
alpha=0.5*alphal+0.5*alpha2; 100 14 75 609
x(D)=1: v(1)=0; % initial parameter 1000 1 18 374
for t=2:T
ort 10000 0 2 215
v(D=w*v(t-1)-alpha(t)*x(t-1);
x(D)=x(t-1)+v(t);
end
if max(abs(x(:))) threshold i
instabilitycount=instabilitycount +1: E
end

end 30/32




Conclusions

Conclusions

@ They have provided a different approach to the stability
analysis of PSO with stochastic parameters.

@ The passivity theorem and Lyapunov stability methods were
applied to the particle dynamics in determining sufficient
conditions for asymptotic stability and, hence, convergence to
the equilibrium point.

@ The results are conservative (are based on the Lyapunov
function approach), and, hence, violation of these conditions
do not imply instability.

@ The results can be used to infer qualitative design

guidelines. @
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