A brief review of lattice computing

Manuel Graña

Abstract—Defining *lattice computing* as the class of algorithms that either apply lattice operators *inf* and *sup* or use lattice theory to produce generalizations or fusions of previous approaches, we find that a host of algorithms for data processing, classification, signal filtering, have been produced over the last decades. We give a fast and brief review, which by no means could be exhaustive; with the aim of showing that this area has been growing during the past decades and to highlight the ones that we think are broad avenues for future research. Although our emphasis is on Artificial Neural Networks and Fuzzy Systems in this review we include Mathematical Morphology as a notorious instance of Lattice Computing.¹

I INTRODUCTION

The main road of definition computational algorithms in many aspects of Computer Science, including Computational Intelligence, works on the algebra of the real numbers, the addition and the multiplication $(R,+,\cdot)$. However there have a parallel line of works working on other algebras, like $(R, \wedge, +)$ or its dual $(R, \vee, +)$, where the role of the addition is taken by the lattice operation inf or sup, and the multiplication role is taken by the addition. These works have evolved into the application of Lattice Theory as a framework to define new approaches and algorithms that either generalize previous ones [1] or fuse existing approaches [2]. We call this broad class of algorithms and knowledge representation methods Lattice Computing. Of course, the works reviewed didn't refer themselves as belonging to this category.

If we categorize, at a very abstract level, the kind of processes realized in Computational Intelligence as:

- Filtering: maps of objects (i.e. signals) in a high dimensional space into objects of the same space, i.e. F: R^N → R^N.
- Dimension reduction: maps of objects in a high dimensional space into ones in a lower dimension space, i.e. $F: \mathbb{R}^N \to \mathbb{R}^d; d \ll N$.
- Classification: Mapping objects in a (high dimension) space into categories, where the construction can be done in a supervised or unsupervised (clustering) way, i.e. $F: \mathbb{R}^N \to \Omega; \Omega = \{\omega_1, \dots, \omega_c\}.$

There have been instances of Lattice Computing algorithms falling on all these categories. Filtering roughly corresponds to Mathematical Morphology applied to image and signal processing [3-5], which has been quite successful and with a large body of literature. In fact this success has been the source of inspiration for researchers trying to extend this approach to Computational Intelligence problems and applications. There have been many attempts and proposals of the construction of classification systems based on Lattice Computing ideas. They fall in a no man's land between Artificial Neural Networks and Fuzzy Systems. The results reported by these classifiers sometimes improve conventional classifiers and sometimes fall behind. There are few instances of dimension reduction based on Lattice Computing ideas, may be [6-9] are the only works falling in this category.

A lattice is a partially ordered set (poset) any two of whose elements have a supremum and an infimum. The inf and *sup* operations are binary relations that give, respectively, the infimum and the supremum of any pair objects in the set. The classical reference on Lattice Theory is the book[10]. Perhaps the first extensive work that proposed computations with lattice operations is the definition of the Minimax Algebra [11] in the context of operational research problems. The following historical landmark is the introduction of Mathematical Morphology in [3]. Image algebra [12-14] is another early attempt to define lattice computing methods devoted to image processing. The Fuzzy-ART architecture [15, 16] maybe the earliest Lattice Computing learning approach. Recent works [2, 17, 18] identify the algebraic lattice structure as a central concept for a whole family of methods and applications. In short, the Lattice Computing approach has served to bridge the gap between computational paradigms as diverse as fuzzy systems, morphological signal processing and artificial neural networks [19-27].

In section 2 we comment on the problems and the approaches followed to implement learning procedures in Lattice Computing algorithms. In section 3 we comment on some of the approaches that we find more promising and in section 4 we finish with some conclusions.

II LEARNING AND PARAMETER ESTIMATION

Construction by learning is the induction of the system parameters from the available data. The key to the success of the Artificial Neural Networks paradigm is the development of easy to implement, robust (up to some degree) methods to estimate the parameters of the system: backpropagation, competitive learning algorithms, among others. These algorithms were designed as gradient descent procedures for a given energy or cost function. Some Lattice Computing proposals had tried to follow this same pattern [28-31]. For instance, [29] tries to minimize the MSE of the output, [28] tries to maximize an equality index between the output and

¹ This work was supported in part by the Spanish Ministerio de Educación y Ciencia under grant DPI2006-15346-C03-03. The author is with the group of Computational Intelligence of the UPV/EHU. www.ehu.es/ccwintco

the desired output of the system. The major difficulty in these approaches is the discontinuity of the *min* and *max* functions. These discontinuity has been avoided proposing continuous approximations to them [28, 29, 32] that allow to obtain close expressions that give approximations of the gradient. Some approaches had added complications, such as the need to express the clause structure in a way that allows differentiation in [32]. Besides the construction of classification systems, there have been works [33, 34] tried to define gradient descent algorithms for the estimation of the morphological filter structural element. In fact, [34, 35] proposes a class of mixed morphological/linear systems which are trained with an algorithm analogous to the error backpropagation.

Some authors have tried to apply non-differential learning approaches, based on heuristic reasoning. For instance, there have been attempts to mimic the perceptron rule for lattice based morphological networks [36-38]. Among the heuristic approaches, one of the earliest and most successful is Fuzzy-ART [15, 16] which applies an ad-hoc heuristic category growing learning procedure. The learning procedure produces hyperrectangles covering the data, corresponding to the categories. These hyperrectagles grow monotonically as the learning proceeds, only stopped by the application of the vigilance parameter. Both the resolution of the result and the number of categories found depend on this vigilance parameter. The learning process is highly dependent on the order of presentation of the data [39], and still research is going on the setting of the algorithm parameters.

Another approach to build up systems is that of the Morphological Associative Memories [40-45]. It is very easy and does not involve gradient descent algorithms. It consists on the morphological (lattice) analogy to the construction of linear associative memories and Hopfield networks. Most of the theoretical work on their behavior have been devoted to explain their behavior and to understand the shape and properties of their fixed point subspaces[22, 44, 46-49]. The related dendritic morphological neural network [38, 50, 51] has a learning algorithm based on the incremental refining of the covering of the sets in the classes to be discriminated.

III REVIEW OF SOME APPROACHES

The goal of this review is to give a flavour of some of the avenues of work and research in this broad area which we find most involving and promising of future results. It can not be exhaustive, as some fields like Mathematical Morphology have a large number of works.

A Mathematical Morphology

In image and signal processing a big class of tasks to be solved are related to noise removal and/or to segmentation. The basic morphological operators are the erosion and dilation operators, while the basic morphological filters are opening and closing. Sophisticated morphological procedures like texture segmentation, granulometries, watershed segmentation, etc. are compositions of these filters. One of the venues of research is the definition of appropriate lattice ordering of high dimension spaces, such are color spaces and other vector spaces found in images, so that filters can be generalized to them. The other venue of interest from our point of view is that of defining new morphological operators and filters [2, 27, 52, 53] and the approaches to estimate appropriate structural elements [4, 5, 34, 35, 54, 55].

Lattice Theory was already used to formalize morphological operators [27]. The use of Lattice Theory in [2, 53] to generalize the erosion and dilation operators and the rigorous construction of adjoin operator pairs to systematically construct generalized opening and closing operators is a breakthrough that paves the way for new research areas. The embedding of fuzzy intersection and union norms into the morphological framework gives new fuzzy morphological openings and closings with enhancing noise removal and edge detection properties.

In the mean time, there have been proposals for adaptive morphological operators sometimes mixed with linear operators, using gradient descent algorithms for structural element estimation [34, 35, 55], and they were applied to image restoration and character recognition.

Another example of the fusion of ideas are the Morphological Shared-weight networks [33] were proposed for target recognition in images. There a morphological hitor-miss transform is implemented through a shared-weight network and its structural elements are adaptively estimated to obtain an optimal target recognition.

B Morphological Associative Memories

The works on Image Algebra [12-14] were the prelude to the proposal of morphological neural networks, in the form of morphological perceptron [36-38] and of associative memories [40, 42, 56]. They were proposed for the storage of binary and gray patterns, with the aim of recovering the original clean image from noisy copies, which is an image restoration process. Also grayscale morphological associative memories are used in [57] to pre-process the data prior to classification with a simple Nearest Neighbour approach

The good properties of Morphological Autoassociative Memories (later renamed Lattice Autoassociative Memories) were hindered by their sensitivity to specific kinds of noise (erosive or dilative noise), so that a big deal of effort was addressed to obtain robust versions [22, 41, 43-45, 48, 49, 57-61]. These efforts produced a new kind of memories in the frontier between associative morphological memories and fuzzy systems [22, 23, 25, 26].

Our own works on spectral unmixing of hyperspectral images [9, 62] have led to the use of the convex coordinates produced by unmixing process as features for classification purposes [6-8]. The sample data points are expressed relative to the so-called endmembers in hyperspectral image processing. The idea of endmember is that they represent instances of pure elements, so that all the other elements in the image correspond to mixtures of these pure elements. Endmembers are vertices of a polygonal convex set covering data cloud. This is a new kind of feature extraction that we think deserves further research. It happens that Autoassociative Morphological Memories [40, 42, 56, 63] have specific noise sensitivities that allow the detection of endmembers in the data from hyperspectral images [9, 62]. Working ways to enhance the robustness of Associative Morphological Memories against all kinds of noise [58, 60, 61] led to the definition of "morphological independence" and latter to "lattice independence" which turns out to be related to affine independence [49], a condition to be fulfilled by sets of endmembers. So we proposed an algorithm exploiting the Autoassociative Morphological Memories sensitivities to extract the endmembers from the data sample [9]. It is possible also to obtain these endmembers trough the construction of the Autoassociative Morphological Memories [49].

The dendritic neuron [38, 51, 59] is a further development of the Morphological Neural Netwoks were the biological model is a dendrite and the learning procedure is an incremental procedure that is show to converge, with some similarities to the Fuzzy-ART learning algorithm.

C Fuzzy Lattice Neurocomputing

The Fuzzy Lattice Neurocomputing paradigm [1, 17, 64, 65] arises from the generalization of Fuzzy-ART [15, 16]. The generalization comes from the use of a general measure of inclusion and definition of the vigilance parameter in terms of the diagonal of the generalized object. The general data structure that allows the modelling of several classical structures is called Fuzzy Interval Number [66, 67]. It allows the manipulation of rather different data objects in a common lattice framework. These ideas have matured to propose lattice computing as a framework for new inference systems [68] and for new version of well known algorithms, such as the the grSOM (granular SOM) [21], the grARMA (granular ARMA)[20], the unification of SOM and ART algorithms [69]. The authors also propose FLNMAP as the generalization of the supervised Fuzzy ARTMAP [70].

The works on Fuzzy Lattice Neurocomputing [1, 64-66, 68, 71-75] had a lot of applications in classification and prediction: [76-78] bone drilling for epidural anaesthesia, [79] text classification, [75, 80] air quality monitoring. The FIN structure is a promising way to produce new generalized algorithms able to deal with heterogeneous data structures, different from the conventional Euclidean spaces.

IV CONCLUSSIONS

The aim of this paper was to give a glimpse of the computational field composed of algorithms that employ in any a way *sup* and *inf* operators and can be, therefore, put into the framework of lattice theory. The focus on lattices reveals the existence of a profound parallelism between areas as divergent as Fuzzy Systems, Mathematical Morphology, Min-max Algebra and Artificial Neural Networks.

REFERENCES

- Kaburlasos, V.G. and V. Petridis, *Fuzzy Lattice Neurocomputing (FLN)* models. Neural Networks, 2000. 13(10): p. 1145-1170.
- Maragos, P., Lattice Image Processing: A Unification of Morphological and Fuzzy Algebraic Systems. Journal of Mathematical Imaging and Vision, 2005. 22(2-3): p. 333-353.
- 3. Serra, J., *Image Analysis and Mathematical Morphology*. 1982, NY: Academic Press.
- Maragos, P. and R. Schafer, Morphological filters--Part I: Their settheoretic analysis and relations to linear shift-invariant filters. Acoustics, Speech, and Signal Processing, IEEE Transactions on, 1987. 35(8): p. 1153-1169.
- Maragos, P. and R. Schafer, Morphological filters--Part II: Their relations to median, order-statistic, and stack filters. Acoustics, Speech, and Signal Processing, IEEE Transactions on, 1987. 35(8): p. 1170-1184.
- 6. Villaverde, I., M. Graña, and J.L. Jimenez, *Lattice Independence and Vision Based Mobile Robot Navigation*, in *Knowledge-Based Intelligent Information and Engineering Systems*. 2007, Springer Verlag.
- Villaverde, I., M. Graña, and A. d'Anjou, Morphological Independence for Landmark Detection in Vision Based SLAM, in Computational and Ambient Intelligence, F. Sandoval, et al., Editors. 2007, Springer Verlag.
- Graña, M., et al., Convex Coordinates From Lattice Independent Sets for Visual Pattern Recognition, in Computational Intelligence Based on Lattice Theory, V.G. Kaburlasos and G.X. Ritter, Editors. 2007, Springer Verlag.
- Grana, M., P. Sussner, and G. Ritter. Associative morphological memories for endmember determination in spectral unmixing. in Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on. 2003.
- 10. Birkhoff, G., *Lattice Theory*. 1967, Providence, Rhode Island: American Mathematical Society.
- 11. Cuninghame-Green, R.A., *Minimax Algebra*. LNCS. 1979, New York: Springer Verlag.
- Ritter, G.X. and J.N. Wilson, Handbook of Computer Vision Algorithms in Image Algebra, Second Edition. 2001, Boca Raton: FI: CRC Press.
- 13. Ritter, G.X. and P.D. Gader, *Image algebra techniques for parallel image processing*. J. Paral. Distr. Comput., 1987. 4: p. 7-44.
- Ritter, G.X., J.N. Wilson, and J.L. Davidson, *Image algebra: An overview*. Computer Vision, Graphics, and Image Processing, 1990. 49(1): p. 125.
- Carpenter, G.A., S. Grossberg, and D.B. Rosen, Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 1991. 4(6): p. 759-771.
- Carpenter, G.A., et al., Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Networks, 1992. 3(5): p. 698-713.
- 17. Kaburlasos, V.G., Towards a Unified Modeling and Knowledge-Representation based on Lattice Theory. 2006: Springer Verlag.
- Kaburlasos, V.G. and G.X. Ritter, *Computational Intelligence Based on Lattice Theory*. Studies in Computational Intelligence. 2007: Springer Verlag.
- Kaburlasos, V.G. and S.E. Papadakis. grSOM: a granular extension of the self-organizing map for structure identification applications. in Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on. 2004.
- Kaburlasos, V.G. and A. Christoforidis. Granular Auto-regressive Moving Average (grARMA) Model for Predicting a Distribution from Other Distributions. Real-world Applications. in Fuzzy Systems, 2006 IEEE International Conference on. 2006.
- Kaburlasos, V.G. and S.E. Papadakis, Granular self-organizing map (grSOM) for structure identification. Neural Networks, 2006. 19(5): p. 623-643.
- Sussner, P. A fuzzy autoassociative morphological memory. in Neural Networks, 2003. Proceedings of the International Joint Conference on. 2003.
- Valle, M.E., P. Sussner, and F. Gomide. Introduction to implicative fuzzy associative memories. in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on. 2004.
- Sussner, P. and M.E. Valle. A Brief Account of the Relations between Gray-Scale Mathematical Morphologies. in Computer Graphics and Image Processing, 2005. SIBGRAPI 2005. 18th Brazilian Symposium on. 2005.
- Sussner, P. and M.E. Valle, *Implicative Fuzzy Associative Memories*. Fuzzy Systems, IEEE Transactions on, 2006. 14(6): p. 793-807.

- Valle, M.E. and P. Sussner. Fuzzy Associative Memories from the Perspective of Mathematical Morphology. in Fuzzy Systems Conference, 2007. FUZZ-IEEE 2007. IEEE International. 2007.
- Heijmans, H.J.A.M. and P. Maragos, *Lattice calculus of the morphological slope transform*. Signal Processing, 1997. 59(1): p. 17-42.
- Pedrycz, W., Neurocomputations in Relational Systems. IEEE Tras. Patt. Anal. Mach. Int., 1991. 13(3): p. 289-297.
- Yang, P.-F. and P. Maragos, *Min-max classifiers: Learnability, design and application*. Pattern Recognition, 1995. 28(6): p. 879-899.
- Simpson, P.K., Fuzzy min-max neural networks part2: Clustering. . IEEE Trans Fuzzy Systems, 1993. 1(1): p. 32-45.
- Simpson, P.K., Fuzzy min-max neural networks part1: Classification. IEEE Trans Neural Networks, 1992. 3(5): p. 776-786.
- Zhang, X., et al., *The min-max function differentiation and training of fuzzy neural networks*. Neural Networks, IEEE Transactions on, 1996. 7(5): p. 1139-1150.
- Yonggwan, W., P.D. Gader, and P.C. Coffield, Morphological sharedweight networks with applications to automatic target recognition. Neural Networks, IEEE Transactions on, 1997. 8(5): p. 1195-1203.
- Pessoa, L.F.C. and P. Maragos, MRL-filters: a general class of nonlinear systems and their optimal design for image processing. Image Processing, IEEE Transactions on, 1998. 7(7): p. 966-978.
- Pessoa, L.F.C. and P. Maragos, Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with applications to handwritten character recognition. Pattern Recognition, 2000. 33(6): p. 945-960.
- 36. Sussner, P. Morphological perceptron learning. in Intelligent Control (ISIC), 1998. Held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Intelligent Systems and Semiotics (ISAS), Proceedings of the 1998 IEEE International Symposium on. 1998.
- Ritter, G.X. and T.W. Beaver. Morphological perceptrons. in Neural Networks, 1999. IJCNN '99. International Joint Conference on. 1999.
- Ritter, G.X., L. Iancu, and G. Urcid. Morphological perceptrons with dendritic structure. in Fuzzy Systems, 2003. FUZZ '03. The 12th IEEE International Conference on. 2003.
- 39. Dagher, I., et al., An ordering algorithm for pattern presentation in fuzzy ARTMAP that tends to improve generalization performance.
- . IEEE Trans Neural Networks, 1999. 10(4): p. 768-778.
- Ritter, G.X., P. Sussner, and J.L. Diza-de-Leon, *Morphological associative memories*. Neural Networks, IEEE Transactions on, 1998. 9(2): p. 281-293.
- Ritter, G., L. Iancu, and M.S. Schmalz, A New Auto-associative Memory Based on Lattice Algebra, in Progress in Pattern Recognition, Image Analysis and Applications. 2004, Springer Verlag.
- Ritter, G.X., J.L. Diaz-de-Leon, and P. Sussner, *Morphological bidirectional associative memories*. Neural Networks, 1999. 12(6): p. 851-867.
- Sussner, P., Observations on morphological associative memories and the kernel method. Neurocomputing, 2000. 31(1-4): p. 167-183.
- 44. Sussner, P., Associative morphological memories based on variations of the kernel and dual kernel methods. Neural Networks, 2003. 16(5-6): p. 625-632.
- 45. Sussner, P. New results on binary auto- and heteroassociative morphological memories. in Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on. 2005.
- Sussner, P. Fixed points of autoassociative morphological memories. in Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on. 2000.
- Sussner, P. A relationship between binary morphological autoassociative memories and fuzzy set theory. in Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on. 2001.
- Sussner, P. Binary autoassociative morphological memories derived from the kernel method and the dual kernel method. in Neural Networks, 2003. Proceedings of the International Joint Conference on. 2003.
- 49. Ritter, G.X. and P.D. Gader, *Fixed points of lattice transforms and lattice associative memories*, in *Advances in Imaging and Electron Physics* P. Hawkes, Editor. 2006, Academic Press: San Diego, Ca. p. 165-242.
- Ritter, G.X. and G. Urcid, *Lattice algebra approach to single-neuron computation*. Neural Networks, IEEE Transactions on, 2003. 14(2): p. 282-295.

- Ritter, G.X. and G. Urcid, Learning in Lattice Neural Networks that Employ Dendritic Computing, in Computational Intelligence Based on Lattice Theory, V.G. Kaburlasos and G.X. Ritter, Editors. 2007, Springer Verlag.
- Maragos, P., Morphological systems: Slope transforms and max-min difference and differential equations. Signal Processing, 1994. 38(1): p. 57-77.
- Maragos, P., V. Tzouvaras, and G. Stamou. Synthesis and applications of lattice image operators based on fuzzy norms. in Image Processing, 2001. Proceedings. 2001 International Conference on. 2001.
- 54. Maragos, P., M. Akmal Butt, and L.F.C. Pessoa. Two frontiers in morphological image analysis: differential evolution models and hybrid morphological/linear neural networks. in Computer Graphics, Image Processing, and Vision, 1998. Proceedings. SIBGRAPI '98. International Symposium on. 1998.
- Pessoa, L.F.C. and P. Maragos. Morphological/rank neural networks and their adaptive optimal design for image processing. in Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on. 1996.
- Ritter, G.X. and P. Sussner. Associative memories based on lattice algebra. in Systems, Man, and Cybernetics, 1997. 'Computational Cybernetics and Simulation'., 1997 IEEE International Conference on. 1997.
- Sussner, P. and M.E. Valle, *Gray-scale morphological associative memories*. Neural Networks, IEEE Transactions on, 2006. **17**(3): p. 559-570.
- Raducanu, B., M. Graña, and F.X. Albizuri, *Morphological Scale Spaces and Associative Morphological Memories: Results on Robustness and Practical Applications*. Journal of Mathematical Imaging and Vision, 2003. 19(2): p. 113-131.
- Ritter, G.X. and L. Iancu. A morphological auto-associative memory based on dendritic computing. in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on. 2004.
- Urcid, G. and G.X. Ritter. Noise Masking for Pattern Recall Using a Single Lattice Matrix Auto-Associative Memory. in Fuzzy Systems, 2006 IEEE International Conference on. 2006.
- Urcid, G. and G.X. Ritter, Noise Masking for Pattern Recall Using a Single Lattice Matrix Associative Memory, in Computational Intelligence Based on Lattice Theory, V.G. Kaburlasos and G.X. Ritter, Editors. 2007, Springer Verlag.
- 62. Graña, M., et al., On Endmember Detection in Hyperspectral Images with Morphological Associative Memories, in Advances in Artificial Intelligence - IBERAMIA 2002: 8th Ibero-American Conference on AI, Seville, Spain, November 12-15, 2002. Proceedings, F.J. Garijo, J.C. Riquelme, and M. Toro, Editors. 2002, Springer Verlag.
- 63. Ritter, G.X. and P. Sussner. An introduction to morphological neural networks. in Pattern Recognition, 1996., Proceedings of the 13th International Conference on. 1996.
- Petridis, V. and V.G. Kaburlasos, *Fuzzy lattice neural network (FLNN):* a hybrid model for learning. Neural Networks, IEEE Transactions on, 1998. 9(5): p. 877-890.
- Petridis, V. and V.G. Kaburlasos, *Learning in the framework of fuzzy* lattices. Fuzzy Systems, IEEE Transactions on, 1999. 7(4): p. 422-440.
- Petridis, V. and V.G. Kaburlasos, FINkNN: A Fuzzy Interval Number k-Nearest Neighbor Classifier for Prediction of Sugar Production from Populations of Samples. Journal of Machine Learning Research, 2003. 4: p. 17-37.
- Kaburlasos, V.G., FINs: lattice theoretic tools for improving prediction of sugar production from populations of measurements. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 2004. 34(2): p. 1017-1030.
- Kaburlasos, V.G. and A. Kehagias. Novel analysis and design of fuzzy inference systems based on lattice theory. in Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on. 2004.
- Kaburlasos, V.G., Unified Analysis and Design of ART/SOM Neural Networks and Fuzzy Inference Systems Based on Lattice Theory, in Computational and Ambient Intelligence, F. Sandoval, et al., Editors. 2007, Springer Verlag.
- Goodman, P.H., et al. Fuzzy ARTMAP neural network compared to linear discriminant analysis prediction of the length of hospital stay in patients with pneumonia. in Systems, Man and Cybernetics, 1992., IEEE International Conference on. 1992.
- Petridis, V. and V.G. Kaburlasos. Modeling of systems using heterogeneous data. in Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings. 1999 IEEE International Conference on. 1999.

- Petridis, V. and V.G. Kaburlasos, *Clustering and classification in structured data domains using Fuzzy Lattice Neurocomputing (FLN)*. Knowledge and Data Engineering, IEEE Transactions on, 2001. 13(2): p. 245-260.
- Cripps, A., N. Nguyen, and V.G. Kaburlasos. Three improved fuzzy lattice neurocomputing (FLN) classifiers. in Neural Networks, 2003. Proceedings of the International Joint Conference on. 2003.
- Kaburlasos, V.G. Improved fuzzy lattice neurocomputing (FLN) for semantic neural computing. in Neural Networks, 2003. Proceedings of the International Joint Conference on. 2003.
- Kaburlasos, V.G., I.N. Athanasiadis, and P.A. Mitkas, *Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation.* International Journal of Approximate Reasoning, 2007. 45(1): p. 152-188.
- 76. Kaburlasos, V.G., et al. On-line estimation of the stapes-bone thickness in stapedotomy by learning a linear association of the force and torque drilling profiles. in Intelligent Information Systems, 1997. IIS '97. Proceedings. 1997.
- 77. Kaburlasos, V.G., et al. Learning a linear association of drilling profiles in stapedotomy surgery. in Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on. 1998.
- Kaburlasos, V.G., et al., *Estimation of the stapes-bone thickness in the stapedotomy surgical procedure using a machine-learning technique*. Information Technology in Biomedicine, IEEE Transactions on, 1999. 3(4): p. 268-277.
- Petridis, V., et al. Text classification using the σ-FLNMAP neural network. in Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference on. 2001.
- Athanasiadis, I.N. and V.G. Kaburlasos. Air Quality Assessment Using Fuzzy Lattice Reasoning (FLR). in Fuzzy Systems, 2006 IEEE International Conference on. 2006.