# Artificial Neural Network modeling of a photovoltaic module

#### Jose Manuel Lopez-Guede, Jose Antonio Ramos-Hernanz, Manuel Graña

SOCO 2013

# Outline

#### Introduction

#### Background

- Ideal photovoltaic cell
- Theoretical photovoltaic models
  - Typical equation model
  - Characteristic curves
- Artificial neural networks
- 3 Experimental design
  - Photovoltaic module
  - Electrical installation for data capture
  - NN model generation
- 4 Experimental results
- 5 Conclusions and future work

# Introduction 1

- The increasing world's energy demands, and the need of revising the energy policies in order to fight against the emissions of  $CO_2$  and environmental pollution are some reasons for the increasing interest in the development of renewable energy sources.
- This interest has motivated research and technological investments devoted to improve energy efficiency and generation.

# Introduction II

- Photovoltaic energy is a clean energy, with long service life and high reliability.
- It has been considered as one of the most sustainable renewable energy sources.
- Photovoltaic systems may be located close to the points of consumption, avoiding transmission losses and contributing to the reduction of CO<sub>2</sub> emissions in urban centers.

# Introduction III

- Due to the high cost and the low efficiency of commercial modules (about 15%), it is essential to ensure that they work at their peak production regime.
- To reach this objective it is necessary to develop appropriate control algorithms, and to have an accurate model of the real (not ideal) photovoltaic elements behavior is mandatory.

### Introduction IV

- There are a number of theoretical photovoltaic cell models.
- They are not easily fit to a given real particular cell, because parameter values are either unknown or difficult to estimate. Lack of calibration thus render these models useless.
- The main objective of this paper is to describe the process to obtain a model based on ANN training using acquired data of a real ATERSA A-55 photovoltaic module.

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

▶ ∢ ≣ ▶

# Section Contents

#### 2 Background

- Ideal photovoltaic cell
- Theoretical photovoltaic models
- Artificial neural networks

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

# Model of an ideal photovoltaic cell

- The ideal photovoltaic cell can be modeled as an electric current source with an anti-parallel diode.
- The direct electric current generated when the cell is exposed to light varies linearly with the solar radiation.
- An improved model includes the effects of a shunt resistor and the other one in series.

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

# Basic and improved equivalent model of an ideal photovoltaic cell



- Iph is the photogenerated current or photocurrent,
- I<sub>d</sub> is the current of the diode,
- IP is the shunt current,
- $R_S$  is the series resistance  $(\Omega)$ ,
- *R<sub>p</sub>* is the shunt resistance (Ω).

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

イロト イポト イラト イラト

# Typical equation model I

- Based on the relationship between the voltage (V<sub>PV</sub>) and the current (I<sub>PV</sub>) supplied by the photovoltaic cell of the "Ideal Photovoltaic Cell" model.
- It is a theoretical model:
  - We have to use an estimation of all the involved parameters
  - This circumstance leads only to approximate values when the study of a particular photovoltaic module is being carried out.

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

イロト イポト イラト イラト

# Typical equation model II

$$I_{PV} = I_{ph} - I_d - I_P$$

$$I_{PV} = I_{ph} - I_0 \left( e^{\frac{q(V_{PV} + I_{PV}R_S)}{aKT}} - 1 \right) - \frac{V_{PV} + I_{PV}R_S}{R_P}$$

where:

 $I_0$  is the saturation current of the diode (A), q is the charge of the electron,  $1.6 \times 10^{-19}$  (C), a is the diode ideality constant, K is the Boltzmann's constant,  $1.38 \times 10^{-23}$  (j/K), T is the cell temperature (°C).

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

イロト イポト イヨト イヨト

#### Characteristic curves I

- Theoretical model are the I-V curves provided by manufacturers.
- They give the manufacturer's specification of the relation between the current  $(I_{PV})$  and the voltage  $(V_{PV})$  supplied by a particular photovoltaic module.
- I-V curves are shown for a specific temperature for a few irradiance values.
- Temperature and irradiance are relevant magnitudes in the relation between *I<sub>PV</sub>* and *V<sub>PV</sub>*,

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

(日) (同) (三) (三)

#### Characteristic curves II



Curve I-V (at 25° C)

Figure: I-V curve of the Atersa A-55 photovoltaic module

ldeal photovoltaic cell Theoretical photovoltaic models Artificial neural networks

# Artificial neural networks

- Bio-inspired computational devices have several advantages, and among others, these are the most outstanding to our problem:
  - Learning capabilities
  - Generalization capabilities
  - Real time capabilities

Electrical installation for data capture NN model generation

< 同 ト < 三 ト

# Section Contents



#### Experimental design

- Photovoltaic module
- Electrical installation for data capture
- NN model generation

Photovoltaic module Electrical installation for data capture NN model generation

A (1) < (1)</p>

# Atersa A55 photovoltaic module

• Manufactured by Atersa, a pioneer company in Spain within the photovoltaic solar power sector, with more than 35 years of experience.



Photovoltaic module Electrical installation for data capture NN model generation

< 17 ▶

- ∃ →

-

#### Photovoltaic module characteristics

| Attribute                         | Value           |
|-----------------------------------|-----------------|
| Model                             | Atersa A-55     |
| Cell type                         | Monocrystalline |
| Maximum Power [W]                 | 55              |
| Open Circuit Voltage Voc [V]      | 20,5            |
| Short circuit Current lsc [A]     | 3,7             |
| Voltage, max power Vmpp [V]       | 16,2            |
| Current, max power Impp [A]       | 3,4             |
| Number of cells in series         | 36              |
| Temp. Coeff. of lsc [mA/ºC]       | 1,66            |
| Temp. Coeff. of Voc [mV/ºC]       | -84,08          |
| Nominal Operation Cell Temp. [ºC] | 47,5            |

Photovoltaic module Electrical installation for data capture NN model generation

# Conceptual disposition of measuring devices

- Voltmeter placed in parallel with the module and the amperemeter in series.
- A variable resistance to act as a variable load and obtain different pairs of voltage and current with the same irradiance and temperature.
- Temperature and irradiance depends on the climatological conditions.



Photovoltaic module Electrical installation for data capture NN model generation

< ロ > < 同 > < 回 > < 回 >

#### Data capture devices



Photovoltaic module Electrical installation for data capture NN model generation

# NN structure and training

- Problem: accurate approximation of the I-V curve by an ANN
- NN structure:
  - Feedforward models
  - One or two hidden layers
  - Trained with the classical backpropagation algorithm
  - The size of the hidden layers was varying from 1 to 500 for the case of single layer, and from 1 to 100 for each layer in the case of two hidden layers
- Activation functions: For each network structure, linear and tan-sigmoid
- Five independent training/test processes have been performed for each network
- Training is performed applying Levenberg-Marquardt algorithm

Photovoltaic module Electrical installation for data capture NN model generation

#### Patterns

- Three single inputs:
  - Environmental temperature
  - Environmental irradiance
  - Voltage supplied by the module
- Output: the current supplied
- It is a single variable regression problem, and it involves strong no-linearities
- All the ANN input vectors are presented once per iteration in a batch
- We have used the raw data, i.e., without normalization.
- Input vectors and target vectors have been divided into three sets using random indicesllows: 60% are used for training (116 vectors), 20% are used for validation (39 vectors), and finally, the last 20% (39 vectors) are used for testing.

#### Best ANN for each structure (1 layer)





#### Best ANN for each structure (2 layers)



#### Fitting with 3 neurons single layer ANN



Jose Manuel Lopez-Guede, Jose Antonio Ramos-Hernanz, 📔 Artificial Neural Network modeling of a photovoltaic modu

э

#### Correlation coefficient



Jose Manuel Lopez-Guede, Jose Antonio Ramos-Hernanz,

Artificial Neural Network modeling of a photovoltaic modu

э

# Conclusions

- Designing efficient control algorithms needs accurate models of photovoltaic modules.
- Obtaining an accurate model of a real photovoltaic module is still an open issue.
- Our approach: ANN models as approximations to the characteristic I-V curve of a given module.
- Encouraging test results:
  - Very simple network structure and very fast response.
  - MSE below  $3.10^{-4}$  on independent test dataset.
  - The accuracy and generalization capability of the model has been verified.

イロト イポト イヨト イヨト

#### Future work

- We plan to gather more experimental data under a variety of environmental conditions different from the winter conditions of the data reported in this paper.
- A broader range of temperature and irradiance values will improve generalization of the ANN model.

# Thanks for your attention.