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Overview

sSolution of an optimization problem with linear
constraints through the continuous Hopfield
network (CHN) is based on an energy or Lyapunov
function

" This approach is extended in to optimization
problems with quadratic constraints.

"As a particular case, the graph coloring problem
(GCP) is analyzed.



1. Introduction

J A new energy function that generalizes the function
proposed by Hopfield and Tank, can also be used to
solve a 0—1 problem with quadratic constraints; this
is the case of the graph coloring problem (GCP)

JWith this mapping and an appropriate parameter-
setting procedure, valid coloring is guaranteed.



A CHN of size n is a fully connected neural network with n continuous valued units. Let T;; be the strength
ol the connection from neuron j to neuron i. Each neuron i has an offset bias ofif'. Let u; and v; be, respectively,
the current state and the output of the unit i Vie [1,...,n}.

If u. v and i’ represent vectors of the neuron states, outputs and biases, respectively, the dynamics of the

CHN 1s described by the differential equation:

d )
Gt (n

and the output function v; = g(u;) 1s a hyperbolic tangent

g(u;) = % (1 + tanh (:_@) ) u > 0. (2)

Hopfield [8] showed that if matrix T is symmetric, then the following Lyapunov function
exists:

_ | ! byl 1 - . —1
E = szv (l)v—l—rg;/ﬂ g (x)dx. (3)
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the following sets are needed:

e The Hamming hypercube
H={ve|0,1]"}.

e The Hamming hypercube corners set
He={veH:p {01} Vi=1,....n}.

e The feasible solutions set
Hr={veHc:Rv=Dhb}.

An energy function
E(v)=E°(v)+ EX(v) WeH

EC(v) is directly proportional to the objective function.
ER(v) is a quadratic function

We previously proposed the following generalized energy function [16]:

E(v) = cx{%v’Pv + q’v} + %(Rv)rcﬁ(Rv) + v'diag(y)(1 —v) + 'Ry VveH

with the parameters x € R, y € R", f € R" and the m X m matrix parameter @.



3. The graph coloring problem

O From a computational point of view, the GCP is one of the most difficult
optimization problems; it is an NP-hard problem and the existence of
efficient heuristic approaches for the general case cannot be assured.

1 The GCP looks for the lowest number of different colors that can be
assigned to the nodes of a graph whereby two nodes cannot share the
same color if they are linked by an edge.

3.1. The 0—1 mathematical programming model

So that the GCP can be mapped onto a CHN, it must be expressed as a linear assignment problem with

quadratic constraints.
The decision variable is the binary variable:

1 if Cli) =k
Ui = o :‘.kE{l......-‘u.-’}.
0 otherwise '

1 Después aplica las restricciones cuadraticas



The more colors that are used, the worse is the objective function. One way to accomplish this idea is
through an auxiliary binary variable that takes the value 1 when a particular color has been used:

ke{l,....N}.

1 if the color £ has been used
Uox = .
0  otherwise

the auxiliary variables vy 4 can be penalized with the value p; in the objective function:

min {Zmuﬂj}. (11)

These constraints can be summarized in the following family of constraints:

A+l h

> p =) Py Yhe{1,2,...[N/2]}.
j=1

=1

From now on, the values of p, = § and r = £ are fixed in such a way that the objective function of the linear
assignment problem with quadratic constraints is

min {i (§+%)UM}. (12)

k=1

Grupo de Inteligencia Computacional



To define the energy function for the GCP, the following considerations need to be taken into account so that
the mathematical expression of energy function (6) is simplified.

e Only the main diagonal terms of the quadratic matrix parameter @ are considered; i.e., @;;, =0 Vj # k. In
this way, the product of distinct linear constraints is not penalized and the constraints have equal weight:
Dy = QVk.

e The quadratic constraints 4* and h” are penalized by the parameters p”* and 1p”, respectively.

e All linear constraints are equally weighted, where f is the associated parameter.

e The parameters penalizing the non-extreme values of v and v are yo and 7, respectively.

Consequently, the following generalized energy function for the GCP is proposed:

E(v) = af(v) + p”h”(v) +%pﬂh3(v) +%¢'Ze,-(v)?‘ - ,BZE,—(T) - ?uzﬁn,k(l — Uog)

N N
+ 7 Z Z vig(l — vig),
=1 =
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Taking into account the particular GPC structure, a direct parameter-setting method, based
on the partition of HC-HF, is used.
This method does not depend on the linearity of the constraints.

A feasible solution could be the following:

N
P! =m(5+2) +70 + &,

p
T _?+E!
¢= 2}’11
p’ =9,
([
p= —(?+¢)

which depends on the parameters o, 7o and &.

Remark 1. This parameter-setting depends only on the parameter N, the number of nodes of
the graph to be colored.
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6. Computational experiments

[ The algorithm proposed obtains one equilibrium point for the
CHN and is a variable time-step method with a shorter
convergence time. Moreover, it is robust with respect to the
initial conditions.

1 The graphs to be colored in these computational experiments
were chosen from the public library Graph coloring instances
following the standards of DIMACS
(http://mat.gsia.cmu.edu/COLOR/instances.html).

 The quality of the coloring functions obtained was evaluated
in terms of the performance ratio :

number of colors used
Q

chromatic number


http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html

Table 1

Computational results of the Graph coloring instances

GCP No. of No. of Chromatic No. of 0 Mean time  Mean
identification nodes arcs number runs Minimum Mean Mode (5) iterations
MY CIEL3 11 20 4 100 1.00 .22 1.25 0.20 269.55
MY CIEL4 23 71 5 100 1.40 198  2.00 0.36 338.76
QUEENS 5 25 160 5 100 1.80 230 240 4.82 5241.55
QUEEN®6 6 36 290 7 100 1.43 1.83 1.86 1.17 39998
MY CIELS 47 236 6 50 1.00 1.55  1.67 2.34 44358
QUEEN7 7 49 476 7 50 1.86 253 257 2.68 438.14
QUEENS 8§ 64 728 9 50 2.11 255 2.56 6.42 5251
MY CIEL6 95 755 7 50 1.00 1.21 1.14 26.52 781.76
GAMESI120 120 638 9 50 322 374 378 65.34 1032.32
MILES250 128 387 8 25 2.63 339 338 90.36 1219.92
MILES500 128 1170 20 25 1.90 205 1.95 98.76 1218.68
MILES750 128 2113 31 25 1.55 1.74  1.65 88.44 1005.8
MILES1000 128 3216 42 25 1.38 1.51 1.57 91.64 99(.84
MILES1500 128 5198 73 25 1.11 .15 1.12 86.48 9554
MY CIEL7 191 2360 8 10 1.25 .78 1.75 417.30 1731.1
MULSO.L.1 197 3925 49 10 1.35 1.43 1.39 511.00 1900.4
LE450 25A 450 8260 25 10 364 386 4.00 14068.78 473589
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7. Summary and conclusions

[ In this paper, the generalized energy function we previously
introduced was used to solve the GCP.

[ This has been presented as an optimization problem with
guadratic constraints.

1 Moreover, to solve the GCP, a set of analytical conditions for
the CHN parameters has been deduced



