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INTRODUCTION 
 

A Computational Intelligence (CI) technology is expected to be compatible with the 

principles of common sense. This book briefly presents a mathematical structure; the 

mathematical lattice for modeling logic. In particular, useful concepts and results from lattice 

theory (Birkhoff, 1967), which is alternatively known as order theory, are presented. Then, 

three different methodologies of extended CI from the literature, which are based on the 

theory of lattices, are summarized. Finally, the interest focuses on the grid of Interval 

Numbers (IN), which has been proposed by the authors of this book and here is 

constructively presented as a growing complexity hierarchy based on the set R of real 

numbers. 

The set R is what is traditionally used to develop models (functions) of the form f: 

R
N
R

M
 based on measurements (Kaburlasos, 2006). For example, many laws of Physics, 

Economics, Engineering, etc. are successfully modeled in R
N
. Note that a typical CI 

technology is used in practice as a mechanism for the implementation of a function of the 

form f: R
N
R

M
 (Kaburlasos & Kehagias, 2007). However, the transfer of modeling 

techniques from space R
N
 of numerical data to non-numerical data spaces that require new 

technologies, is not obvious, as described below 

With the spread of PCs, it was created the need for large-scale processing of non-

numeric data such as logical values, images, (fuzzy) sets, graphs, text, etc. with non-numeric 

representations and corresponding semantics. In an emerging new world, there is still the 

need for modeling, e.g. for recognition, prediction, etc. It is interesting that many of the (non) 

numerical data that appear in practice are partially ordered and are elements of a 

mathematical lattice. Note that recently the term lattice computing proposed as "a 

continuously evolving set of mathematical tools and mathematical modeling methodologies 

with the ability to handle partially-ordered data, as such, including logical values, numbers, 

sets, symbols, graphs etc.” (Esmi et al, in press · Graña & Chyzhyk, sub version · Kaburlasos 

& Papakostas, 2015 · Kaburlasos et al, 2013 · Sussner, sub version · Valle & Sussner, 2013). 

That is, lattice computing deals with partially-ordered data without transforming it into other 

kind of data, e.g. in real numbers.  

Order theory is proposed here as a general modeling field, which, in addition to 

measurements, can also represent semantics. In particular, the innovative proposition here is 

the extension of the modeling field from the totally ordered set R to (partially ordered) 

lattices and ultimately, the calculation of a function of the form f: LK, where L and K are 

lattices. A comparative advantage of modeling in lattices is the representation of semantics 

with the partially ordered relation between the data and, ultimately, the calculation even with 

semantics instead of just the traditional calculation with numbers. In addition, note that since 

information grains are partially ordered (Liu et al., 2013; Sussner & Esmi, 2011), lattice 

theory could be used for analysis and design in granular computing applications (Pedrycz et 

al., 2008 · Zadeh, 1997).  

The three chapters of Part-III present the following material. Chapter 7 presents basic 

concepts of lattice theory for use in the following chapters. Chapter 8 summarizes 

methodologies from the literature that include (1) Logic and Reasoning, (2) Formalistic 
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Concept Analysis and (3) Mathematical Morphology, where analysis and design are based on 

lattice theory. Finally, Chapter 9 focuses on the Study of Intervals’ Numbers (IN), which 

describes how the partially ordered IN lattice can integrate popular semantic representations 

that include probability/feasibility distributions. Note that, from time to time, joint 

presentations of CI methodologies have been carried out in lattices (Kaburlasos, 2011; 

Kaburlasos & Ritter, 2007; Kaburlasos et al., 2008; Kaburlasos et al., 2014; Liu et al.) 
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CHAPTER 7: LATTICE THEORY IN COMPUTATIONAL 

INTELLIGENCE 
 

This chapter, in addition to the presentation of mathematical concepts and tools, proposes a 

unification in Computational Intelligence (CI) through the unification of dissimilar (partially 

ordered) data types that include reasonable values, numbers (and signals), (fuzzy) sets, 

graphs, strings, etc. within the framework of Lattice theory. 

This chapter summarizes special mathematical tools of Lattice theory for CI 

applications. Infrastructure knowledge from Lattice theory is presented in the Appendix of 

this chapter to facilitate reading. Subsequently, the fuzzification of the binary relation “partial 

order” is modeled in a classic lattice. 

 

7.1 Fuzzy Lattice 

Consider a (classic) lattice (L,⊑), where for ,x yL  it is either (x, y)⊑ or (x, y)⊑. In other 

words, the claim «x ⊑ y» is either true or false, respectively. The calculation of a degree of 

truth, in some sense, of the «x ⊑ y» assertion, is useful for making decisions in practical 

applications. For the aforementioned reason, the concept of Fuzzy Lattice is introduced, in 

order to fuzzify the relation “partial order” of a Lattice (L,⊑) so as to extend it to each pair 

 ,  x y L L . In other words, the Fuzzy Lattice is a fuzzy set in the reference set L L .  

A Fuzzy Lattice is defined as a triad (L,⊑,), where (L,⊑) is a lattice and  ,L L  is 

a fuzzy set, such as  , 1 x y  if and only if x ⊑ y. It can be observed that the Fuzzy Lattice 

(L,⊑,) fuzzifies the binary relation of this order to the lattice (L,⊑). 

It should be noted that several authors have used the term "fuzzy lattice" in 

mathematics, with a different content (Ajmal & Thomas, 1994; Kehagias & Konstantinidou, 

2003; Tepavčević & Trajkovski, 2001). However, the above definition is introduced in the 

context of mechanical-learning applications and classification in medical databases 

(Kaburlasos, 1992). Other authors have used the term fuzzy lattice to present the same 

concept in mathematics (Chakrabarty, 2001; Nanda, 1989), while in the Bayes probability 

theory the same concept was introduced with the name zeta function (Knuth, 2005). 

 As mentioned above, the motivation for the definition of a fuzzy lattice is the 

quantitative comparison of incomparable (e.g. parallel) lattice elements. In particular, to each 

pair  ,  x y L L  is assigned a real number    , 0,1 x y that indicates the degree to which 

x is less than or equal to y. When x ⊑ y then the fuzzy relation  is valid between x and y to 

the maximum degree (i.e. 1), but the function may also be valid to a lower degree when 

||x y  (i.e. when x  and y  are incomparable). Therefore, function  can be interpreted as a 

weak (fuzzy) partial order relation. More specifically, function   is characterized by a 
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weak transient property so as if  , 1 x y  and  , 1 y z  are valid on the same time, then 

 , 1 x z . However, if it is  , 1 x y , or  , 1 y z , then  , x z  can take any value in 

the interval [0,1]. 

It should be mentioned that the concept of Fuzzy Lattice is different from the L-fuzzy 

set concept (Goguen, 1967). The latter is a generalization of the concept of the fuzzy set, such 

as the membership function to depict the reference set in a complete lattice instead of 

depicting it exclusively in a conventional closed interval [0,1], as it does the classical theory 

of fuzzy sets. 

Subsequently, a Fuzzy Lattice is calculated by introducing the function below 

(Kaburlasos & Papakostas, 2015): 

Consider a lattice (L,⊑). Fuzzy order is defined as a function  : 0,1L L    that 

satisfies the two following properties: 

C1. u⊑w   , 1 u w  

C2. u⊑w     , ,  x u x w    (Consistency) 

 The fuzzy order function can be used to express the degree to which a lattice element 

is less than or equal to another element. Thus, the symbolism (x⊑y) can be used instead of 

 , x y . 

It is obvious that the property C1 requires the maximization of the fuzzy order 

(u,w)=1 when and only when the element u is less than or equal to element w. In other 

words, property C1 requires maximizing the fuzzy order exclusively for the elements that are 

arranged in the lattice (L,⊑). On the other hand, the property C2 requires some kind of 

consistency for a fuzzy order function in the following sense; if element u is contained in 

element w, then property C2 requests for any element x to be contained in u “no more” than it 

is contained in w. 

Fuzzy order (x⊑y) is a generalization of alternative definitions proposed in the 

literature for the quantification of the degree of content of a (fuzzy) set in another (Fan et al., 

1999; Sinha & Dougherty 1993; Sinha & Dougherty 1995; Young, 1996; Zhang & Zhang, 

2009). However, the aforementioned alternative definitions refer only to overlapping pairs of 

(fuzzy) sets, otherwise the equivalent degree of content is equal to zero. Instead, the above 

definition of Fuzzy order is more general, because (a) it is applicable to each lattice and not 

only to the lattice of (fuzzy) sets, and (b) it concerns, without exception, all pairs of elements 

of any given lattice. 

Every use of a fuzzy order function (σ) is called Fuzzy Lattice Reasoning (FLR) 

(Kaburlasos & Kehagias, 2014). In particular, a fuzzy order function (σ) supports two 

different types of reasoning, which is the generalized reasoning and reasoning by analogy. 

The generalized reasoning is a type of deductive reasoning, according to which, using the 

mathematical symbolism of lattice theory, given (a) a logical rule ac, and (b) a reason a0 

such as a0⊑a, follows a result c. On the other hand, reasoning by analogy is a type of 
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approximate reasoning, suitable for handling incomplete knowledge, as explained 

subsequently. Given (a) a set of rules aici, i{1,…,L}, and (b) a reason a0 so as a0⋢ai, 

i{1,…,L}, the rule aJcJ that maximized the fuzzy order function 

𝐽 =̇  𝑎𝑟𝑔𝑖∈{1,…,𝐿} max 𝜎(𝛼0 ⊑ 𝛼𝑖 ) is selected. The result cJ, follows. 

It has been proven that if function 𝑣: 𝐿 → 𝑅0
+ is of positive valuation in lattice (L,⊑), 

then the two following functions (a) Sigma-join: ⊔(x,u) = 
𝑣(𝑢)

𝑣(𝑥⊔𝑢)
, και (β) Sigma-meet: ⊓

(x,u) = 
𝑣(𝑥⊓𝑢)

𝑣(𝑥)
 are fuzzy order functions. 

Assuming a lattice (L,⊑) and a fuzzy order 𝜎: 𝐿 × 𝐿 → [0,1]. Then, the triad (L,⊑,) is 

fuzzy lattice. Therefore, the usability of having a fuzzy order () on a lattice (L,⊑) is that it 

transforms the (L,⊑)  into a fuzzy lattice and thus allows a quantified comparison of any two 

elements of (L,⊑), which can be either comparable or incomparable. 

When a lattice (L,⊑) contains a minimum element o, a reasonable requirement is for 

the following equation to be valid: ⊔(x,o) = 0 = ⊓(x,o), for every x⊐o, i.e. the degree to 

which any (non-minimum) element is less than or equal to the minimum element o is zero. 

This requirement implies v(o)= 0. 

 

7.2 Extensions in Lattice Hierarchies 

This section deals with lattice hierarchies. Fuzzy order functions and metric functions are also 

introduced. 

 

7.2.1 Cartesian Products of Lattices 

A lattice (L,⊑) can be equal to the Cartesian product Ν  of possibly non-similar  

constituent lattices (Li,⊑), i=1,…,N. That is, it can be (L,⊑) = (L1,⊑)…(LN,⊑) where every 

basic lattice (Li,⊑), i=1,…,N is characterized by its own order relation ⊑. For means of 

simplicity, the same symbols ⊑, ⊔, ⊓ are used in every lattice. For the same reason, the same 

symbols o και i are used for the least and greatest element of a complete lattice, respectively, 

unless it is differently indicated. The meet (⊓) and the join (⊔) operations in the lattice (L,⊑) = 

(L1,⊑)…(LN,⊑) are respectively calculated as follows: 

x⊓y = (x1,…,xN)⊓(y1,…,yN) = (x1⊓y1,…,xN⊓yN), και 

x⊔y = (x1,…,xN)⊔(y1,…,yN) = (x1⊔y1,…,xN⊔yN). 

Moreover, it is true that (x1,…,xN) ⊑ (y1,…,yN)  x1⊑y1,…,xN⊑yN. 
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If functions v1,…,vN are valuations in the lattices (L1,⊑),…,(LN,⊑), respectively, then 

function v: L=L1…LNR given as v= v1+…+vN  is a valuation in lattice (L=L1…LN,⊑). 

If all valuations v1,…,vN  are monotone function, then valuation v= v1+…+vN  is also 

monotone. Additionally, if at least one of valuations v1,…,vN  is positive then valuation v is 

positive. 

Metric functions and fuzzy order function are produced from positive valuation 

functions in (basic) lattices, as described below.  

First, from a function vi: LiR of positive valuation in the (basic) lattice (Li,⊑) , a 

metric function di: Li𝑅0
+ is defined according to the equation di(xi,yi)= vi(x1⊔y1)-vi(x1⊓y1), 

𝑖 = 1, . . . , 𝑁. Therefore, in the Cartesian product (L,⊑)= (L1,⊑)…(LN,⊑), a metric 

Minkowski function 𝑑(; 𝑝): 𝐿 × 𝐿 → 𝑅0
+ is defined as follows: 

𝑑(𝑥, 𝑦; 𝑝) = [(𝑑1(𝑥1, 𝑦1))
𝑝

+. . . +(𝑑𝑁(𝑥𝑁 , 𝑦𝑁))
𝑝

]
1/𝑝

, 𝑝 ∈ 𝑅, 𝑥𝑖, 𝑦𝑖 ∈ 𝐿𝑖 with 𝑖 =

1, . . . , 𝑁 

where 𝑥 = (𝑥1, . . . , 𝑥𝑁), 𝑦 = (𝑦1, . . . , 𝑦𝑁). 

Secondly, from positive valuation functions v1,…,vN  in (constituent) lattices (L1,⊑

),…,(LN,⊑), respectively, is defined a positive valuation function 𝑣: 𝐿 = 𝐿1 ×. . .× 𝐿𝑁 → 𝑅0
+, 

defined as 𝑣 = 𝑣1+. . . +𝑣𝑁. Thus, the following two fuzzy orders are resulted; ⊔: 

LL[0,1] και ⊓: LL[0,1], respectively. 

Sigma-join: 𝜎⊔(𝑥, 𝑢) =
𝑣(𝑢)

𝑣(𝑥⊔𝑢)
=

𝑣(𝑢1,…, 𝑢𝑁 )

𝑣(𝑥1⊔𝑢1,…, 𝑥𝑁⊔𝑢𝑁)
=

∑ 𝑣𝑖(𝑢𝑖)𝑁
𝑖=1

∑ 𝑣𝑖(𝑥𝑖⊔𝑢𝑖)𝑁
𝑖=1

, and 

Sigma-meet: 𝜎⊓(𝑥, 𝑢) = 
𝑣(𝑥⊓𝑢)

𝑣(𝑥)
=

𝑣(𝑥1⊓𝑢1,…, 𝑥𝑁⊓𝑢𝑁) 

𝑣(𝑥1,…, 𝑥𝑁 )
=

∑ 𝑣𝑖(𝑥𝑖⊓𝑢𝑖)𝑁
𝑖=1

∑ 𝑣𝑖(𝑥𝑖)𝑁
𝑖=1

 

in the Cartesian product lattice (L,⊑)= (L1…LN,⊑). 

Alternatively, there is the following way to define a fuzzy order in the Cartesian 

product lattice (L,⊑)= (L1…LN,⊑). In particular, given a positive valuation function 

𝑣𝑖: 𝐿𝑖 → 𝑅0
+ in the lattice (Li,⊑), i{1,…,N}, according to all the above, two fuzzy order 

functions are resulted; (a) sigma-join ⊔: LiLi[0,1], and (b) sigma-meet ⊓: LiLi[0,1], 

respectively. Assuming that i: LiLi[0,1], i{1,…,N} is a particular fuzzy order function 

of lattice (Li,⊑), i.e. i(.,.) is either equal to ⊔(.,.) or to ⊓ (.,.). Given non-negative real 

numbers 1,…,N such that 1+…+N = 1, a fuzzy order c: LL[0,1] in the Cartesian 

product lattice (L,⊑)= (L1…LN,⊑) is given by the convex combination 𝜎𝑐(𝑥 =

(𝑥1, . . . , 𝑥𝑁), 𝑢 = (𝑢1, . . . , 𝑢𝑁)) = ∑ 𝜆𝑖
𝑁
𝑖=1 𝜎𝑖(𝑥𝑖, 𝑢𝑖). Two other fuzzy orders are given form 

equations (a) (x,u)= 𝑚𝑖𝑛
𝑖∈{1,...,𝑁}

𝜎𝑖(𝑥𝑖, 𝑢𝑖), and (b) 𝜎𝜋(𝑥, 𝑢)= ∏ 𝜎𝑖(𝑥𝑖 , 𝑢𝑖)
𝑁
𝑖=1 , respectively. 
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7.2.2 Lattices of Intervals 

Assuming (I,) is the partially ordered set (poset) of (ordinary) intervals of a lattice (L,⊑). An 

interesting lattice is the (I{},), where the meet operation () is defined as (1) x=, 

for every x(I{}), and (2) [a,b][c,d] = [a⊔c,b⊓d] if a⊔c⊑b⊓d, and [a,b][c,d] =  if a⊔

c⋢b⊓d, for [a,b],[c,d]I. While, the join operation (⊔) is defined as (1) x⊔=x, for every 

x(I{}), and (2) [a,b]⊔[c,d] = [a⊓c,b⊔d], for [a,b],[c,d]I. It should be noted that the 

lattice (I{},) is atomic since every interval [a,b]I is the join of two atoms; in 

particular, [a,b] = [a,a]⊔[b,b]. The atomic lattice (I{},) is a tool for analyzing complex 

data representations, as explained below 

Of particular interest is the case where the lattice (L,⊑) s complete with least and 

greatest elements o and i, respectively. In this case, the lattice (Ι1=I{},) is also complete, 

with greatest element I=[o,i]. For the least element O which is the empty set (), the 

representation O=[i,o] is selected. An element of the set I1= I{[i,o]} is called Type-1 (Τ1) 

interval. Specific advantages of this representation O=[i,o] are presented below. 

An advantage of the representation O=[i,o] is that the order relation [a,b]⊑[c,e], that is 

defined as [a,b]⊑[c,e]  «c⊑a.ΚΑΙ.b⊑e», in lattice (I1,⊑) is compatible with the equivalence 

[a,b][c,e]  c⊑a⊑b⊑e in the poset (I,⊆). An additional  advantage of the representation 

O=[i,o] is that the definitions of meet and join operations in lattice (I1,⊑) are consistent with 

the corresponding definitions in lattice (I{},) since (a) the meet (⊓) in lattice (I1,⊑) is 

defined as [a,b]⊓[c,e] = [a⊔c,b⊓e] if a⊔c⊑b⊓e, and [a,b]⊓[c,e] = [i,o] if a⊔c⋢b⊓e, and (b) the 

join (⊔) in (I1,⊑) is defined as [a,b]⊔[c,e] = [a⊓c,b⊔e]. Thus, in strict mathematical orology, 

we say that the lattices (I{},) and (I1,⊑) are isomorphic, symbolized as (I{},)  (I1,

⊑). Note that the lattice (I1,⊑) is also atomic. 

Subsequently, metric and fuzzy order functions are investigated for lattice (I1,⊑). The 

aforementioned functions can be defined using a positive valuation function. However, a 

positive valuation function does not generally exist in lattice (I1,⊑), as shown in the anti-

paradigm below. 

Assume the intervals [𝑎, 𝑏], [𝑐, 𝑒], and [𝑐′, 𝑒] in chain (R,) of real numbers, where 

𝑎 < 𝑏 < 𝑐 < 𝑐′ < 𝑒 as shown in Figure 7.1. It is obvious that [𝑐′, 𝑒] < [𝑐, 𝑒]. Consider the 

following Initial Hypothesis: given a positive valuation function 𝑣1: (𝐼 ∪ {∅}) × (𝐼 ∪ {∅}) →

𝑅0
+. As a consequence of the aforementioned Initial Hypothesis, the following two equalities 

are valid: 

1) 𝑣1([𝑎, 𝑏]) + 𝑣1([𝑐, 𝑒]) = 𝑣1([𝑎, 𝑏] ⊔ [𝑐, 𝑒]) + 𝑣1([𝑎, 𝑏] ⊓ [𝑐, 𝑒]) = 𝑣1([𝑎, 𝑒]) +

𝑣1(∅), and 
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2) 𝑣1([𝑎, 𝑏]) + 𝑣1([𝑐 ′, 𝑒]) = 𝑣1([𝑎, 𝑏] ⊔ [𝑐 ′, 𝑒]) + 𝑣1([𝑎, 𝑏] ⊓ [𝑐 ′, 𝑒]) = 𝑣1([𝑎, 𝑒]) +

𝑣1(∅). 

Thus, 𝑣1([𝑐, 𝑒]) = 𝑣1([𝑐′, 𝑒]). However, this last equality appears to contradict the 

inequality 𝑣1([𝑐, 𝑒]) < 𝑣1([𝑐′, 𝑒])  [𝑐′, 𝑒] < [𝑐, 𝑒] that derives from the fact that function 

𝑣1: (𝐼 ∪ {∅}) × (𝐼 ∪ {∅}) → 𝑅0
+ is of positive valuation. So, the Initial Hypothesis is not 

valid. In other words, a positive valuation function 𝑣1: (𝐼 ∪ {∅}) × (𝐼 ∪ {∅}) → 𝑅0
+ does not 

exist. 

 

 

 

 

Fig. 7.1 Five points 𝑎 < 𝑏 < 𝑐 < 𝑐′ < 𝑒 on the line of real numbers. 

 

According to the above, the investigation of metric and fuzzy order functions in the 

complete lattice (I1,⊑) of intervals Τ1, is performed in a different way, as described below. 

Assume that the lattice (I1,⊑) can be embedded in a superlattice (G,⊑) in which a 

positive valuation function exist v1: G𝑅0
+  The definitions of (order) embedded and 

superlattice are provided in the Appendix at the end of this Chapter. According to the above, 

the existence of function v1: G𝑅0
+ suggests the existence of a metric function (see 

Appendix) and of fuzzy order functions (see Section 7.1) in lattice (G,⊑). The above 

functions (i.e. metric and fuzzy order) are valid to the embedded lattice (I1,⊑).  

Back to the complete lattice (I1,⊑) of intervals Τ1, which resulted from a complete 

lattice (L,⊑) with least and greatest elements o and i, respectively. Assume that in (L,⊑) there 

is a positive valuation function v: L𝑅0
+ such that, as explained in Section 7.1 and in the 

Appendix of this Chapter, two reasonable constraints are valid; v(o)=0 και v(i)<+. Due to 

the definition of order in a lattice (I1,⊑), the interest is focused on the Cartesian product of 

lattice (L,⊑
)(L,⊑) = (LL,⊒⊑) of the generalized intervals as a possible superlattice. A 

generalized interval is symbolized as [a,b], a,bL. The meet operation (⊓) in lattice (LL,⊒

⊑) is calculated from [a,b]⊓[c,d] = [a⊔c,b⊓d], while the join operation (⊔) in lattice (LL,⊒

⊑) is calculated from [a,b]⊔[c,d] = [a⊓c,b⊔d]. The lattice(LL,⊒⊑) is also complete with 

least and greatest elements O=[i,o] and I=[o,i], respectively. 

In this Section it has been proven that the sum of positive valuation functions in each 

of the basic lattices (L,⊒) και (L,⊑) is a positive valuation function in Cartesian product (LL,

⊒⊑). In the precious paragraph, it was assumed the existence of a positive valuation 

function v: L𝑅0
+ in the complete lattice (L,⊑) in which two reasonable constraints exist; 

v(o)=0 and v(i)<+. The goal now is to indicate a positive valuation function in (L,⊒). Note 

a b c c

 

 

e 
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that the aforementioned positive valuation function v: L𝑅0
+ in (L,⊑) is a valuation function 

in (L,⊒) where the operations ⊓ and ⊔ alternate, mutually. Thus, for x,y(L,⊒) it is valid that 

v(x)+v(y) = v(x⊔y)+v(x⊓y). However, the valuation v(.) is not positive in lattice (L,⊒) since x⊏

y in (L,⊒) is equivalent to x⊐y in (L,⊑), and so x⊏y in (L,⊒) implies v(x)>v(y). 

The problem of the lack of a positive valuation function in lattice (L,⊒), given of a 

positive valuation function v: L𝑅0
+ in lattice (L,⊑), can be resolved by assuming a 

(bijection) dual isomorphism function : (L,⊑)

(L,⊑), where x⊏y in (L,⊒) is equivalent to 

(x)⊏(y) in (L,⊑). Thus, the relation x⊏y in (L,⊒) is transformed in relation (x)⊏(y) in (L,

⊑) and, finally, it is implied that v((x)) < v((y)). In this way, the composite function v⃘(.) 

is a positive valuation function in (L,⊒) and, finally, function v1([x,y]) = v((x))+v(y) is a 

positive valuation function in (LL,⊒⊑) of the generalized intervals. Additionally, since (.) 

is a bijection function, must apply (o)=i and (i)=o. Consequently, the two reasonable 

constraints of a positive valuation function v(.) are also valid for function v1(.). In particular, 

it is valid that, first, v1(O=[i,o])= v((i))+v(o)= 2v(o)= 0 and, secondly, v1(O=[o,i])= 

v((o))+v(i)= 2v(i) < +. 

Subsequently, the metric function d1: (LL,⊒⊑)(LL,⊒⊑)𝑅0
+, given from the 

type d1([a,b],[c,e])= v1([a,b]⊔[c,e])- v1([a,b]⊓[c,e])= v1([a⊓c,b⊔e])- v1([a⊔c,b⊓e])= v((a⊓c))+ 

v(b⊔e)- v((a⊔c))- v(b⊓e) = v((a)⊔(c))-v((a)⊓(c)) + v(b⊔e)-v(b⊓e)= d((a),(c))+d(b,e), 

is also a metric function in lattice (I1,⊑). Moreover, the fuzzy order function ⊔: (LL,⊒⊑

)(LL,⊒⊑)[0,1], given from the type 𝜎⊔([𝑎, 𝑏], [𝑐, 𝑒]) = 
𝑣1([𝑐,𝑒])

𝑣1([𝑎,𝑏]⊔[𝑐,𝑒])
= 

𝑣1([𝑐,𝑒])

𝑣1([𝑎⊓𝑐,𝑏⊔𝑒])
= 

𝑣(𝜃(𝑐))+𝑣(𝑒)

𝑣(𝜃(𝑎⊓𝑐))+𝑣(𝑏⊔𝑒)
 is also a fuzzy order function ⊔: Ι1Ι1[0,1] in the embedder (sub)lattice (I1,

⊑). Note that for v1([a,b]⊔[c,e]) = 0  [a,b]⊔[c,e] =   [a,b] =  = [c,e] it is considered 

by definition that 𝜎⊔([𝑎, 𝑏], [𝑐, 𝑒]) = 1. Finally, the fuzzy order function ⊓: (LL,⊒⊑

)(LL,⊒⊑)[0,1], given by the type 𝜎⊓([𝑎, 𝑏], [𝑐, 𝑒]) = 
𝑣1([𝑎,𝑏]⊓[𝑐,𝑒])

𝑣1([𝑎,𝑏])
= 

𝑣1([𝑎⊔𝑐,𝑏⊓𝑒])

𝑣1([𝑎,𝑏])
= 

𝑣(𝜃(𝑎⊔𝑐))+𝑣(𝑏⊓𝑒)

𝑣(𝜃(𝑎))+𝑣(𝑏)
 is also a fuzzy order function  ⊓: Ι1Ι1[0,1] in the embedded (sub)lattice 

(I1,⊑). Note that for v1([a,b]) = 0  [a,b] =  it is considered by definition that 

𝜎⊓([𝑎, 𝑏], [𝑐, 𝑒]) = 1. 

Assuming a positive valuation function 𝑣: 𝐿 → 𝑅 in lattice (L,⊑), and (I,) is the 

corresponding poset of the intervals. The non-negative function δ1: I𝑅0
+, calculated by the 

equation δ1([a,b])= v(b)-v(a), is a size function of an interval since it satisfies the definition of 
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size function. Note that δ1([a,b]) = d(a,b)= 𝑚𝑎𝑥
𝑥,𝑦∈[𝑎,𝑏]

𝑑(𝑥, 𝑦), where 𝑑: 𝐿 × 𝐿 → 𝑅0
+ is the metric 

d(x,y)= v(x⊔y)-v(x⊓y) in lattice (L,⊑), i.e. the size of an interval [a,b] is equal to the maximum 

distance of two elements x and y of the interval [a,b]. It can be observed that every trivial 

interval [a,a] has zero size, i.e. δ([a,a])= 0. Moreover, every trivial interval [a,a] is atom in 

the complete lattice (I1,⊑) of intervals Τ1 since it covers the least element ο=  in (I1,⊑). 

 

7.2.3 Sets of Lattice Elements 

Suppose the powerset 2
L
 of a lattice (L,⊑). According to the previous sections, note that L 

may be the Cartesian product of N basic lattices, including interval lattices.  

The binary relation ⊑ is defined in the Cartesian product 2𝐿 × 2𝐿 so as for 𝑈, 𝑊 ∈ 2𝐿 

to be 𝑈 ⊑ 𝑊 if and only if ∀𝑢 ∈ 𝑈, ∃𝑤 ∈ 𝑊: 𝑢 ⊑ 𝑤. Thus, it results the lattice (2𝐿 , ⊑) with 

𝑈 ⊓ 𝑊 = ⋃ {𝑢 ⊓ 𝑤}𝑢∈𝑈,𝑤∈𝑊  and ⊔ 𝑊 = ⋃ {𝑢 ⊔ 𝑤}𝑢∈𝑈,𝑤∈𝑊 . 

A subset 𝑆 of 𝐿 is called simplified or, alternatively, quotient, if 𝑆 contains only 

incomparable data of 𝐿. A non-simplified set 𝑆 is called simplifiable and can be simplified if 

every subset of comparable elements 𝑋 ⊆ 𝑆 is replaced with the least upper bound ∨ 𝑋. 

Assume that 𝜋(2𝐿) ⊆ 2𝐿 is a subset of 2𝐿 that contains only all the simplified subsets 𝐿. The 

interest is focused in elements of the lattice (𝜋(2𝐿), ⊑) since every element of π(2
L
) 

maximizes any fuzzy order function σ: 2
L
2

L
[0,1] due to the property C2 (Consistency). 

Moreover, the fuzzy order function 𝜎𝑐: 𝜋(2𝐿) × 𝜋(2𝐿) → [0,1] in the lattice (𝜋(2𝐿), ⊑) can 

be defined as follows: 

Suppose a fuzzy order function 𝜎: 𝐿 × 𝐿 → [0,1] in lattice (L,⊑). Then, function 

𝜎𝑐: 𝜋(2𝐿) × 𝜋(2𝐿) → [0,1] which is given from the convex combination c(UW)= 

∑ 𝜆𝑖 𝑚𝑎𝑥
𝑗∈{1,…,𝑁}

𝜎(𝑢𝑖 ⊑ 𝑤𝑗)𝑁
𝑖=1  is of fuzzy order, where U={u1,…,uM}, W={w1,…,wN}(2

L
). 

 

7.3 Unification of Dissimilar Data Types 

This section presents specific examples of lattices within the previous sections. Each lattice 

concerns a different type of data that is ordered. In the above-mentioned way, the lattice 

theory unifies dissimilar types of data. Here it is considered that fuzzy order relation 

represents the semantics of the data. In this sense, lattice computing is a calculation with 

semantics. 

 

7.3.1 Real Numbers 

The totally ordered lattice (R,) of real numbers, the most popular of all lattices, along with 

its extensions, is analyzed extensively in Chapter 9. At this point it is only noted that a 

strictly increasing function v: RR is a positive valuation function in lattice (R,). 

Moreover, a strictly decreasing function : RR is a function of dual isomorphism in 

lattice (R,). Extension of the lattice (R,) in Cartesian product, partially ordered lattice (RN
,

⊑)= (R,)
N
, will be mentioned in this section. 
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By choosing the same positive valuation function v(x)= x in every dimension of the 

lattice (RN
,⊑), results the metric d(x,y;p)= [(𝑑(𝑥1, 𝑦1))𝑝+. . . +(𝑑(𝑥𝑁 , 𝑦𝑁))𝑝]1/𝑝= [|𝑥1 −

𝑦1|𝑝+. . . +|𝑥𝑁 − 𝑦𝑁|𝑝]1/𝑝, where x=(x1,…,xN) και y=(y1,…,yN), known in the bibliography as 

Lp metric. In particular, 𝐿1 ιis equal to 𝑑(𝑥, 𝑦; 1) = |𝑥1 − 𝑦1|+. . . +|𝑥𝑁 − 𝑦𝑁| and it is 

known as Hamming distance (or city-block distance), 𝐿2 is the Euclidean distance 

(𝑥, 𝑦; 2) = √(𝑥1 − 𝑦1)2+. . . +(𝑥𝑁 − 𝑦𝑁)2, while 𝐿∞ is equal to 𝑑(𝑥, 𝑦; ∞) = 𝑚𝑎𝑥{|𝑥1 −

𝑦1|, . . . , |𝑥𝑁 − 𝑦𝑁|}. 

 An additional extension results if it is considered the Cartesian product R…R 

which corresponds to a non-countable set of basic lattices σ (R,). In this case, it results the 

partially ordered lattice (F,⊑) of all real functions defined on set R of real numbers. More 

specifically, given f,gF, the relation f ⊑ g is interpreted as𝑓(𝑥) ≤ 𝑔(𝑥), for every 𝑥 ∈ 𝑅, 

where «» is the order relation of (real) numbers. The meet operation (⊓) of two elements (of 

functions) f and g in lattice (F,⊑) is defined as f⊓g = f(x)⊓g(x) := 𝑚𝑖𝑛
∀𝑥∈𝑅

{𝑓(𝑥), 𝑔(𝑥)}, while the 

join operation (⊔) in lattice (F,⊑) is defined as f⊔g = f(x)⊔g(x) := 𝑚𝑎𝑥
∀𝑥∈𝑅

{𝑓(𝑥), 𝑔(𝑥)}. 

 

7.3.2 Measure Spaces 

As measure space is defined a triad (𝛺, 𝛴𝛺, 𝑚𝛴𝛺
), where  is a set, 𝛴𝛺 is a -algebra of set 

, and 𝑚𝛴𝛺
 is a measure on 𝛴𝛺. Definitions of -algebra and measure are provided below. 

As -άλγεβρα 𝛴𝛺 of a set  is defined a collection of subsets of  such that the 

following hold: 

Σ1. 𝛴𝛺, 

Σ2. A𝛴𝛺  (\A)𝛴𝛺, and 

Σ3. for a collection of sets Ai𝛴𝛺, where index i takes values in a countable set D, 

follows that (⋃ 𝐴𝑖𝑖∈𝐷 ) ∈ 𝛴𝛺. 

In other words, a -algebra includes the empty set and it is closed under unions and 

countable intersections of its sets. 

A measure is defined as a real, non-negative function 𝑚𝛴𝛺
: 𝛴𝛺 → 𝑅0

+ such that the 

following hold: 

Μ1. 𝑚𝛴𝛺
(∅) = 0, and 

Μ2. for every countable set of indices D, and for collection of disjoin subsets AiS it is 

valid that 𝑚𝛴𝛺
(⋃ 𝐴𝑖𝑖∈𝐷 ) = ∑ 𝑚𝛴𝛺

(𝐴𝑖)𝑖∈𝐷 . 

The pair (,) is called measurable space. The exact definition of measure space 

(𝛺, 𝛴𝛺, 𝑚𝛴𝛺
), is provided in the Appendix of this Chapter. A measure space offers the ability 

to handle non-countable data, that are elements of a set . In particular, given a measure 

space (𝛺, 𝛴𝛺, 𝑚𝛴𝛺
), the (,), where  is the common set-theoretical relation of subset, is a 

complete lattice with o= and i=. The operations of meet and join in lattice (,) are the 

set-theoretical operations of intersection () and union (), respectively. The function of 

measure 𝑚𝛴𝛺
(. )is a positive valuation function in lattice (,). Finally, function (A)= 
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\Α= A, that represents a set A to its complement A, is a dual isomorphic function in 

lattice (,). Thus, all mathematical tools proposed in the previous sections are available in 

lattice (,). 

 A special case of measure space is the probability space, which is defined as a 

measure space (𝛺, 𝛴𝛺, 𝑚𝛴𝛺
) with the constraint 𝑚𝛴𝛺

(𝛺) = 1. In some applications, the set  

of a measure space (𝛺, 𝛴𝛺, 𝑚𝛴𝛺
) is finite, and -algebra 𝛴𝛺 is then equal to the powerset 2


. 

 It is worth mentioning that an extension of the powerset concept, is the fuzzy powerset 

in relation to a reference set , symbolically F(Ω) = [0,1]
Ω
. It has been proven that the 

structure (F(Ω),) is a complete lattice. 

 

7.3.3 Statements 

The set of (true/false) statements is a Boolean algebra (Birkhoff, 1967). 

Assume the set of (true/false) statements  of interest on a particular application and 

assume that  is the powerset of set . A measure can be defined, i.e. a function 𝑚𝛴𝛺
: 𝛴𝛺 →

𝑅0
+, by defining a positive number for every true statement. So, according to the above, the 

triple (𝛺, 𝛴𝛺, 𝑚𝛴𝛺
) is a measure space. Therefore, all the mathematical tools proposed in the 

previous sections become available in the presumptive reasoning. 

 

7.3.4 Trees 

"Trees" are representations that can be used as mechanisms for decision making and/or 

studying processes where each tree node represents a decision/action (operation) that can be 

taken/executed, respectively. For example, Figure 7.2 illustrates a binary tree in which each 

node has exactly two "child nodes". 

A tree represents a join lattice, where each pair of nodes x and y has a join x⊔y, but 

no meet x⊓y. In particular, the two-node join x⊔y is the first node where the paths from x 

and from y to the root of the tree are encountered. For example, in Figure 7.2, it is c1⊔ c4 = 

c13, c5⊔ c12 = c14, c2⊔ c14 = c15, etc. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2 Binary tree with three layers and 2
3
=8 leaves (nodes) in layer-3. 

 

In order to compare two tree nodes in Figure 7.2 using either a metric function or a 

fuzzy order function, a valuation process is applied, by giving positive values to tree leaves at 

layer-3 

layer-2 

layer-1 

layer-0 (root) 

c12 c11 c10 c9 

c8 c7 c6 c5 c4 c3 c2 c1 

c14 c13 

c15 
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level-3 as illustrated in Figure 7.3(a). Next, the valuation of the nodes of the exact previous 

level, level-2, takes place by summing the values of the children of each node as shown in 

Figure 7.3(b). More specifically, if ci and cj are children nodes of node ck with values v(ci) 

and v(cj), respectively, then the parent node value ck is calculated as v(ck)= v(ci)+v(cj). 

Progressively, nodes of all other levels are valuated up to the root of the tree as presented in 

Figure 7.3(c). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 (a) (b) 

 

 

 

 

 

 

 

 

 

 

 

  

 (c) (d) 

 

Fig. 7.3 Valuation of all nodes of the binary tree of Fig. 7.2. 

 (a) Valuation of the tree leaves. 

 (b) Valuation of tree nodes of level-2. 

 (c) The completed valuation of all tree nodes. 

 (d)  The calculated values define a positive valuation function in the complete lattice 

derived after the import of a unique node (in level-4) as the least element (o) of the 

complete lattice. 

 

 

c15 

c12 c11 c10 c9 

2.4 0.4 4.8 1 3.2 5 1.5 2 

c14 c13 

c15 

 

2.8 5.8 8.2 3.5 

2.4 0.4 4.8 1 3.2 5 1.5 2 

c14 

 

c13 

 

20.3 

2.8 5.8 8.2 3.5 

2.4 0.4 4.8 1 3.2 5 1.5 2 

8.6 11.7 

layer-4 
0 

20.3 

2.8 5.8 8.2 3.5 

2.4 0.4 4.8 1 3.2 5 1.5 2 

8.6 11.7 
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The tree of Figure 7.3(c) can be transformed into a complete lattice by inserting an 

additional node in the (new) level-4 as the least element (o) with a value equal to 0 (see 

Figure 7.3(d)). Note that the greatest element (i) of the complete lattice in Figure 7.3(d) is the 

root-node of the tree c15, i.e. i= c15. Now, a metric function (d) and a fuzzy order () can be 

calculated. For example, d(c1,c13)= v(c1⊔c13)-v(c1⊓c13)= v(c13)-v(c1)= 11.7 – 2= 9.7 and 

d(c3,c13)= v(c3⊔c13)-v(c3⊓c13)= v(c13)-v(c3)= 11.7 – 5= 6.7. Note that although nodes c1 and c3 

are in the same level-3, node c3 is calculated to be closer to node c13 rather than to node c1 

due to the used valuation function. Moreover, the distance between nodes c1 and c3 is 

calculated as d(c1,c3)= v(c1⊔c3)-v(c1⊓c3)= v(c13)-v()= 11.7 - 0= 11.7. That is, nodes c1 and c3 

are more distant from each other than each one of them from node c13. Following these, fuzzy 

orders are calculated.  

For comparable elements, as for elements c5 and c14, results that ⊔(c5⊑c14)= 

𝑣(𝑐14)

𝑣(𝑐5⊔𝑐14)
= 

𝑣(𝑐14)

𝑣(𝑐14)
= 1, ⊓(c5⊑c14)= 

𝑣(𝑐5⊓𝑐14)

𝑣(𝑐5)
= 

𝑣(𝑐5)

𝑣(𝑐5)
= 1. For non-comparable elements, such as 

elements c1 and c14, results that ⊔(c1⊑c14)= 
𝑣(𝑐14)

𝑣(𝑐1⊔𝑐14)
= 

𝑣(𝑐14)

𝑣(𝑐15)
= 

8.6

20.3
≅ 0.423 and ⊓(c1⊑c14)= 

𝑣(𝑐1⊓𝑐14)

𝑣(𝑐1)
= 

𝑣(∅)

𝑣(𝑐1)
= 

0

2
= 0. It is interesting to computationally verify that, for comparable 

elements, the degree to which a greater element is embedded in a smaller one may be non-

zero. For example, ⊔(c14⊑c5)= 
𝑣(𝑐5)

𝑣(𝑐14⊔𝑐5)
= 

𝑣(𝑐5)

𝑣(𝑐14)
= 

1

8.6
≅ 0.116 ≅

𝑣(𝑐14⊓𝑐5)

𝑣(𝑐14)
= ⊓(c14⊑c5). 

All previously mentioned techniques can be extended as described below.  

First extension: To the aforementioned binary tree, if ci and cj are children nodes of ck 

with values v(ci) and v(cj), respectively, then the parent value ck can be put as v(ck) > 

v(ci)+v(cj). This results to the need for additional elements in lattice of Figure 7.3(d) so that 

for each pair ci and cj, a meet ci⊓cj με v(ci⊓cj) > 0 exists. However, in order to calculate 

metric distances or/and fuzzy orders, the only thing needed is value v(ci⊓cj) and not element 

ci⊓cj itself. Note that value v(ci⊓cj) must be calculated so as to fulfill the following two 

equations; (v(x)+v(y) = v(x⊓y)+v(x⊔y) and x ⊏ y  𝑣(𝑥) < 𝑣(𝑦), of a positive valuation 

function. Thus, for a given arithmetic value v(ci⊓cj), are resulted d(ci,cj)= 2v(ci⊔cj)-v(ci)-v(cj) 

and ⊓(x,u) = 
𝑣(𝑥)+𝑣(𝑢)−𝑣(𝑥⊔𝑢)

𝑣(𝑥)
. 

Second extension: The tree might not be binary. In this case, a valuation process is 

applied by giving positive values to the tree leaves. Then, the nodes of the exact above level 

are valuated. Assuming that a node ck has the children nodes ci, iI. The value v(ck) is 

calculated by posing v(ck) > 𝑚𝑎𝑥
𝑖,𝑗∈𝐼
𝑖≠𝑗

{𝑣(𝑐𝑖) + 𝑣(𝑐𝑗)}. Gradually, i.e. per level, all nodes are 

valuated up to the root of the tree. 

In both extensions, the problem of valuating the nodes of a tree can be encountered as 

an optimization problem. 
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It should be noted that the calculation of the meet ci⊓cj in a tree, where ci and cj are 

nodes, is necessary for calculating intervals (within trees). However, as already explained, the 

calculation of the meet ci⊓cj is not apparent in a general tree structure except for special cases 

such as the binary tree of Figure 7.2, an extension of which in complete lattice is shown in 

Figure 7.3(d). Here, the optimization problem is more complex, since additionally to the 

valuation of nodes, new nodes have to be inserted.  

The goal is to compute a lattice (L,⊑) that is equipped with both a positive valuation 

function v(.)  and a dual isomorphic function (.) so that the original tree of interest to be 

embedded in the lattice (L,⊑), i.e. to be a sublattice of (L,⊑). The aforementioned 

construction problem is similar to the one described in Section 9.1.2 where the lattice (Ι1,) is 

embedded in the generalized intervals lattice (RR,) where we can calculate both 

positive valuation functions v(.) as well as dual isomorphic functions (.). However, the 

corresponding construction in trees is considered to be a more complex problem since a 

different lattice (L,⊑) must be constructed for each different tree.  

 

7.3.5 Conclusion 

In addition to the specific examples of lattices presented in this chapter, there are other useful 

representations for analysis in the context of order theory. For example, ontologies (Guarino, 

2009) are a popular representation in computer science, e.g. in the semantic web, which could 

be embedded in a lattice, in a similar way as explained in Section 7.3.3 for trees, in order to 

result into the useful mathematical tools presented in this chapter. 

 The order theory is a field for the computation with semantics which are represented 

by partially ordered relation in a lattice. Generally, order theory allows for more effective 

representations. Moreover, due to the fact that the Cartesian product of (dissimilar) lattices is 

also a lattice, order theory arises as a strict mathematically framework for the unification as 

well as for a strict disparate data fusion in modeling applications in the CI. Finally, it 

should be noted that an algorithm applicable to lattices, e.g. a learning algorithm, has a wide 

application field without substantial modifications. Selected applications to support the 

aforementioned advantages of order theory are presented in Chapter 9. 

 

 

APPENDIX of Chapter 7 (General Lattice Theory) 

 

In the Appendix the fundamental concepts and the basic knowledge of lattice theory are 

presented. 

 

Binary Relation “Partial order” 

A binary relation R (between two sets P and Q) is defined as a subset of the Cartesian 

product 𝑃 × 𝑄, i.e. 𝑅 ⊆ 𝑃 × 𝑄. Instead of (𝑝, 𝑞) ∈ 𝑅 it can be equally written as 𝑝𝑅𝑞. If 

𝑃 = 𝑄 then it is about a binary relation in (one) set. The inverse relation of R is symbolized 

as 𝑅−1, i.e. it is 𝑞𝑅−1𝑝: ⇔ 𝑝𝑅𝑞 by definition. 



Vassilis G. Kaburlasos 

 7-14 

 A binary relation RPQ is called function when there are no pairs (p,q1)R and 

(p,q2)R with q1q2. In other words, a function f is a correspondence that depicts every 

element p of set P in a single element f(p) of set Q. The f(p) is called image of p. If every 

element of set Q is the image of an element of set P then it is said that function f is 

surjection. In addition, if the inverse relation of a function is also a function then the function 

is called bijection. In other words, bijection means "1-1 and surjection". A specific binary 

relation is considered below. 

 A binary relation 𝑅 ⊆ 𝑃 × 𝑃 in a set P is called partially ordered if and only if it 

satisfies the following: 

Δ1. (𝑥, 𝑥) ∈ 𝑅     (Reflexity) 

Δ2. (𝑥, 𝑦) ∈ 𝑅 and 𝑥 ≠ 𝑦 ⇒ (𝑦, 𝑥) ∉ 𝑅  (Antisymmetry) 

Δ3. (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅 ⇒ (𝑥, 𝑧) ∈ 𝑅 (Transitivity) 

Condition Δ2 can be replaced by the following equivalent condition: 

Δ2 (𝑥, 𝑦) ∈ 𝑅 και (𝑦, 𝑥) ∈ 𝑅 ⇒ 𝑥 = 𝑦  (Antisymmetry) 

Instead of 𝑥𝑅𝑦  (𝑥, 𝑦) ∈ 𝑅 is also used the representation x ⊑ y  (x,y)⊑ and it is 

said that “x is contained in y”, or “x is part of y”, or “x less than or equal to y”. If x ⊑ y and 

𝑥 ≠ 𝑦, it is written that x⊏y, and it is said that “x is strictly less than y” or “x is contained 

strictly in y”. In the same way are defined the symbols x ⊒ y και x ⊐ y for the inverse relation 

𝑅−1. 

 As a general information, it is worth to mention that the aforementioned definition of 

partially ordered relation differs from the definition of the (also binary) equivalence relation 

only in the (anti)symmetric condition, as it is shown below. 

A binary relation 𝑅 ⊆ 𝑃 × 𝑃 in a reference set P is called equivalence relation if and 

only if it satisfies the following: 

Ι1. (𝑥, 𝑥) ∈ 𝑅     (Reflexity) 

Ι2. (𝑥, 𝑦) ∈ 𝑅  (𝑦, 𝑥) ∈ 𝑅   (Symmetry) 

Ι3. (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅 ⇒ (𝑥, 𝑧) ∈ 𝑅 (Transitivity) 

Partially ordered set (poset) is a pair (P,⊑), where P is a set and ⊑ is a (partial) 

order relation in P. Note that in the same set P can be defined more than one (different) order 

relations, e.g. ⊑1 and ⊑2. 

A function : PQ of the poset (P,⊑) to the poset (Q,⊑) is called order preserving, 

or monotone, if x ⊑ y  (x) ⊑ (y), for 𝑥, 𝑦 ∈ 𝑃. If, additionally,  satisfies the inverse 

relation x ⊑ y  (x) ⊑ (y), then  is called order embedded. A bijection function of 

embedded order is called isomorphism. When an isomorphism function exists between two 

poset (P,⊑) and (Q,⊑), then the poset (P,⊑) and (Q,⊑) are called isomorphic, and are 

symbolized as (P,⊑)  (Q,⊑). The dual of a poset (P,⊑) is a poset (P,⊑)

 = (P,⊑

) = (P,⊒) 
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defined from the inverse order relation on the same elements. If for two poset (P,⊑) and (Q,⊑

) is implied that (P,⊑)  (Q,⊑)

, then the (P,⊑) and (Q,⊑) are called dually isomorphic.  

Duality principle (to a poset): the inverse ⊒ of an order relation ⊑ is also an order 

relation. More specifically, the inverse order ⊒ is called dual of ⊑ and is symbolized as ⊑
, ή 

⊑-1
, or ⊒.  The dual principle is used to extend definitions and proofs, as explained below. 

The dual statement 𝑆𝜕 of a statement 𝑆 on a poset is received, if the symbols ⊑ and 

⊒ are mutually exchanged in statement 𝑆. 𝑆 is valid for an ordered set if and only if 𝑆𝜕 is 

valid for its own dual set. 

Two different elements x and y of a poset are called comparable if x ⊑ y or y ⊑ x. 

Incomparable elements x and y are also called parallel and are symbolized as 𝑥||𝑦. 

 A special case of a poset is presented below. Chain or totally ordered set is a poset 

(P,⊑) which contains only comparable elements. For example, set R of real numbers with the 

common order relation ≤ is a poset, and particularly poset (𝑅, ≤) is a chain. An example of a 

poset that is not a chain is presented below, referring to Figure 7.4. 

A finite poset (P,⊑) can be represented with a Hasse diagram, where the elements of 

𝑃 are depicted with small circles (nodes) so as the two elements 𝑎 ∈ 𝑃 and 𝑏 ∈ 𝑃, 

respectively, “up” and “down” to the diagram, to connect with one line if and only if 𝑎 covers 

𝑏  By saying that “a covers b” in a poset (P,⊑) it means that a ⊐ b and, additionally, does 

not exist 𝑥 ∈ 𝑃 such that a ⊐ x ⊐ b. Figure 7.4 demonstrates the Hasse diagram of powerset 

2
{a,b,c}

, where {a,b,c} covers the {a,b}, {a,c} covers {c}, etc.  As a powerset of a set S, 

symbolized as 2
S
, is defined the total of all subsets of S. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 Hasse diagram of powerset 2
{a,b,c}

 of set 𝑆 = {𝑎, 𝑏, 𝑐}. 

 

 

{ } 

{c} {b} 
{a} 

{b,c} {a,c} {a,b} 

{a,b,c} 
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The least element, if exists, of a set 𝑋  𝑃 to a poset (P,⊑) is the unique element 

𝑎 ∈ 𝑋 such that a ⊑ x for every 𝑥 ∈ 𝑋. The corresponding dual element in a set 𝑋  𝑃 is 

called greatest element. The least element, if exists, in a poset is symbolized with o, while 

the greatest element is symbolized with i. 

Given a poset (P,⊑) with least element o. Every 𝑥 ∈ 𝑃 that covers o, if such 𝑥 exists, 

is called atom. E.g., sets {𝑎}, {𝑏}, {𝑐} in Figure 7.4 are atoms. 

Given a poset (P,⊑) and 𝑎, 𝑏 ∈ 𝑃 with a ⊑ b. As ordinary interval [𝑎, 𝑏] is defined 

the set [𝑎, 𝑏]:= {xP: a ⊑ x ⊑ b}. 

Assume that I is the set of ordinary interval in (P,⊑). The poset (I,) is resulted, 

where  is the subset relation. The order relation [a,b][c,e] is equivalent to the relation c⊑a

⊑b⊑e. The poset (I,) can be extended by inserting a least element which is the empty set 

(). Thus, it results the poset (I{},). Note that the aforementioned equivalent order 

relation does not extend in poset (I{},) since an obvious representation of the empty set 

() in form of interval, does not exist. Every trivial interval [x,x]I in a poset (I{},) is 

an atom. 

If (P,⊑) is a poset, the set   :a  {𝑥 ∈ 𝑃: 𝑥 ≤ 𝑎} is called principal ideal (derived 

from 𝑎), while set   :b  {𝑥 ∈ 𝑃: 𝑥 ≥ 𝑏} is called principal filter (derived from 𝑏). 

Size of an element of a poset (P,⊑) is defined a (non-negative) real function δ: P𝑅0
+ 

that satisfies the following: 

S1. u ⊏ w  δ(u) < δ(w). 

The Cartesian product N of a poset (P1,⊑1)…(PN,⊑N) is defined as a poset 

(P1…PN,⊑) = (P1…PN,⊑1…⊑N) με (x1,…,xN)⊑(y1,…,yN) : x1⊑1y1, …, xN⊑NyN. 

Assume that the poset (P,⊑) is equal to the Cartesian product (𝑃, ⊑) = ×
𝑖∈𝛺

(𝑃𝑖, ⊑𝑖), 

where Ω is a totally ordered set of elements, assume a function of size δi: Pi𝑅0
+ in every 

poset (Pi,⊑i), and assume the  probability space (𝛺, 𝛴𝛺, 𝑃𝛴𝛺
). Then, the size of an element 

A(P,⊑), with components AiPi, iΩ, is a function δ: P𝑅0
+, that is calculated from the 

general equation: 

δ(A) = ∫ 𝛿𝑖(𝐴𝑖)𝑑𝑃𝛴𝛺𝛺
. 

Note that Ω can be either discrete or continuous. In all cases, the function of 

probability measure 𝑃𝛴𝛺
: 𝛴𝛺 → [0,1] is interpreted as weight function. 

 

The Binary Relation “Lattice” 
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Lattice theory, or order theory was introduced by Garrett Birkhoff (Birkhoff, 1967; Davey 

& Priestley, 1990; Grätzer, 2003). In the remaining of the chapter, useful elements of this 

theory are summarized. 

Assume a poset (P,⊑) and X  P. Upper bound of Χ is an element aP with x ⊑ a, 

xX. Least upper bound of Χ, if it exists, is the unique upper bound contained in every 

upper bound. The least upper bound is called lattice join, or simply join, of Χ and it is 

symbolized with 𝑠𝑢𝑝𝑋 or ⊔X. The concepts of the lower bound of Χ and the greatest lower 

bound of Χ are defined dually. The greatest lower bound is called lattice meet, or simply 

meet, of Χ and it is symbolized with 𝑖𝑛𝑓𝑋 or ⊓X. If 𝑋 = {𝑥, 𝑦} then x⊔y will be written for 

𝑠𝑢𝑝𝑋 and x⊓y for 𝑖𝑛𝑓𝑋. The first definition of lattice follows. 

Lattice (L,⊑) is defined a poset in which any two elements 𝑥, 𝑦 ∈ 𝐿 have greatest 

lower bound, symbolized with x⊓y, and least upper bound, symbolized with x⊔y. 

Every chain, including the chain of real numbers (𝑅, ≤), is a lattice. A general lattice 

(L,⊑) is called complete when every subset of 𝑋 has a greatest lower bound and least upper 

bound in 𝐿. Setting 𝑋 = 𝐿 results that a (non-empty) complete lattice contains a least and a 

greatest element, symbolized with o and i, respectively. 

The previous definition for lattice is called semantic lattice definition. In addition, 

there is an equivalent, second definition, which is called algebraic lattice definition and is 

given below, based on the binary operations meet (⊓) and join (⊔)  Recall that  algebra A is 

defined a pair [S,F], where S is a non-empty set, and F is a well-defined set of operations fa 

each of which depicts a power S
n(a)

 of S, in S for a finite positive integer n(a). The second 

definition of lattice follows. 

Lattice (L,⊑) is defined an algebra (L,⊓,⊔) with two binary operations ⊓ and ⊔ that 

satisfy the conditions L1 - L4, and vice versa. 

L1. x⊓x = x, x⊔x = x     (Identitarian) 

L2. x⊓y = y⊓x, x⊔y = y⊔x     (Commutative) 

L3. x⊓(y⊓z) = (x⊓y)⊓z,   x⊔(y⊔z) = (x⊔y)⊔z  (Associative) 

L4. x⊓(x⊔y) = x⊔(x⊓y) = x     (Absorption) 

The binary relation x ⊑ y is equivalent to the pair of operations 

x⊓y = x and x⊔y = y     (Consistency) 

The binary operations of meet (⊓) and joint (⊔) have different properties. For 

example, operations ⊓ and ⊔ are monotones, i.e. y⊑z  x⊓y ⊑ x⊓z and x⊔y ⊑ x⊔z, xL. 

More specifically, in a complete lattice (L,⊑) it is o⊓x = o, o⊔x = x, x⊓i = x, and x⊔i = i, 
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xL. By definition, a lattice is called atomic when every element is equal to the join of 

atoms. 

In CI applications, the algebraic lattice definition is useful mainly for calculations, 

while the semantic lattice definition is useful for decision-making. 

From a strictly mathematical point of view, note that lattice theory is not as general as 

set theory because of the limitations in lattice definition. However, in practice, lattice theory 

is offered for analysis and design of a wide range of applications as outlined in Section 7.3. 

The dual, symbolized (L,⊑)

  (L,⊑

)  (L,⊒), of a lattice (L,⊑) is also a lattice where 

join and meet operations mutually alternate. In other words, every sentence in lattice (L,⊑) is 

also valid in lattice (L,⊒) under the condition that operation ⊓ replaces the operation ⊔ and 

operation ⊔ replaces the operation ⊓. According to the above, the dual of a complete lattice, is 

a complete lattice. 

Duality principle (in a complete lattice): the dual sentence of a (theoretical) sentence 

in a complete lattice results if the symbols ⊑, ⊔, ⊓, o, i are replaced with the symbols ⊒, ⊓, ⊔, 

i, o, respectively. 

Sublattice (S,⊑) of a lattice (L,⊑) is defined a lattice with SL. The (L,⊑) is called 

superlattice of (S,⊑). Moreover, the (sub)lattice (S,⊑) is embedded in the (super)lattice (L,⊑

). 

If (a,b)⊑ in a lattice (L,⊑) then ([a,b],⊑), where [a,b] is the closed interval [a,b]:= 

{xL: a⊑x⊑b}, is a sublattice. A sublattice (S,⊑) of lattice (L,⊑) is called convex, when 

a,bS implies [a⊓b,a⊔b]S. 

A lattice is called distributive if and only if any of the following two “distributive 

identities” are valid, for every 𝑥, 𝑦, 𝑧. 

L5. x⊓(y⊔z) = (x⊓y)⊔(x⊓z)  L5. x⊔(y⊓z) = (x⊔y)⊓(x⊔z) 

Complement, if exists, of an element x in a complete lattice (L,⊑) with least 

(greatest) element o(i), is called another element yL such that x⊓y = o and x⊔y = i. A lattice 

(L,⊑) is called complemented if all of its elements have a complement. A complemented 

distributive lattice is called Boolean lattice. 

An example of Boolean lattice is the pair (2
S
,), where 2

S
 is the powerset of a set S 

and «» is the set-theoretical relation of subset. Meet and join in Boolean lattice (2
S
,) is the 

set-theoretical meet () and the set-theoretical join (), respectively. 

Boolean algebra is defined as an algebra (L,⊓,⊔,) with two binary operations ⊓, ⊔ 

and one operation that satisfies L1 - L8. 

L6. x⊓x = o, x⊔x = i 

L7. (𝑥 ′)′ = 𝑥 
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L8. (x⊓y) = x⊔y   (x⊔y) = x⊓y 

Given the fact that all statements are a Boolean algebra, as explained in Section 7.3.3, 

it follows that, in the context of Classical Logic, the properties/operations of a Boolean 

algebra extend to all statements. Further extensions to Fuzzy Logic and Fuzzy Reasoning are 

presented in Section 8.1. 

Assume lattices (L,⊑) and (M,⊑). A function : LM is called: 

(a) Joint morphism, if (x⊔y) = (x)⊔(y), 𝑥, 𝑦 ∈ 𝐿. 

(b) Meet morphism, if (x⊓y) = (x)⊓(y), 𝑥, 𝑦 ∈ 𝐿. 

A function  is called (lattice) morphism if  is, at the same time, joint morphism 

and meet morphism. A bijection morphism is called (lattice) isomorphism. 

The following function is of particular importance in the context of this book. 

Valuation function in a lattice (L,⊑) is a real function v: LR that satisfies v(x)+v(y) 

= v(x⊓y)+v(x⊔y). A valuation function is called monotone if and only if x ⊑ y  𝑣(𝑥) ≤

𝑣(𝑦), and positive if and only if x ⊏ y  𝑣(𝑥) < 𝑣(𝑦). 

Observe that a positive valuation function could be a size function. In particular, a 

positive valuation function, which receives non-negative values, is a size function. 

The (positive) valuation functions usually refer to lattice theory, without being given 

any special significance. On the contrary, in this book, positive valuation functions are 

critical because they allow the definition, as explained below, of two useful functions for the 

(quantified) comparison of lattice elements. Specifically, these two useful functions are, first, 

the fuzzy order function and, secondly, a metric function. One of the functions is presented in 

Section 7.1, while the other is presented below. 

A monotone valuation function v: LR in a lattice (L,⊑) results to a  pseudo-metric  

function 𝑑: 𝐿 × 𝐿 → 𝑅0
+ given by the relation d(x,y)=v(x⊔y)-v(x⊓y), 𝑥, 𝑦 ∈ 𝐿. Moreover, if the 

valuation function 𝑣(. )is positive then function d(x,y) = v(x⊔y)-v(x⊓y) is metric function  

The definition of (pseudo)metric function is provided below.  

Given a set X, metric is called a non-negative function 𝑑: 𝑋 × 𝑋 → 𝑅0
+ if and only if it 

satisfies the following: 

M1. 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦    (Identification) 

M2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)    (Symmetry) 

M3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)   (Triangular inequality) 

If Μ1 is satisfied only from one direction such that 𝑑(𝑥, 𝑦) = 0 for any 𝑥 ≠ 𝑦, while 

Μ2 and Μ3 are satisfied, then function d(.,.) is called pseudo-metric.  

A set X with a metric d is called metric space, symbolized as (X,d). 

When in a lattice (L,⊑) with greater element i there is a positive valuation function 

v(.), a reasonable requirement is d(x,i) < +, for every xL, i.e. it is required that the 
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distance of any element xL from the greatest element i is finite. The aforementioned 

requirement implies d(x,i) = v(x⊔i)-v(x⊓i) = v(i)-v(x)< +  v(i)< +. 
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CHAPTER 8: COMPUTATIONAL METHODOLOGIES IN 

LATTICES 
 

Lattice theory has emerged as a "by-product" of an attempt to mathematically standardize the 

propositional logic of Aristotle. Specifically, in the first half of the 19th century, George 

Boole's attempt to standardize propositional logic resulted in the introduction of the Boolean 

algebra. The study of the Boolean algebraic axioms in the late 19th century led Peirce and 

Schröder into the concept of (mathematical) lattice; independently, Dedekind's research on 

ideals of algebraic numbers also led to the introduction of the (mathematical) lattice 

Grätzer, 2003). In the next decades results of lattice theory were published in a hostile 

climate that the mathematical circles of the time were maintaining. 

With the systematic work of Birkhoff (1967) from the 1930s at Harvard University in 

Boston began the general development of lattice theory and, ultimately, its emergence in a 

distinct field of mathematics. Birkhoff showed that lattice theory unified uncorrelated 

mathematical fields, such as linear algebra, logic, probability theory, and so on. An important 

contribution to the foundation of lattice theory had several mathematicians and/or logicians 

such as: Jónsson, Kurosh. Malcev, Ore, von Neumann and Tarski (Rota, 1997). 

Lattice computing today is a trend in the CI. This chapter outlines three scientific 

calculation paradigms in lattices that include #1. Logic and Reasoning, #2. Standard 

Concept Analysis, and #3. Mathematical Morphology. Specifically, methodologies #1 and #2 

rely on the semantic lattice definition and use the partially ordered binary relation, while 

Methodology #3 is based on the algebraic lattice definition and uses the binary operations of 

join and meet. Note that the unifying nature of lattice theory in the CI has been certificated by 

several researchers (Bloch & Maitre, 1995; Maragos, 2005; Nachtegael & Kerre, 2001). 

 

8.1 Logic and Reasoning 

Lattices have been used in various logical studies (Birkhoff & von Neumann, 1936; 

Edmonds, 1980; Gaines, 1978; Halmos & Givant, 1998). Furthermore, an interesting 

generalization of the concept of fuzzy set is the concept L-fuzzy set (Goguen, 1967). In 

particular, the membership function of an L-fuzzy set represents the reference set in a 

(general) complete lattice instead of depicting it exclusively in the complete lattice of closed 

interval [0,1]. The aforementioned idea extends to both logic and reasoning with the truth 

function of a sentence to obtain values in a complete lattice for a more effective 

representation of the uncertainty. Finally, the resulted propositional logic is called L-

propositional logic (Xu et al., 2003).  

 

8.1.1 Fuzzy implications. Basic concepts, definitions 

Recall that in classical (binary) logic, the implication truth values (⇒) verify the following 

truth table. 
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⇒ 0 1 

0 1 1 

1 0 1 

Table 8.1 Truth table of classical logic (⇒) 

 

The above Table refers to the binary set {0,1} as follows:   

  𝑎 ⇒ 𝑏 ≡ 𝑎 ∨ 𝑏.   

The implication (⇒) can be interpreted as a binary operation with truth values in the 

set {0,1}. In fuzzy logic the set of truth values is extended in the interval [0,1] and, thus, 

implication can be extended to a binary operation in the interval [0,1]. So, fuzzy implication 

is a representation:   

  𝐼: [0,1] × [0,1] → [0,1],  

that satisfies the above Table of classic implication “⇒”, when the interval [0,1] is limited to 

the binary set {0,1}. 

The extension of classic implication 𝑎 ⇒ 𝑏 ≡ 𝑎 ∨ 𝑏, in fuzzy logic, is   

  𝐼𝑆(𝑎, 𝑏) = 𝑆(𝑛(𝑎), 𝑏),  ∀𝑎, 𝑏 ∈ [0,1]              (8.1) 

where 𝑆, 𝑇 and 𝑛, symbolize t-conorm (fuzzy disjunction), t-norm (fuzzy conjunction) and 

fuzzy negation, respectively. 𝑆 and 𝑇 are binary compared to 𝑛, i.e. they satisfy De Morgan’s 

laws. 

Moreover, type 𝑎 ⇒ 𝑏 ≡ 𝑎 ∨ 𝑏,can be written in the two-members logic as follows 

  𝑎 ⇒ 𝑏 ≡ 𝑚𝑎𝑥{𝑥 ∈ {0,1}|  𝑎 ∧ 𝑥 ≤ 𝑏},  ∀𝑎, 𝑏 ∈ {0,1}  

and  

  𝑎 ⇒ 𝑏 ≡ 𝑎 ∨ (𝑎 ∧ 𝑏),  ∀𝑎, 𝑏 ∈ {0,1} 

The corresponding extensions in fuzzy logic are:  

   ,RI a b 𝑠𝑢𝑝{𝑥 ∈ [0,1]|   𝑇(𝑎, 𝑥) ≤ 𝑏}, ∀𝑎, 𝑏 ∈ [0,1]            (8.2)  

and  

  𝐼𝑄𝐿(𝑎, 𝑏) = 𝑆(𝑛(𝑎), 𝑇(𝑎, 𝑏)), ∀𝑎, 𝑏 ∈ [0,1]              (8.3) 

The fuzzy implications resulting from (8.1) are called S–implications, those resulting 

from (8.2) are called R-implications, and those resulting from (8.3) are called QL–

implications. Apart from the above three fuzzy implications that are the most popular in the 

bibliography, note that more fuzzy implications have been defined. 

Generalizations of the properties of classical implication, lead to the following 

properties which are perceived as logical axioms (of fuzzy implications): 

A1. 𝑎 ≤ 𝑏 ⇒ 𝐼(𝑎, 𝑥) ≥ 𝐼(𝑏, 𝑥). That is, the truth value of fuzzy implications increases as 

the truth value of the hypothesis decreases.  

A2. 𝑎 ≤ 𝑏 ⇒ 𝐼(𝑥, 𝑎) ≤ 𝐼(𝑥, 𝑏). That is, the truth value of the fuzzy implications increases 

as the truth value of the conclusions increases.  

A3. 𝐼(0, 𝑎) = 1. That is, the false statement implies anything.  

A4. 𝐼(1, 𝑏) = 𝑏. Neutrality of the true statement.   

A5. 𝐼(𝑎, 𝑎) = 1. That is, the fuzzy implications are true when the truth values of the 

antecedent and the consequence are equal.  
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A6. 𝐼(𝑎, 𝐼(𝑏, 𝑥)) = 𝐼(𝑏, 𝐼(𝑎, 𝑥)).  This is a generalization of the equivalence 𝑎 ⇒ (𝑏 ⇒ 𝑥) 

and 𝑏 ⇒ (𝑎 ⇒ 𝑥), which is applied in classical implication.   

A7. 𝐼(𝑎, 𝑏) = 1 if and only if 𝑎 ≤ 𝑏. That is, fuzzy implications are true if and only if the 

consequence is at least as true as the antecedent. 

A8. 𝐼(𝑎, 𝑏) = 𝐼(𝑛(𝑏), 𝑛(𝑎)) for a fuzzy negation 𝑛. That is, fuzzy implications are 

equally true when the negations of antecedent and consequence alternate.  

A9. Function 𝐼 is continuous. This property ensures that small changes in the truth values 

of the antecedent or the consequence do not provoke great changes in the truth values of the 

fuzzy implications. 

Axioms Α1 – Α9 are not independent of one another, e.g. A3 and A5 are derived from 

A7, but not vice versa. A fuzzy implication does not always satisfy all A1 - A9 axioms. 

However, when a fuzzy implication satisfies all of the A1 - A9, it also satisfies the following 

theorem:  

 

Theorem Smets και Magrez. A function 𝐼: [0,1] × [0,1] → [0,1] satisfies axioms A1 - A9 of 

fuzzy implications, for a fuzzy negation 𝑛, if and only if there is a strictly increasing 

continuous function 𝑓: [0,1] → 0, ∞), with 𝑓(0) = 0. Then it holds that:  

𝐼(𝑎, 𝑏) = 𝑓(−1)(𝑓(1) − 𝑓(𝑎) + 𝑓(𝑏)), ∀𝑎, 𝑏 ∈ [0,1] and  

𝑛(𝑎) = 𝑓−1(𝑓(1) − 𝑓(𝑎)), ∀𝑎 ∈ [0,1]. 

Apart from the aforementioned definition of fuzzy implication, which is the most 

prevalent in the literature, an alternative definition follows. 

 

Definition Fodor και Roubens. Fuzzy implication is a description: 

𝐼: [0,1] × [0,1] → [0,1],   

that satisfies the logical table of classical implication, when [0,1] is limited to {0,1} and 

additionally ∀𝑎, 𝑏 ∈ [0,1] satisfies the following: 

(i) 𝑎 ≤ 𝑏 ⇒ 𝐼(𝑎, 𝑥) ≥ 𝐼(𝑏, 𝑥),   

(ii) 𝑎 ≤ 𝑏 ⇒ 𝐼(𝑥, 𝑎) ≤ 𝐼(𝑥, 𝑏),   

(iii) 𝐼(0, 𝑎) = 1,  

(iv) 𝐼(𝑎, 1) = 1,   

(v) 𝐼(1,0) = 0.  

 

8.1.2 Lattice Implication Algebra 

Assume a complete lattice (𝐿,∨,∧, 𝑂, 𝐼), with O and I the least and greatest element, 

respectively, assume a dual isomorphism function, and assume a function →: 𝐿 × 𝐿 → 𝐿. The 

heptad ℒ = (𝐿,∨,∧,′ , →, 𝑂, 𝐼) is called lattice implication algebra if for every 𝑥, 𝑦, 𝑧 ∈ 𝐿: 

      (I1）𝑥 → (𝑦 → 𝑧) = 𝑦 → (𝑥 → 𝑧). 

   （I2）𝑥 → 𝑥 = 𝐼. 

   （I3）𝑥 → 𝑦 = 𝑦′ → 𝑥′. 

   （I4）If 𝑥 → 𝑦 = 𝑦 → 𝑥 = 𝐼 then 𝑥 = 𝑦. 

   （I5）(𝑥 → 𝑦) → 𝑦 = (𝑦 → 𝑥) → 𝑥. 
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   （L1）(𝑥 ∨ 𝑦) → 𝑧 = (𝑥 → 𝑧) ∧ (𝑦 → 𝑧). 

   （L2）(𝑥 ∧ 𝑦) → 𝑧 = (𝑥 → 𝑧) ∨ (𝑦 → 𝑧). 

Subsequently, three examples of lattice implication algebra are presented. 

 

Example 1 

Assume (𝐿,∨,∧,′ ) a Boolean lattice. For every 𝑥, 𝑦 ∈ 𝐿 define 𝑥 → 𝑦 = 𝑥′ ∨ 𝑦. then, the 

quartet (𝐿,∨,∧,′ →) is a lattice implication algebra. 

 

Example 2 

Assume 𝐿 = [0,1], with operations , , , and  defined for every 𝑥, 𝑦, 𝑧 ∈ 𝐿 as follows: 

𝑥 ∨ 𝑦 = 𝑚𝑎𝑥{ 𝑥, 𝑦}, 𝑥 ∧ 𝑦 = 𝑚𝑖𝑛{ 𝑥, 𝑦}, 𝑥′ = 1 − 𝑥 and 𝑥 → 𝑦 = 𝑚𝑖𝑛{ 𝑥, 1 − 𝑥 + 𝑦}. Then, 

the heptad ([0,1],∨,∧, ′, → ,0,1) is a lattice implication algebra, also known as algebra of 

Łukasiewicz in the interval [0, 1]. 

 

Example 3 

Assume 𝐿 = {𝑎𝑖|𝑖 = 1,2, ⋯ , 𝑛}, with operations , , , and  defined for every 1 ≤ 𝑗, 𝑘 ≤

𝑛 as follows: 𝑎𝑗 ∨ 𝑎𝑘 = 𝑎𝑚𝑎𝑥{𝑗,𝑘}, 𝑎𝑗 ∧ 𝑎𝑘 = 𝑎𝑚𝑖𝑛{𝑗,𝑘}, (𝑎𝑗)′ = 𝑎𝑛−𝑗+1 and 𝑎𝑗 → 𝑎𝑘 =

𝑎𝑚𝑖𝑛{𝑛−𝑗+𝑘,𝑛}. Then, the heptad (𝐿,∨,∧, ′, →, 𝑎1, 𝑎𝑛) is a lattice implication algebra, which is a 

Łukasiewicz algebra in the finite chain a1,a2,…,an. 

 

Assume (𝐿,∨,∧, ′, →, 𝑂, 𝐼) a lattice implication algebra. Then, for every 𝑥, 𝑦, 𝑧 ∈ 𝐿 the 

following properties are valid: 

（1）If 𝐼 → 𝑥 = 𝐼 then 𝑥 = 𝐼. 

（2）𝐼 → 𝑥 = 𝑥, 𝑥 → 𝑂 = 𝑥 ′. 

（3）𝑂 → 𝑥 = 𝐼 𝑥 → 𝐼 = 𝐼. 

（4）(𝑥 → 𝑦) → 𝑦 = 𝑥 ∨ 𝑦. 

（5）  if and only if 𝑥 → 𝑦 = 𝐼. 

（6）((𝑥 → 𝑦) → 𝑦) → 𝑦 = 𝑥 → 𝑦. 

（7）(𝑥 → 𝑦) → 𝑥 ′ = (𝑦 → 𝑥) → 𝑦 ′. 

（8）If 𝑥 ≤ 𝑦 then 𝑥 → 𝑧 ≥ 𝑦 → 𝑧 and 𝑧 → 𝑥 ≤ 𝑧 → 𝑦. 

（9）(𝑥 → 𝑦) → ((𝑦 → 𝑧) → (𝑥 → 𝑧)) = 𝐼. 

  In the context of L-propositional logic, particular emphasis has been given on the 

resolution principle for an automated reasoning (see an automated proofing process) in 

applications where doubt is represented with logical values within a general complete lattice. 

 

8.2 Formal Concept Analysis 

Formal context is defined a triad (G, M, I), which includes two sets G and M and a binary 

function I between G and M. The elements of G are called objects while the elements of M 

are called attributes. In order to symbolically express that an object g has a relation I with an 

attribute m, we write that gIm ή (g,m)I  and said that “object g has the attribute m». 

For a set of objects AG it is defined: 

x y
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Α = {mM| gIm for all gA} 

That is, Α is the set of all the common attributes of the elements of A. 

Respectively, for a set of objects BM it is defined 

B = {gG| gIm for all mB} 

That is, B is the set of all objects with attributes to B. 

As formal concept, or just concept, in a triad (G, M, I) of formal context, is defined a 

pair (A,B) with AG, BM, Α=B and B=A. 

 It is proven that the set of formal concepts in a triad of formal contexts forms a 

complete lattice (Ganter & Wille, 1999). 

Formal concept analysis (FCA) is a scientific methodology that usually studies 

tables of contexts, i.e. a questionnaire or a database, in order to compute a formal concept 

lattice. The following example is indicative of the FCA. 

 

Example 4 

For Table 8.2 of formal contexts can be calculated the 19 formal concepts presented in Figure 

8.1. 

 

  Attributes 

  a b c d e f g h i 

1 Leech          

2 Bream          

3 Frog          

4 Dog          

5 Rice          

6 Stubble          

7 Beans          

8 Maize          

 

Table 8.2 Table of contexts regarding a number of leaving organisms, with the following attributes: 

a: “needs water to live”, b: “lives in the water ”, c: “lives on the ground”, d: “it needs 

chlorophyll to feed”, e: “two leaves of seeds”, f: “one leave of seeds”, g: “autonomous 

movement”, h: “has limbs”, i: “mamal”. 

 

 

Note that several algorithms have been proposed for calculating formal concept 

lattices in FCA (Caro-Contreras & Mendez-Vazquez, 2013). Also, FCA extensions have been 

proposed in CI (Belohlavek, 2000). FCA applications are often suggested for retrieval of 

information in databases (Carpineto & Romano, 1996; Priss, 2000). In addition, applications 

in ontologies (Formica, 2006) are popular. 
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Figure 8.1 Concept lattice calculated from Table 8.2. 

 

8.3 Mathematical Morphology 

The mathematical morphology (MM) studies and designs techniques for the analysis and 

processing of geometric structures. It was proposed and founded by Matheron (1975) and 

Serra (1982), who developed a set of mathematical tools for image processing, considering 

images as sets of geometric forms and using extensively lattice theory for analysis. 

Initially, MM was used to analyze binary images (sets of points) using set operations 

(Dougherty & Sinha, 1995). For the application of MM to grayscale images, set operations 

were generalized by the adoption of join, meet and encapsulation on the basis of lattice theory 

(Bloch et al., 2007). In particular, the application of MM techniques is typically modeled by 

using a two-dimensional structure element which scans a digital image by applying 

dilation, erosion, opening and closing operators in order to remove noise from the image 

and/or identify interesting patterns on the image. Note that given two complete lattices (L,⊑) 

and (M,⊑), erosion ε : LM and dilation δ: LM are defines, respectively, as follows: 

𝜀(∧ 𝑀) =∧ 𝜀(𝑀) και 𝛿(∨ 𝑀) =∨ 𝛿(𝑀), 

where ε(Μ) and δ(Μ) symbolize the sets {ε(α)|αΜ} and {δ(α)|αΜ}, respectively. 

 

8.3.1 Morphological Operations in Image Processing 

Assume 𝐸 = ℝ𝑛 is non-empty set, 2𝛦 the powerset of 𝐸 and ⊆ the binary operation of 

encapsulation. The pair (2𝛦 , ⊆) is a complete Boole lattice (Meyer, 1991). An operation of 

sets is every depiction from (2𝛦 , ⊆)to itself. If 𝑋, 𝑌 ∈ 2𝛦 then operations 𝑋 ∪ 𝑌, 𝑋 ∩ 𝑌, 𝑋\𝑌 

and 𝑋𝑐 are the usual total-theoretical operations of join, meet, difference and 

complementarity, respectively. Assume ℎ ∈ 𝐸 and 𝑋, 𝐵 ⊆ 𝐸, then set 𝑋ℎ = {𝑥 + ℎ: 𝑥 ∈ 𝑋} is 

the translation of 𝑋 by ℎ, while set  𝑋𝑡 = {−𝑥: 𝑥 ∈ 𝑋} is the inverse of 𝑋. 

Most morphological operations in sets result from the combination of the operations 

of sets, with the basic operations of dilation and erosion that result from Minkowski as 

follows:  
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     𝑋 ⊕ 𝐵 = ⋃ 𝑋𝑏𝑏∈𝐵                (8.4) 

       𝑋 ⊖ 𝐵 = ⋃ 𝑋−𝑏𝑏∈𝐵                (8.5) 

In morphological image processing applications, 𝑋 corresponds to an image, 𝐵 is the 

structural element, while the result of operations 𝑋 ⊕ 𝐵, 𝑋 ⊖ 𝐵 is transformed images. 

Dilatation and erosion operations, respectively, are defined using the building element 

𝐵 ∈ 𝑃(𝐸) as follows: 

    𝛿𝐵 = 𝑋 ⊕ 𝐵                (8.6) 

    𝜀𝐵 = 𝑋 ⊖ 𝐵                (8.7) 

Note that dilation and erosion are dually complementary. In particular, the dilation of 

a set equals to the erosion of the complement of the set, with structural element the inverse 

structural element as described in the following equations: 

    (𝑋 ⊕ 𝐵)𝑐 = 𝑋𝑐 ⊖ 𝐵𝑡               (8.8) 

    (𝑋 ⊖ 𝐵)𝑐 = 𝑋𝑐 ⊕ 𝐵𝑡               (8.9) 

In practice, dilation inflates an object in the image, reduces the background, and 

deforms the convex angles of the object. Instead, erosion reduces the object, strengthens the 

background and distorts the concaved corners of the object. 

The operations of dilation and erosion exist for every morphological operator, with 

most important, the operators of opening and closing. The last two operators are defined as 

follows: 

    𝑋 ∘ B=(𝑋 ⊖ 𝐵) ⊕ 𝐵             (8.10) 

    𝑋 • B=(𝑋 ⊕ 𝐵) ⊖ 𝐵             (8.11) 

The opening operation removes the narrow parts of the object and deforms the convex 

angles of an object in the image, while the closing fills the narrow portions of the background 

and deforms the concave corners of an object in the image. 

A key feature of opening and closing operations is that if they are applied repeatedly, 

they do not cause further changes after their first implementation. That is: 

    (𝑋 ∘ 𝐵) ∘ 𝐵 = (𝑋 ∘ 𝐵)            (8.12) 

    (𝑋 • 𝐵) • 𝐵 = (𝑋 • 𝐵)            (8.13) 

 

8.3.2 Morphological Filters 

 

The morphological operations of expansion, corrosion, opening and closing are applied in the 

form of filters, to remove noise from images, improve picture quality, extract features from 

images, etc. In particular, the opening can filter the positive noise, i.e. remove the noisy parts 

of the object, usually small portions. On the other hand, closing can be used to remove the 

negative noise, i.e. add noisy parts of the background to the object, usually small holes. 

With the application of opening and closing, four new filters are resulted: (1) opening 

followed by closing, (2) closing followed by opening, (3) opening followed by closing and 

then opening, and (4) closing followed by opening and then closing. 

In the literature, techniques for the design of morphological filters such as coordinate 

logical filters (Mertzios & Tsirikolias, 1998) and amoeba filters (Lerallut et al., 2007) have 

been proposed. In particular, the first category of filters is an alternative form of 
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morphological filters that can be calculated quickly, while the second category is 

characterized by the flexible use of structural elements of variable size. 

 

8.3.3 Extensions 

ΜΜ techniques have been extended beyond image processing. For example, the 

backpropagation artificial neural network (ANN) Hopfield is presented as a ΜΜ technique. 

Other MM studies attempt to replace the time-consuming operation of multiplication 

with the much faster act of meet between two numbers. In addition, according to the concept 

of linearly independent vectors, the concept of independent lattice elements has been studied 

in order to simplify the mathematical analysis in ANN applications, signal processing, etc. 

(Ritter & Gader, 2006; Ritter & Urcid, 2003; Ritter & Wilson, 2000). 

 

8.4 Comparative Comments 

Of the three methodologies for using mathematical lattices presented in this chapter, MM 

currently has the greatest relevance to CI. For example, several ANN have been proposed 

within MM (Pessoa & Maragos, 2000· Sussner & Graña, 2003· Yang & Maragos, 1995). 

As noted at the beginning of this chapter, on one hand, both Logic/Reasoning and 

formal concept analysis rely on the semantic definition of a lattice and make use of the binary 

relation of partial order, while on the other hand, Mathematical Morphology is based on 

algebraic lattice definition and makes use mainly of the binary operations join and meet. 

The use of the lattice theory proposed in Chapter 7 of this book emphasizes on the 

semantic definition of lattice. Furthermore, important differences in the use of lattice theory 

proposed in this book include the following: 1) lattices of non-numbered diversity can also be 

used here, and 2) the use of positive valuation functions here is critical. 
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CHAPTER 9: INTERVAL NUMBERS (INs) 
 

This chapter is based on the special theory of Chapter 7 (Lattice Theory) to present a 

popular lattice hierarchy which is developed gradually starting from the chain (R,) of 

real numbers. In addition, some innovative mathematical tools are presented giving new 

prospects to Computational Intelligence (CI). It is interesting to recall some facts 

regarding set R. 

The set R of real numbers is derived as a result of measurements (Kaburlasos, 

2006). In particular, a size of interest is defined by comparing it repeatedly with a 

(similar) standard size, called "measure", as well as subdivisions of the latter. Both the 

quotient and the remainder of a measurement define a real number. 

The set R is under study for over approximately 2.500 years from the time of 

Pythagorean philosophers (6th century BC), who proclaimed that (natural) numbers are 

the essence of everything. In particular, Pythagoreans believed that harmony in universe 

is described by numbers, where any number could be represented as a fraction of two 

natural numbers. That is, the Pythagoreans considered only the numbers we now call 

rational. 

A few centuries after its appearance, under the "burden" of the discovery of some 

non-rational (irrational) numbers, the Pythagorean School collapsed. Around the 

beginning of the 20th century it turned out that the set of irrational numbers is non-

countable, i.e. irrational numbers are more than rational numbers. The set of all numbers 

(both rational and irrational) was named the set of real numbers, symbolically R. Various 

attributes of set R were studied; An interesting attribute, within this book, is that the set R 

of real numbers is totally ordered. In this chapter based on the total order of set R, a 

popular lattice hierarchy is presented. 

 

9.1 A Popular Lattice Hierarchy 

In this section a popular six-level lattice hierarchy is presented. An additional level is 

outlined as an extension of the above six levels. 

 

9.1.1 Level-0: The Lattice(R,) of Real Numbers 

Chain (R,) of real numbers is not a complete lattice (Davey & Priestley, 1990). 

However, it can be converted into a complete lattice by inserting a least element 𝑜 = −∞ 

and a greatest element 𝑖 = +∞, thereby results a complete lattice (𝑅̄ = 𝑅 ∪

{−∞,+∞},≤). 

Assume a complete lattice (L=[o,i],) of real numbers, with least and greatest 

elements o𝑅̄ and i𝑅̄, respectively, where o<i. The greatest lower bound of two 

numbers x and y is the smallest of the two, symbolized as xy, while the least upper 
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bound of two numbers is the greatest of the two, symbolized as xy. As positive 

valuation function v: L𝑅0
+ in lattice (L,) is assumed a strictly increasing function such 

that it satisfies two reasonable constraints v(o)=0 and v(i)<+. Moreover, as dual 

isomorphic function : LL in lattice (L,) is assumed a strictly decreasing function 

such that (o)=i and (i)=o. For example, first, to the complete lattice (L=[-,+],) the 

sigmoid function 𝑣(𝑥) =
1

1+𝑒−𝑥
 and the linear function (x)=-x  can be considered. 

Secondly, to the complete lattice (L=[0,1],) functions v(x)=x and (x)=1-x, can be 

considered. Generally, parametric functions (.) and v(.) introduce adjustable non-

linearities whose parameters can be optimally estimated with various techniques, e.g. 

with evolutionary calculation, etc.  

In any case, given of a positive valuation function v: L𝑅0
+, results a metric 

function d: LL𝑅0
+, defined from the equation d(x,y)= v(xy) – v(xy). 

 

9.1.2 Layer-1: The Lattice (Ι1,⊑) of Intervals Type-1 (Τ1) 

Computation with intervals has a long history on handling uncertainties in calculations 

(Alefeld & Herzberger, 1983; Moore, 1979; Tanaka & Lee 1998). This chapter describes 

a different approach, in the context of lattice theory, with emphasis on semantics and 

(common) logic rather than algebra. 

Consider a partially ordered lattice (Ι1,⊑) of intervals Τ1 in a complete lattice 

(L=[o,i],) of real numbers. The greatest lower bound of two intervals Τ1 [a,b] and [c,e] 

is given from [a,b]⊓[c,e]= [ac,be], if acbe, and [a,b]⊓[c,e]= = [i,o], if ac>be. 

While, the least upper bound of two intervals Τ1 [a,b] and [c,e] is given by [a,b]⊔[c,e]= 

[ac,be]. Recall that the empty set  in lattice (L=[o,i],) is symbolized as [i,o]. 

Given of (a) a positive valuation function v: L𝑅0
+ and (b) a dual isomorphic 

function : LL in lattice (L,), as already presented in Level-0, results a positive 

valuation function v1: LL𝑅0
+ in lattice (LL,) of generalized intervals, given by 

the equation v1([a,b])= v((a))+v(b). Therefore, both a metric function d1(.,.) and two 

fuzzy order functions, ⊓(.,.) and ⊔(.,.), can be defined in lattice (LL,). The 

aforementioned functions are valid to the sublattice (Ι1,⊑), which is embedded to the 

superlattice (LL,). In particular, the following three functions are available in (Ι1,⊑). 

A metric function d1: Ι1Ι1𝑅0
+ in lattice (I1,⊑) is calculated as follows: 

 

         d1([a,b],[c,e])= [v((ac))-v((ac))] + [v(be)-v(be)] = d(θ(a),θ(c)) + d(b,e) (9.1) 

 

Two fuzzy order functions ⊓: I1I1[0,1] and ⊔: I1I1[0,1] in lattice (Ι1,⊑), 

are calculated as follows: 
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             𝜎⊓(𝑥 = [𝑎, 𝑏], 𝑦 = [𝑐, 𝑒]) = {
1, 𝑥 = ∅

𝑣1(𝑥⊓𝑦)

𝑣1(𝑥)
=

𝑣(𝜃(𝑎∨𝑐))+𝑣(𝑏∧𝑒)

𝑣(𝜃(𝑎))+𝑣(𝑏)
, 𝑥 ⊃ ∅

 (9.2) 

             𝜎⊔(𝑥 = [𝑎, 𝑏], 𝑦 = [𝑐, 𝑒]) = {
1, 𝑥 ⊔ 𝑦 = ∅

𝑣1(𝑦)

𝑣1(𝑥⊔𝑦)
=

𝑣(𝜃(𝑐))+𝑣(𝑒)

𝑣(𝜃(𝑎∧𝑐))+𝑣(𝑏∨𝑒)
, 𝑥 ⊔ 𝑦 ⊃ ∅

 (9.3) 

 

An interval T1 apart of the empty set, here it will be called common interval T1. 

The partially ordered set (poset) of all common intervals T1 will be denoted as (I1p,). 

The function δ1: I1p𝑅0
+, which is calculated as δ1([a,b])= v1([a,b])= v((a))+v(b) is size 

function is poset (I1p,). In particular, the size function δ1([a,b])= v(b)-v(a) (referred in 

Chapter 7) is resulted as follows. 

Functions (.) and v(.) can be selected with various ways. For example, by 

selecting (x)= -x and v(.) such that v(x)=-v(-x), results the positive valuation function 

v1([a,b]) = v(b)-v(a) = δ1([a,b]). Therefore, results the metric d1([a,b],[c,e])= [v(ac)-

v(ac)] + [v(be)-v(be)]. More specifically, for v(x)= x results the L1 metric (Hamming) 

d1([a,b],[c,e])= |a-c| + |b-e|. 

 

9.1.3 Layer-2: The Lattice (Ι2,⊑) of Intervals Type-2 (Τ2) 

A type-2 (Τ2) interval is defined as an interval of intervals Τ1. For example, an interval 

Τ2 is the [[a1,a2],[b1,b2]], where [a1,a2] and [b1,b2] are intervals Τ1, i.e.. [a1,a2], 

[b1,b2](Ι1,⊑), with [a1,a2]⊑[b1,b2]. 

Assume (Ι2,⊑) the partially ordered lattice of intervals Τ2 derived on a specific 

lattice (Ι1,⊑) of intervals Τ1. The greatest lower bound of two intervals Τ2, 

[[a1,a2],[b1,b2]] and [[c1,c2],[e1,e2]], is given by the equations [[a1,a2],[b1,b2]]⊓ 

[[c1,c2],[e1,e2]]=[[a1c1,a2c2],[b1e1,b2e2]] if [a1c1,a2c2]⊑[b1e1,b2e2], and 

[[a1,a2],[b1,b2]]⊓ [[c1,c2],[e1,e2]]= = [[o,i],[i,o]] if [a1c1,a2c2]⋢ [b1e1,b2e2]. While, 

the corresponding lower upper bound is given by the equation [[a1,a2],[b1,b2]]⊔ 

[[c1,c2],[e1,e2]]= [[a1c1,a2c2],[b1e1,b2e2]]. Recall that the empty set  in lattice 

(Ι2,⊑) is symbolized as [[o,i],[i,o]]. 

From Layer-1 recall the positive valuation function v1: LL𝑅0
+ in lattice 

(LL,), given by v1([a,b])= v((a))+v(b). Moreover, function 1: LLLL, given 

by the equation 1([a,b])= [b,a], is of dual isomorphism in lattice (LL,) of 

generalized intervals. According to the above, results a positive valuation function v2: 

LLLL𝑅0
+ in the complete lattice  (LLLL,) of generalized intervals, 

which is calculated by the equation v2([[a1,a2],[b1,b2]])= v1(1([a1,a2]))+v1([b1,b2])= 

v(a1)+v((a2))+v((b1))+v(b2). Thus, there can be defined both a metric function d2(.,.) 

and two fuzzy order functions ⊓(.,.) and ⊔(.,.) in lattice (LLLL,). The 

aforementioned functions are valid in the sublattice (Ι2,⊑), which is embedded in the 
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superlattice (LLLL, ).  More specifically, the following three functions are 

available in (Ι2,⊑). 

A metric function d2: Ι2Ι2𝑅0
+ in lattice (I2,⊑) is calculated as follows: 

 

      d2([[a1,a2],[b1,b2]],[[c1,c2],[e1,e2]])= d(a1,c1)+d((a2),(c2))+d((b1),(e1))+d(b2,e2) (9.4) 

 

Two fuzzy order functions ⊓: I2I2[0,1] and ⊔: I2I2[0,1] in lattice (Ι2,⊑), 

are calculated as follows: 

 

𝜎⊓([[𝑎1, 𝑎2], [𝑏1, 𝑏2]], [[𝑐1, 𝑐2], [𝑒1, 𝑒2]]) = 

{
 
 

 
 

1, 𝑏1 > 𝑏2
0, 𝑏1 ≤ 𝑏2, 𝑏1 ∨ 𝑑1 > 𝑏2 ∧ 𝑑2
0, 𝑏1 ≤ 𝑏2, 𝑏1 ∨ 𝑑1 ≤ 𝑏2 ∧ 𝑑2, [𝑎1 ∧ 𝑐1, 𝑎2 ∨ 𝑐2] ⊈ [𝑏1 ∨ 𝑒1, 𝑏2 ∧ 𝑒2]

𝑣2([[𝑎1,𝑎2],[𝑏1,𝑏2]]⊓[[𝑐1,𝑐2],[𝑒1,𝑒2]])

𝑣2([[𝑎1,𝑎2],[𝑏1,𝑏2]])
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(9.5) 

 

 

𝜎⊔([[𝑎1, 𝑎2], [𝑏1, 𝑏2]], [[𝑐1, 𝑐2], [𝑒1, 𝑒2]]) = 

 

{

1, 𝑏1 > 𝑏2
0, 𝑏1 ≤ 𝑏2, 𝑒1 > 𝑒2

𝑣2([[𝑐1,𝑐2],[𝑒1,𝑒2]])

𝑣2([[𝑎1,𝑎2],[𝑏1,𝑏2]]⊔[[𝑐1,𝑐2],[𝑒1,𝑒2]])
, otherwise

                                                      (9.6) 

 

An interval Τ2 apart of the empty set, here, it will be called common interval Τ2. 

The poset of all common intervals Τ2 will be symbolized as (I2p,). 

The size of a common interval Τ2, assuming [[a1,a2],[b1,b2]], is a function δ2: 

I2p𝑅0
+, which is calculated as δ2([[a1,a2],[b1,b2]])=v1([b1,b2])-v1([a1,a2])=v((b1))+v(b2)- 

v((a1))-v(a2). 

 

9.1.4 Layer-3: The Lattice (F1,≼) of Intervals’ Numbers Type-1 (IN T1) 

The resolution identity theory says that a fuzzy set can be equivalently represented either 

by its membership function or by its set of -cuts. The resolution identity theory is used 

here as follows. In the beginning, the interpretation of the feasibility of a (fuzzy) 

membership function of fuzzy numbers is abandoned. Then, the corresponding 

representation with -cuts is considered. Finally, an intervals’ number (IN) is resulted, as 

explained in detail below. First, however, a more general type of number is defined. 

A Generalized Intervals’ Number (GIN) is defined as a function f: 

[0,1](𝑅̄𝑅̄,), where (𝑅̄𝑅̄,) is a lattice of generalized intervals. 
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Assume G the set of GINs. Then, the (G,⊑) is a complete lattice, as a (non-

countable) Cartesian product of complete lattices (𝑅̄𝑅̄,). Then, the interest is focused 

to the sublattice of INs. 

An Intervals’ Number Type-1 (IN T1), is defined as a function F: [0,1]I1, 

which satisfies the following two 1) ℎ1 ≤ ℎ2 ⇒ 𝐹ℎ1 ⊒ 𝐹ℎ2 and 2) ∀𝑋 ⊆ [0,1]: ⋂ 𝐹ℎℎ∈𝑋 =

𝐹∨𝑋. 

The set F1 of IN T1 is a partially ordered, complete lattice, which is denoted as 

(F1,≼). An IN is interpreted as a grain of information (Kaburlasos & Papadakis, 2006). 

The set F1 of INs has been studied in a series of studies. In particular, it has been shown 

that the set F1 is a metric lattice (Kaburlasos, 2004) with cardinality equal to the infinity 

1 of set R of the real numbers (Kaburlasos & Kehagias, 2006). In other words, there are 

as many ΙΝs, as real numbers. In addition, the set F1 is a cone in a linear space (Papadakis 

& Kaburlasos, 2010). 

An IN can be, equivalently, represented as a set of intervals Fh, h[0,1]; this is the 

interval-representation, or as a function F(x)= ∨
ℎ∈[0,1]

{ℎ: 𝑥 ∈ 𝐹ℎ}, this is the 

membership-function-representation as shown is Figure 9.1. The meet (⋏) and joint 

(⋎) in lattice (F1,≼) are defined as (F⋎G)h = Fh⊔Gh and (F⋏G)h = Fh⊓Gh, respectively. 

For example, Figure 9.2 presents the calculation of joint (⋎) and meet (⋏) of two INs F 

and G, respectively, by using membership-function-representations. 

As support or carrier of an IN is defined the least upper bound interval ∨
ℎ∈(0,1]

𝐹ℎ. 

Typically, the IN used in practice have continuous membership functions, thus, the 

equality ∨
ℎ∈(0,1]

𝐹ℎ = 𝐹0 is true, i.e. the support of a FF1 is its “base” for h=0. 

For INs F,GF1 the following inequality has been proven (Kaburlasos & 

Kehagias, 2014): 

 

F ≼ G  (h[0,1]: Fh⊑Gh)  (xL: F(x)G(x)) 

 

As hight E of an IN, symbolically hgt(E), is defined the least upper bound () of 

all corresponding membership degrees, i.e. ℎ𝑔𝑡(𝐸) = ∨
𝑥∈[𝑜,𝑖]

𝐸(𝑥). For example, in Figure 

9.1(a) it is hgt(E)= 1, while in Figure 9.2(c) it is hgt(F⋏G)= h1. 

Subsequently, two fuzzy orders ⋏: F1F1[0,1] and ⋎: F1F1[0,1] are 

defined, in the base of fuzzy orders ⊓: I1I1[0,1] and ⊔: I1I1[0,1], respectively. 

 

                                                 ⋏(E,F)= ∫ 𝜎⊓(𝐸ℎ, 𝐹ℎ)
1

0
𝑑ℎ (9.7) 

                                                 ⋎(E,F)= ∫ 𝜎⊔(𝐸ℎ, 𝐹ℎ)
1

0
𝑑ℎ (9.8) 
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Figure 9.1  The two equivalent representations of an Intervals’ Number (IN): (a) the 

 membership-function-representations and (b) the interval-representation. 

 

  

A (mathematical) result with important extensions is presented below, regarding 

Figure 9.3 (Kaburlasos & Kehagias, 2014): 

 

                                          F(x=t) = ⋏(T,F) = ∫ 𝜎⊓(𝑇ℎ, 𝐹ℎ)
1

0
𝑑ℎ,        (9.9) 

 

where FF1 and T= [t,t], h[0,1] is a common IN, which represents a real number. 

Specifically, Eq. (9.9) associates the two different, but equivalent, representations of a IN 

which are the membership-function-representation and the interval-representation via 

fuzzy order ⋏: F1F1[0,1] in the case that the first argument of the function ⋏(.,.) is a 

common IN T= [t,t], h[0,1], while the second argument of the function ⋏(.,.) is any 

IN FF1 with membership function F(x). Then, the fuzzy order ⋏(T,F) is equal to the 

value of function F(x) for x=t. Moreover, the use of a fuzzy order function implies three 

basic advantages, as explained below. 
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First, the use of either function ⋏(T,F) of function ⋎(T,F) implies the ability to 

use non-common IN Τ for the representation of the uncertainty/doubt, secondly, the use 

of fuzzy order function ⋎(T,F) has the additional advantage that it is non-zero beyond 

the support F0 of IN F and, thirdly, both functions ⋏(.,.) and ⋎(.,.) are parametric, 

therefore they can be optimized with estimation of their parameters. To all three cases, by 

using a fuzzy order function (σ), “principle decision-making” takes place, in the sense 

that the properties C1 and C2 of the definition of fuzzy order are satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) (c) 

Figure 9.2  Calculation of join (⋎) and meet (⋏) in lattice (F1,≼) by using membership-

function-representations: (a) two IN Τ1 F and G, (b) join F⋎G and  (c) meet 

F⋏G. 
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h 

 T 

 

h1 

 

hF 
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x 

 

F 

 1 

 

U1 

 

U2 

 

 

 

Figure 9.3  Any IN FF1 and a common IN T= [t,t], h[0,1] for the explanation of 

Eq.(9.9) F(x=t) = ⋏(T,F) = ∫ 𝜎⊓(𝑇ℎ, 𝐹ℎ)
1

0
𝑑ℎ. 

 

 

The mathematical interpretation of Eq.(9.9) is considered critical because in 

combination with fuzzy orders (.,.) and (.,.) of Section 9.1.6, establishes the use of 

any function  f: R
N
R within the extended CI based on Logic (science), and in particular 

based on Fuzzy Lattice Reasoning  (FLR). Note that if the function f: R
N
R is not 

convex, then it can be approached satisfactory by overlapping convex functions, e.g. 

Gaussian functions or, more generally, convex functions of any shape. 

Assume that the following integral exists, then a metric function D1: F1F1𝑅0
+ 

between  INs T1 is calculated as follows: 

 

                                                 D1(F,G)= ∫ 𝑑1(𝐹ℎ, 𝐺ℎ)𝑑ℎ
1

0
, (9.10) 

 

Where function d1: Ι1Ι1𝑅0
+ is given by Eq.(9.1). 

The size F of a IN Τ1, with hight hgt(F), is a function Δ1: F1𝑅0
+, which is 

calculated as follows: 

 

                                                      𝛥1(𝐹) = ∫ 𝛿1(𝐹ℎ)𝑝(ℎ)𝑑ℎ
ℎ𝑔𝑡(𝐹)

0
, (9.11) 

 

where δ1: I1p𝑅0
+ is a function of size of a common interval Τ1 and p(h) is a probability 

density defined in the interval Ω= [0,1], which plays the role of a weight function. A 
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special case results for p(h)= 1, h[0,1]. Note that, usually, the hight of an IN Τ1 is equal 

to 1, i.e. hgt(F)= 1. 

 

9.1.5 Level-4: The Lattice (F2,≼) of Intervals’ Numbers Type-2 (IN Τ2) 

An Intervals’ Number (IN) Type-2 (Τ2), or IN T2, is defined as an interval IN Τ1. That 

is, an IN T2, by definition, is equal to [U,W]≐ {XF1: U ≼ X ≼ W}, where U is called 

lower IN, and W is called upper IN (of IN Τ2 [U,W]). 

The set of IN Τ2 is partially ordered, complete lattice, symbolized as (F2,≼). An 

IN Τ2 is interpreted as an information grain (Kaburlasos & Papadakis 2006). 

An IN Τ2 can, equivalently, represented either by a set of intervals [U,W]h, 

h[0,1], this is the interval-representation, or by two functions U(x)= ∨
ℎ∈[0,1]

{ℎ: 𝑥 ∈ 𝑈ℎ} 

and W(x)= ∨
ℎ∈[0,1]

{ℎ: 𝑥 ∈ 𝑊ℎ}, this is the membership-function-representations. Figure 9.4 

shows the two different, but equivalent, representations of IN Τ2.  

 

 
Figure 9.4  The two equivalent representations of IN Τ2: (a) the membership-function-

representation and (b) the interval-representation. 

 

The meet (⋏) and join (⋎) in lattice (F2,≼) are given as (F⋏G)h = Fh⊓Gh and 

(F⋎G)h = Fh⊔Gh, respectively, for h[0,1]. For example, the calculation of join (⋎) and 

meet (⋏) in lattice (F2,≼) is presented in Figure 9.5 by using membership-function-

representations. More specifically, Figure 9.5(α) shows two IN Τ2 [f,F] and [g,G], where 
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f,F,g,GF1 such that f≼F and g≼G. The join [f,F]⋎[g,G] = [f⋏g,F⋎G] is shown in Figure 

9.5(b), where (f⋏g)h =  for every h(h1,1]. Figure 9.5(c) illustrates the meet [f,F]⋏[g,G] 

= [f⋎g,F⋏G], όπου (f⋎g)h =  for every h(h3,1] as well as (F⋏G)h =  for every 

h(h4,1]. 

Two fuzzy order functions ⋏: F2F2[0,1] and ⋎: F2F2[0,1] can be defined 

by using Eq.(9.7) and Eq.(9.8) based on fuzzy order functions ⊓: I2I2[0,1] and ⊔: 

I2I2[0,1], the last two are given by Eq.(9.5) and Eq.(9.6), respectively. 
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Figure 9.5   Calculation of join (⋎) and meet (⋏) in lattice (F2,≼) by using the membership-

function-representations (a) two IN Τ2 [f,F] and [g,G], where f,F,g,GF1 such 

that f≼F and g≼G, (b) join [f,F]⋎[g,G] = [f⋏g,F⋎G] and (c) meet [f,F]⋏[g,G] = 

[f⋎g,F⋏G]. 
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Assume that the following integal exists, a metric function D2: F2F2𝑅0
+ 

between IN Τ2 is calculated as follows: 

 

                                                 D2(F,G)= ∫ 𝑑2(𝐹ℎ, 𝐺ℎ)𝑑ℎ
1

0
 (9.12) 

 

Where function d2: Ι2Ι2𝑅0
+ is given by Eq.(9.4). 

The size of IN Τ2, assume F= [U,W], is a function Δ2: F2𝑅0
+,calculated as 

follows: 

 

                                                       Δ2(F) = Δ1(W) – Δ1(U), (9.13) 

 

Where function Δ1: F1𝑅0
+ calculates the size IN Τ1 by using Eq.(9.11). 

 

9.1.6 Level-5: Lattice of Ν-groups of Intervals’ Numbers Τ1/Τ2 

Assume the Cartesian product G= G1…GN, όwhere each of the lattices (Gi,≼), 

i{1,…,N} is equal to (F1,≼). Given of two functions 
i
v: Li𝑅0

+ and 
i: LiLi to the 

corresponding lattice (Li,) of real numbers as describes in Level-0, results a positive 

valuation function 
i
v1([a,b])= 

i
v(

i(a))+
 i
v(b) in lattice (LiLi,) of generalized intervals 

and, finally, follow metric functions and fuzzy order functions in lattice (G,⊑), as 

described below. Particularly, fuzzy order function can be defined with two different 

ways in lattice (G,⊑), as explained below. 

First, for every h[0,1] N-dimensional cuboids are assumed in complete lattice 

(𝐼1
𝑁 , ⊑). In this way, it results (Kaburlasos & Papadakis 2009): 

 

                                             ⊔(F,E) = ∫
∑ 𝑣𝑖 1((𝐸𝑖)ℎ)
𝑁
𝑖=1

∑ 𝑣𝑖 1((𝐹𝑖⋎𝐸𝑖)ℎ)
𝑁
𝑖=1

𝑑ℎ
1

0
,  and        (9.14) 

 

                                              ⊓(F,E) = ∫
∑ 𝑣𝑖 1((𝐹𝑖⋏𝐸𝑖)ℎ)
𝑁
𝑖=1

∑ 𝑣𝑖 1((𝐹𝑖)ℎ)
𝑁
𝑖=1

𝑑ℎ
1

0
. (9.15) 

 

Secondly, every dimension in lattice (𝐹1
𝑁,⊑) is assumed separately. Thus, in every 

dimension i{1,…,N} it can be defined a fuzzy order i: F1F1[0,1] according to 

Eq.(9.7) or Eq.(9.8). Finally, a fuzzy order c: F
Ν
F

Ν
[0,1] in lattice (F

Ν
,⊑) can be 

defined with the convex combination c(F= (F1,...,FN), E= (E1,...,EN))= 

11(F1,E1)+…+NN(FN,EN), where 1,…,N  0 such that 1+…+N = 1. Two other 

fuzzy orders are calculated from (a) (F= (F1,...,FN), E= (E1,...,EN))= 𝑚𝑖𝑛
𝑖∈{1,...,𝑁}

𝜎𝑖(𝐹𝑖, 𝐸𝑖) 

and (b) (F= (F1,...,FN), E= (E1,...,EN))= ∏ 𝜎𝑖(𝐹𝑖, 𝐸𝑖)
𝑁
𝑖=1 , respectively (Kaburlasos & 

Kehagias, 2014). In other words, fuzzy order (F= (F1,...,FN), E= (E1,...,EN)) is equal to 
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the minimum of fuzzy order ι(Fi,Ei), i{1,...,N}, while fuzzy order (F= (F1,...,FN), 

E= (E1,...,EN)) is equal to the product of fuzzy orders ι(Fi,Ei), i{1,...,N}. 

Moreover, metric functions D: G𝑅0
+ in lattice (G,⊑) are calculated as follows: 

 

                D(F= (F1,...,FN), E= (E1,...,EN)) = [(𝐷1(𝐹1, 𝐸1))
𝑝 +⋯+ (𝐷1(𝐹𝑁 , 𝐸𝑁))

𝑝]1/𝑝, (9.16) 

 

where pR, while metric D1: F1F1𝑅0
+ υis calculated from Eq.(9.10). 

The size of a Ν-dimensional IN Τ1 A= (A1,…,AN) is calculated from the convex 

combination: 

 

                                              Δ(A) = p1Δ1(A1)+…+pNΔ1(AN) (9.17) 

 

as a specific application of the general definition of size function in a poset (see in 

Chapter 7) with Ω= {1,…,Ν}. Moreover, note that function 𝛥1: 𝐹1 → 𝑅0
+ in Eq.(9.17) is 

calculated according to Eq.(9.11), as another specific application of the aforementioned 

general definition of the size function, with Ω= [0,1]. 

 All equations in this Section are easily extended to N-dimensional IN T2. 

 

9.1.7 Further Extensions 

In the above-mentioned hierarchy, at least one additional level can be introduced, and 

thus generalizing an IN T1/T2 as described below. In particular, an IN T1/T2 has a two-

dimensional (2-D) representation at the level, which can be generalized in three 

dimensions (3-D) as explained below (Kaburlasos & Papakostas, 2015). 

A 3-D IN Τ1 (respectively, Τ2) is defined as a function F: [0,1]F, where F= F1 

(respectively, F= F2), satisfies the relation 𝑧1 ≤ 𝑧2 ⇒ 𝐹𝑧1 ≽ 𝐹𝑧2. In other words, a 3-D IN 

Τ1 (respectively, Τ2) F has a three-dimensional representation Fz such that for a constant 

z= z0 function𝐹𝑧0, which is called zSlice, is a 2-D IN Τ1 (respectively, Τ2). For example, 

Figure 9.6(α) illustrated a 3-D IN Τ2 Fz, z[0,1], which is intersected by the plane z= 0.5. 

The zSlice F0.5 is a 2-D IN Τ2, which is shown in Figure 9.6(β). 

Assume that Fg symbolize either the set of 3-D IN Τ1 or the set of 3-D IN Τ2. In 

eny case, the duet (Fg,≼) is a lattice with order E ⊑ F  Ez ≼ Fz, for every z[0,1]. A 

function 𝜎𝐹𝑔: FgFg[0,1] of fuzzy order in lattice (Fg,≼) is defined as: 

 

                                   𝜎𝐹𝑔(𝐸, 𝐹) = ∫ ∫ 𝜎𝐼
1

0

1

0
((𝐸𝑧)ℎ, (𝐹𝑧)ℎ)𝑑ℎ𝑑𝑧, (9.18) 

 

where function I(.,.) is given from one of the equations (9.2), (9.3), (9.5), (9.6). 

 

9.2 Intervals’ Numbers (INs) 

This section focuses on Intervals’ Numbers Type-1, or INs (T1) in brief. 
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9.2.1 Interpretations IN 

Several associations have been proposed in the literature between possibility 

(distribution) and probability (distribution) (Ralescu & Ralescu, 1984; Wonneberger, 

1994). In this book an IN is a “mathematical object” which can be interpreted in, at least, 

two different ways. In particular, firstly, an IN can be interpreted as a fuzzy number, 

which represents a possibility distribution, and second, an IN can be interpreted as a 

probability distribution as explained below. 

Assume a probability distribution according to which we choose the population of 

samples (see real numbers) shown in Figure 9.7(a). Let M = 5.96 the value of the median 

of the sample, that is, the value that divides the sum of the sample values into two equal 

parts. Figure 9.7(b) shows the corresponding, strictly increasing cumulative distribution 

function c(.) with c (5.96) = 0.5. Figure 9.7(c) shows the calculation of an IN E in the 

following way: For every x  Μ= 5.96, is computed the function 2c(x), while for each x > 

Μ= 5.96 is computed the function 2(1-c(x)).  

The aforementioned algorithm is called "CALCIN" and calculates the IN E shown 

in Figure 9.7(c) with membership-function-representation E(x), which is interpreted as a 

probability distribution. In particular, if F is an IN, calculated with the CALCIN 

algorithm, then the interval F(h) includes 100(1-h)% of the distribution, while the 

remaining 100h% is equally distributed below- and above- F(h) (Kaburlasos, 2004; 

Kaburlasos, 2006; Kaburlasos & Pachidis, 2014; Kaburlasos & Papadakis, 2006; 

Papadakis & Kaburlasos, 2010). 

 

 
 

 

Figure 9.6  (a) A 3-D Numbers’ Interval Type-2 (3-D IN Τ2), assume F. 

 (b) The zSlice F0.5 (of 3-D IN Τ2 F) is the 2-D IN Τ2 of the figure. 
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Figure 9.7  (a) A distribution of samples, see real numbers, in the interval [0, 10], with 

median value M= 5.96, 

  (b) the corresponding cumulative distribution function c(.), 

  (c) calculation of IN E from distribution function c(.) according to algorithm 

CALCIN. 

 

 

Of particular interest is an IN of the form [a,b], for every h[0,1], which 

represents the interval [a,b] of real numbers. Thus, in N dimensions, is formed the space 

of cuboids (Kaburlasos, 2006), which (space) has drawn the research interest (Dietterich 

et al., 1997; Long & Tan 1998; Salzberg, 1991; Samet, 1988) thanks to its simplicity and 

efficiency in computational applications. Note also that the fuzzy order function was 

originally presented under the name inclusion measure because it was only used with 

cuboids instead of the more general N-dimensional IN. Later it was expanded to grids, so 

the original name (see inclusion measure) have changed to fuzzy order. 

 

9.2.2 Representation IN 

From a practical point of view, an IN F is represented in the computer memory as an L2 

table [a1 b1; a2 b2;…; aL bL] of real numbers, where L is the pre-defined by the user 
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number of levels h1, h2,…, hL so that 0<h1h2…hL=1. In practice, it is usually used 

L=16, or L=32, levels per equal intervals, in the interval [0,1]. Note that a number of 16, 

or 32 layers has also been proposed in applications of Fuzzy Inference Systems (FIS) 

based on fuzzy numbers -cuts (Kaburlasos & Kehagias, 2014; Uehara & Fujise, 1993; 

Uehara & Hirota, 1998). 

As a consequence of the above assumptions, a 2-D IN T2, assume [U, W], is 

represented by a L4 table because for each of the "L" levels along the h axis, two 

intervals are stored: an interval for the lower IN U, and an interval for the upper IN W. 

Finally, a 3-D IN T2 is represented by a L4L table because for each of the "L" levels 

along the z-axis a 2-D IN T2 is stored.  

 

9.2.3 Calculations with INs 

Several fuzzy numbers arithmetics have been proposed in the literature, some of which 

are based on intervals’ arithmetic (Kaufmann & Gupta, 1985; Moore & Lodwick, 

2003). This section introduces a new arithmetic in INs, based on a new intervals’ 

arithmetic with fewer algebraic constraints for greater computational flexibility, as 

explained below. 

Assume the complete lattice (L=[-,+],) of real numbers. The lattice 

(LL,) of generalized intervals is a linear space (Papadakis & Kaburlasos, 2010) 

because addition and multiplication can be defined, as explained below: 

The addition between generalized intervals is defined as follows: 

 

[a,b] + [c,e] = [a+c, b+e], 

 

while the multiplication of a generalized interval and a real number is defined as follows: 

 

k[a,b] = [ka, kb]. 

 

Addition and multiplication can be extended in the set G of GIN. Specifically, if 

F,HG then addition is defined as F+H = Fh+Hh, where h[0,1], and multiplication of a 

GIN with a real number k is defined as kF = kFh, where h[0,1]. It results that (G,⊑) of 

GIN Εis a linear space. 

It is interesting that [a,b],[c,e]I1 implies that [a+c, b+e]I1. However, δgiven of 

an interval Τ1 [a,b]I1 and a real number kR, there is no guarantee that the product 

k[a,b] will be an interval Τ1. In particular, for a negative number k<0, the product k[a,b] 

is not an interval Τ1 when ka > kb. 

In the above-mentioned context, it has been shown that the set of T1 intervals is a 

cone in the linear space of generalized intervals. Recalled that, by definition, a cone is 

called a subset C of linear space if and only if for x1,x2C and for non-negative numbers 
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1,2 0 the linear combination (1x1+2x2)  belongs to C. Based on the above results that 

the set of intervals T1 is a cone in the linear space of generalized intervals T1. 

Extensions can also be made in the interval F1 of the ΙΝ. In particular, the addition 

of two INs F and G can be defined as (F + G)=Fh + Gh,, where h[0,1], while the 

multiplication of a IN F with a real number k can be defined as kF = kFh, where h[0,1]. 

Similarly, as before, it follows that interval F1 of the IN is a cone in the linear space of 

the GIN (Papadakis & Kaburlasos, 2010). It should be noted that the partial order 

relationship of IN has already been studied on the basis of membership-function-

representation (Zhang & Hirota, 1997) where fuzzy numerical operations are defined 

between INs. This book proposes analysis of INs based on interval-representation, while 

numerical operations are defined within a linear space, followed by well-known algebraic 

practices (Luxemburg & Zaanen, 1971; Vulikh, 1967). 

We can introduce a non-linear transformation (Kaburlasos et al., 2013) into the 

space of intervals T1 by considering a strictly increasing real function f: RR. In 

particular, a space Τ1 [a,b] is transformed into the interval T1  [f(a), f(b)]. Extensions can 

also be made in the interval F1 of IN, where given of a strictly increasing real function f: 

RR, one IN is transformed into another IN as follows f(F)]h = f(Fh), h[0,1]. For 

example, Figure 9.8(a) depicts a strictly increasing function, this is the sigmoid function 

f(x) = (1-e
-x

)/(1+e
-x

) which transforms the IN X1, X2 and X3 of Figure 9.8(a) into Y1 = f 

(X1), Y2 = f (X2) and Y3 = f (X3) of Figure 9.8 (b), respectively. 

When we choose, in a particular application, to interpret each IN as a probability 

distribution, then all the aforementioned (non-linear) transformations and operations 

between IN can be performed between population of measurements through regression 

algorithms as explained below. 

The following computational example interprets geometrically, the consistency 

property (C2) (see the definition of fuzzy order) in the Cartesian product 

([0,1],)([0,1],) as shown in Figure 9.9(a) and (b), with the same functions v(x)= x and 

θ(x)= 1-x per basic matrix ([0,1],). In addition, Figure 9.9(a) and (b) shows two "boxes" 

u= [0.5,0.6][0.3,0.4] and w= [0.4,0.9][0.2,0.8] with u⊑w. Note that Figure 9.9 (a), 

besides u and w, shows the "box" x= [0.15,0.2][0.15,0.2], which is outside u and w. 

Whereas, in addition to u and w, Figure 9.9(b) shows the "box" x= [0.85,0.9][0.55,0.6], 

which lies outside u, but within w. 

It is easy to verify the calculations x⊔u= [0.15,0.6][0.15,0.4] and x⊔w= 

[0.15,0.9][0.15,0.8], as well as the calculations x⊔u= [0.5,0.9][0.3,0.6] and x⊔w= w. 

Subsequently, we calculate fuzzy order ⊔(.,.). In particular, it results that ⊔(x,u)= 
𝑉(𝑢)

𝑉(𝑥⊔𝑢)
= 

𝑣(𝜃(0.5))+𝑣(0.6)+𝑣(𝜃(0.3))+𝑣(0.4)

𝑣(𝜃(0.15))+𝑣(0.6)+𝑣(𝜃(0.15))+𝑣(0.4)
= 
2.2

2.7
 0.8148 and ⊔(x,w)= 

3.1

3.4
 0.9118. Thus, the 

inequality ⊔(x,u)⊔(x,w) is validated in Figure 9.9(a). Additionally, it results that 
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⊔(x,u)= 
𝑉(𝑢)

𝑉(𝑥′⊔𝑢)
= 
𝑣(𝜃(0.5))+𝑣(0.6)+𝑣(𝜃(0.3))+𝑣(0.4)

𝑣(𝜃(0.5))+𝑣(0.9)+𝑣(𝜃(0.3))+𝑣(0.6)
= 
2.2

2.7
 0.8148 and ⊔(x,w)= 1. Thus, the 

inequality ⊔(x,u)⊔(x,w) is validated in Figure 9.9(b). 

 
 

Figure 9.8  (a) The sigmoid function f(x) = (1-e
-x
)/(1+e

-x
) and three INs X1, X2 and X3. 

  (b) The domain [0,1] of images Y1= f(X1), Y2= f(X2) and Y3= f(X3) by definition 

is equal to the domain [0,1] of sigmoid f(x) = (1-e
-x
)/(1+e

-x
). 

 

 

As a follow-up to the calculations, observe that in some applications "missing 

data" and/or "don’t care data" may appear in a basic lattice, where by saying "missing 

data" means the absence of a particular value in a basic lattice, and by saying “don’t care 

data” we mean the presence of all possible values in a basic lattice. For a substantial way 

of manipulating the above data, we represent (a) a “missing data” with the least element 

[i,o], and (b) a “don’t care data” with the greatest element in the corresponding basic 

lattice (L=[o,i],). Next, the "missing data" and/or "don’t care data" are presented to 

verify the property of consistency (C2). 

Assume the Cartesian product ([0,1],)([0,1],) of two basic lattices ([0,1],) 

with same functions v(x)= x and θ(x)= 1-x per basic lattice, as shown in Figure 9.10(a) 

and (b). Moreover, Figure 9.10(a) and (b) depicts two “boxes” u= [0.6,0.7][0.5,0.6] and 
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w= [0.5,0.9][0.4,0.8] with u⊑w. Figure 9.10(a) shows the data xm= [0.3,0.3][1,0] with 

“missing data” in the second basic lattice, while Figure 9.10(b) shows the data xd= 

[0.3,0.3][0,1] with “don’t care data” in the second basic lattice. 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Figure 9.9  (a) and (b): The property of Consequence «u⊑w  𝜎(𝑥, 𝑢) ≤ 𝜎(𝑥,𝑤)» 

guarantees that when a box u is inside of another w then every box x (ή x) is 

contained, in the sense of a fuzzy order, more in w rather than in u. 

 
 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Figure 9.10  The property of Consequence «u⊑w  𝜎(𝑥, 𝑢) ≤ 𝜎(𝑥,𝑤)» is valid with 

"missing data" and/or "don’t care data". 

  (a) "missing data" along the vertical axis, that is xm= [0.3,0.3][1,0]. 

  (b) "don’t care data" along the vertical axis, that is xd= [0.3,0.3][0,1]. 

 

 

Validation of the calculations xm⊔u= [0.3,0.7][0.5,0.6], xm⊔w= 

[0.3,0.9][0.4,0.8], xd⊔u= [0.3,0.7][0,1] and xd⊔w= [0.3,0.9][0,1] is easy. Στη 

συνέχεια, υπολογίζουμε βαθμούς διάταξης ⊔(.,.). In particular, it results ⊔(xm,u)= 
𝑉(𝑢)

𝑉(𝑥𝑚⊔𝑢)
= 
𝑣(𝜃(0.6))+𝑣(0.7)+𝑣(𝜃(0.5))+𝑣(0.6)

𝑣(𝜃(0.3))+𝑣(0.7)+𝑣(𝜃(0.5))+𝑣(0.6)
= 
2.2

2.5
 0.8800 and ⊔(xm,w)= 

2.8

3.0
 0.9333. Thus, the 

inequality ⊔(xm,u)⊔(xm,w) is validated in Figure 9.10(a). Moreover, it results 
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⊔(xd,u)= 
𝑉(𝑢)

𝑉(𝑥𝑑⊔𝑢)
= 
𝑣(𝜃(0.6))+𝑣(0.7)+𝑣(𝜃(0.5))+𝑣(0.6)

𝑣(𝜃(0.3))+𝑣(0.7)+𝑣(𝜃(0))+𝑣(1)
= 
2.2

3.4
 0.6471 and ⊔(xd,w)= 

2.8

3.6
 0.7778. 

Thus, the inequality ⊔(xd,u)⊔(xd,w) is validated in Figure 9.10(b). 

 

9.3 Implementation Algorithms IN 

Algorithms that calculate with IN have already been suggested in the bibliography either 

for machine learning or for regression as explained below. 

 

9.3.1 Machine Learning Algorithms 

Remember that every use of a fuzzy order function (σ) is called Fuzzy Lattice Reasoning 

(FLR) (Kaburlasos & Kehagias, 2014). Three algorithms are presented in pseudo-code, 

where the first algorithm is for clustering (Figure 9.11), the second algorithm is for 

classification (Figure 9.12), while the third algorithm is for identification (Figure 9.13), 

all in the IN interval. Note that the aforementioned algorithms are generalizations of 

corresponding algorithms of the Adaptive Coordination Theory from the N-dimensional 

Euclidean R
N
 space to the F

N
. 

Pattern recognition (Duda et al., 2001) is an area of interest in the literature. 

Observe that the above algorithms, and/or variations of the above-mentioned algorithms, 

have already been extensively used in pattern recognition problems (Kaburlasos, 2004; 

Kaburlasos & Papadakis, 2009; Kaburlasos et al., 2012). In fact, note that some variations 

are based on a distance metric function instead of relying on a fuzzy order function. A 

selection criterion for functions v(.) and (.) in Level-0 are presented next. 

One of the older applications of FLR algorithm for classification, where the Ν-

dimensional INs 𝑊1, . . . ,𝑊|𝐶𝑎| were exclusively cuboids and the input Xi was exclusively 

a point (i.e. trivial cuboid) in the Ν-dimensional Euclidean space, lead to the selection of 

a pair of functions v(.) and (.) such that the condition v1([a,a])= v(θ(a))+v(a)= 1 to be 

valid in every basic lattice based on the following reasoning. As a result of the 

aforementioned condition in every basic lattice it results that v1([a,b])= v(θ(a))+v(b)= 

v(b)-[1-v(θ(a))]+1= [v(b)-v(a)]+1= δ1([a,b])+1. By using the positive valuation function 

V([a1,b1]…[aN,bN])= v1([a1,b1])+…+ v1([aN,bN]) for every cuboid, it results that: 

⊔(WJ⊑Xi)= 
𝑉(𝑋𝑖)

𝑉(𝑊𝐽⊔𝑋𝑖)
= 

𝑁

𝑁+𝛥(𝑊𝐽⊔𝑋𝑖)
. 

Line 16 in Figure 9.12 assimilates the input Xi recalculating WJ according to the 

relation WJ ≐ WJ⊔Xi when already condition (WJ⊑Xi)  𝜌̄𝑎 is fulfilled. The latter 

(condition) applies 
𝑁

𝑁+𝛥(𝑊𝐽⊔𝑋𝑖)
≥ 𝜌̄𝑎  𝛥(𝑊𝐽 ⊔ 𝑋𝑖) ≤

𝑁(1−𝜌̄𝑎)

𝜌̄𝑎
. In other words, the 

calculation WJ ≐ WJ⊔Xi is realized only when the size Δ(WJ⊔Xi) of the cuboid WJ⊔Xi is 

up to 
𝑁(1−𝜌̄𝑎)

𝜌̄𝑎
. For all the reasons above, FLR algorithm for classification, even when 

applied to the generalized lattice (𝐹1
𝑁,⊑) or to lattice (𝐹2

𝑁,⊑), usually checks the condition 
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“Δ(WJ⊔Xi)  𝛥̄𝑎” instead of the condition “(WJ⊑Xi)  𝜌̄𝑎” so as to further calculate WJ 

≐ WJ⊔Xi. 

A pair of functions v(.) and (.), which satisfies the condition v1([a,a])= 

v(θ(a))+v(a)= 1 in the basic lattice (L=[0,1],) is the v(x)= x and (x) = 1-x. Another pair, 

which satisfies the condition v1([a,a])= v(θ(a))+v(a)= 1 in lattice (L=[-,+],) is the 

v(x)= 
1

1+𝑒−𝜆(𝑥−𝜇)
 and (x) = 2-x. Note that function v(x)= 

1

1+𝑒−𝜆(𝑥−𝜇)
 is known (α) in 

statistical analysis under the name logistics (Kleinbaum & Klein, 2002) and (β) in ANN 

with the name sigmoid (Duda et al., 2001). The mathematical analysis here, have 

presented an advantage of the aforementioned v(.) function in the domain of IN.  

 

 

1: Assume a set {𝑊1, . . . ,𝑊|𝐶|} = 𝐶 ⊂ 2
𝐹1
𝑁

, assume K = |C| the cardinality of set C, and 

assume the vigilance parameter ρ[0,1] which is defined by the user. 

2: From i = 1 to i = ntrn do 

3:  consider the next input (ΑΔ) Xi𝐹1
𝑁. 

4:  Assume the set S ≐ C. 

5:  𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈{1,...,|𝑆|}
𝑊𝑗∈𝑆

[𝜎(𝑋𝑖 ⊑ 𝑊𝑗)]. 

6:  For as it applies (S  {}).AND.((WJ⊑Xi) < ) do 

7:   S ≐ S\{WJ}. 

8:   𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈{1,...,|𝑆|}
𝑊𝑗∈𝑆

[𝜎(𝑋𝑖 ⊑ 𝑊𝑗)] 

9:  End // For as it applies … 

10:  If S  {} then 

11:   C ≐ C{Xi}. 

12:   K ≐ K+1. 

13:  else 

14:   WJ ≐ WJ⊔Xi. 

15:  End // If … 

16: End // From … to … 

 

Figure 9.11 Fuzzy Lattice Reasoning (FLR) Algorithm for clustering. 
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1: Assume the set {𝑊1, . . . ,𝑊|𝐶𝑎|} = 𝐶𝑎 ⊂ 2𝐹1
𝑁

, assume K = |Ca| the cardinality of set 

Ca, assume the vigilance parameter 𝜌̄𝑎[0,1] which is defined by the user, assume ε 

a small positive number, assume B= {b1,…,bL} a set of “labels”, and assume the 

function ℓ: 𝐹1
𝑁 → 𝐵 on Ca. 

2: From i = 1 to i = ntrn do 

3:  Assume the next input (Xi,ℓ(Xi))𝐹1
𝑁 × 𝐵. 

4:  Assume the set S ≐ Ca. 

5:  𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈{1,...,|𝑆|}
𝑊𝑗∈𝑆

[𝜎(𝑋𝑖 ⊑ 𝑊𝑗)]. 

6:  If ℓ(WJ)  ℓ(Xi) then 𝜌̄𝑎= (WJ⊑Xi) + ε. 

7:  For as it applies (S  {}).AND.((WJ⊑Xi) < 𝜌̄𝑎) do 

8:   S ≐ S\{WJ}. 

9:   𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈{1,...,|𝑆|}
𝑊𝑗∈𝑆

[𝜎(𝑋𝑖 ⊑ 𝑊𝑗)] 

10:   If ℓ(WJ)  ℓ(Xi) then 𝜌̄𝑎= (WJ⊑Xi) + ε. 

11:  End // For as it applies … 

12:  If S  {} then 

13:   Ca ≐ Ca{Xi} and K≐ K+1. 

14:   If ℓ(Xi)B then (B≐ B{ℓ(Xi)} and L≐ L+1). 

15:  else 

16:   WJ ≐ WJ⊔Xi. 

17:  End // If … 

18: End // From … to … 

 

Figure 9.12 Fuzzy Lattice Reasoning (FLR) Algorithm for classification. 
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1: Assume a set {𝑊1, . . . ,𝑊𝐾} = 𝐶 ⊂ 2𝐹1
𝑁

 of INs, assume |C| the cardinality of set C, 

assume a set B= {b1,…,bL} from labels, and assume a depiction ℓ: 𝐹1
𝑁 → 𝐵. 

2: From i = 1 to i = ntst do 

3:  Assume the next input pair (Xi,bi)𝐹1
𝑁 × 𝐵 for recognition. 

4:  𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗∈{1,...,|𝐶|}
𝑊𝑗∈𝐶

[𝜎(𝑋𝑖 ⊑ 𝑊𝑗)]. 

5:  The input data Xi is classified to class ℓ(WJ). 

6: End // From … to … 

7: Calculate the percentage of correct recognitions in the data set. 

 

Figure 9.13 Fuzzy Lattice Reasoning (FLR) Algorithm for clustering for recognition. 

 

 

9.3.2 Regression Algorithms 

Two INs can be added to each other. Also, an IN can be multiplied with a non-negative 

number and/or transformed non-linearly using a (strictly) increasing function. By 

performing the two operations mentioned above (addition and multiplication), a 

regression algorithm arises which shows, non-linearly, an N-group of IN in a IN. For 

example, consider the ANN of Figure 1.2 with weights that are only positive numbers 

and IN inputs. According to the above, the ANN of Figure 1.2 can implement a 

regression function f: 𝐹1
𝑁F1 (Kaburlasos, 2013). Therefore, the architecture of Figure 

1.2 can implement a neuro-fuzzy system if an IN is interpreted as a feasibility 

distribution. Extensions to IN T2 (Mendel, 2013) are directly feasible. 

Further possibilities arise if an IN is interpreted as a probability distribution. In 

the latter case, the architecture of Figure 1.2 can calculate a distribution (at the output of 

the ANN) of N distributions (at the input of the ANN). Therefore, if an IN represents a 

(huge) distribution of arithmetic samples then IN manipulation involves the manipulation 

of big data (Kaburlasos & Papakostas, 2015). 
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