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Abstract .
We introduce a new nature inspired algorithm to solve the Graph Color-

ing Problem (GCP): the Gravitational Swarm. The Swarm is composed of
agents that act individually, but that can solve complex computational prob-
lems when viewed as a whole. We formulate the agent’s behavior to solve
the GCP. Agents move as particles in the gravitatory field defined by some
target objects corresponding to graph node colors. Knowledge of the graph
to be colored is encoded in the agents as friend-or-foe information. This algo-
rithm improves a previous one inspired in Reynolds’ Swarm Intelligence (SI)
agents. We prove the convergence of the algorithm and test it over well-known
benchmarking graphs, achieving good results in a reasonable time.

1 Introduction

The Graph Coloring Problem (GCP) is a classical NP-hard problem which
has been widely studied [17, 19, 10, 22, 23]. There are a lot of algorithms like
[2, 8, 6] about it, some of them using Ant Colony Optimization (ACO) [11]
and Particle Swarm Optimization (PSO) [15]. Up to our knowledge, Swarm
Intelligence approaches have not been applied to this problem. The GCP
consist in assigning a color to the vertices of a graph with the limitation that
a pair of vertices that are linked cannot have the same color.
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We introduce a new nature inspired strategy to solve this problem fol-
lowing a Swarm Intelligence (SI) [27] approach. The bees [1], ants [13] and
flocking birds [9, 26, 25], form swarms that can be interpreted as working in
a cooperative way. In SI models, the emergent collective behavior is the out-
come of a process of self-organization, where the agents evolve autonomously
following a set of internal rules for its motion and interaction with the en-
vironment and the other agents. Intelligent complex behavior appears from
simple individual behaviors. An important feature of SI is that there is no
leader agent or central control. One of its biggest advantage is that it allows a
high level of scalarity, because the problem to be solved is naturally divided
into small problems, one for each agent. In real life, when some ants of a
colony (also valid for bees, birds or other swarms) fail in its task, it would
not alter too much the behavior of the overall system, and in some prob-
lems occurs the same, so the algorithm based on SI can be robust against
individual failure.

A technique very close to SI is Particle Swarm Optimization (PSO) [7]. The
PSO agents, the particles, have complete knowledge of the problem statement
and incorporate a specific solution each, having memory of the best position
visited in the search space, so they move in the neighboring of that position.
Therefore, PSO performs a random population-based search in the solution
space using swarm coherence behavior rules.

The work on GCP presented in this paper is an improvement of the ap-
proach published in [3, 12]. As in the previous works, SI agents correspondend
to graph nodes, and the SI agents try to approach specific space places (goals)
where the corresponding graph node acquires a color. We make correspond
of the graph edges with antagonist relations between agents. However, in
this paper we model the agent’s behavior by a simplified dynamic model,
removing some unnecesary complexity.

We place the SI agents in a search space with a torus shape, moving
towards the color goals. The only behavior rule that we use is the attraction
of the goals exerted on the SI agents. We model the attraction to a color goal
as a gravitatory field, extended to the entire environment space, which is a
fundamental departure from the Reynolds model. When the SI agent reaches
a goal, it remains there. The SI agents know the friend/foe relation between
them. When a foe SI agent approaches a goal, the antagonistic agents may be
expelled from goal if the approaching agent has enough discomfort pressure.
This discomfort reaction allows the system to escape local minima that are
not solutions of the GCP. We will demonstrate that with this simple rule,
our algorithm can solve the GCP with good performance.

The rest of the paper is organized as follow: section 2 presents our Grav-
itational Swarm Intelligence algorithm, and three ways of application of the
algorithm, supervised, unsupervised and a mix of both. In Section 3 we dis-
cuss the convergence of the algorithm. In Section 4 we show experimental
results comparing our algorithm performance with other methods using well-
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known graphs. Finally, section 5 gives some conclusions and lines for future
work.

2 Gravitational Swarm Intelligence

The agent’s world is a toric surface where the SI agents move attracted by
the color goals. If all the SI agents are in a color goal the algorithm stop
and the problem is solved, if not, they have to continue moving thorugh the
world. When a SI agent reaches a goal it must be sure that there are no
enemy SI agents in that goal. We call enemies the SI agents connected by
an arc in the underlying graph. Let be G = (V,E) a graph with V vertices
and E edges. We define B as a group of SI agents B = {b1, b2, ..., bn} where
n is the number of vertices. Each SI agent bi is represented by a position
pi = (xi, yi) in the search space and a speed vector −→vi . Let k be the number
of colors or goals that solve the problem, denoted C = {1, 2, ..., k}, and with
an attraction speed −→vgc for each color.

We can model the problem as a tuple F = {B,−→v , C,−→vg} where B is the
group of SI agents, −→v the speed vector in the instant t, C the chromatic
number of the graph and −→vg the attraction to the goal.

The cost function is:

f = |{∀i, Cbi ∈ C and @j | enemy(bi, bj) ∧ Cbi = Cbj}|

This energy is the count of the graph nodes which have a color assigned.
The predicate enemy is true if a pair of SI agents have an edge between them,
so they cannot have the same color. Cbi denotes the color of the SI agent
associated with the target goal. A SI agent has a color only if the SI agent
is at distance below nearenough from a goal. Until the SI agent arrives to
a goal, its color cannot be evaluated. The definition of nearenough allows
to control the speed of the algorithm: if it is small, the algorithm converges
slowly but monotonically to the solution, if it is big, the algorithm is faster
but it’s convergence is jumpy because the algorithm falls in local minima
and needs transitory energy increases to escape them. The dynamic of the SI
agents in the world is specified by the iteration:

−→vi (t+ 1) = (1− d

‖d‖
) · (−→vi (t) + d · (−→vg · (1− λ))) + (λ−→vr · pr), (1)

where d is the difference vector between the agent’s position and the position
of the nearest color goal, −→vg represents the speed to approach to the nearest
goal in Euclidean distance from current position pi, −→vr is a noise vector to
avoid being stuck in spurious unstable equilibrium, and pr is a random po-
sition. Parameter λ represents the degree of Comfort of the SI agent. When
a SI agent bi reaches to a goal in an instant t, its speed becomes 0. Every
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step of time that the SI agent stays in that goal without been disturbed, its
Comfort increases, until reaching a maximum value maxconfort. When an
enemy SI agent outside the goal tries to go inside that goal, the Comfort of
the SI agent inside the goal decreases to 0. When Comfort is positive the
parameter λ has value λ = 0. If Comfort of a SI agent is equal to 0 and
enemy tries to get inside the goal then λ = 1 and the SI agent is expelled
from the goal to a random point pr with speed −→v r. When all the SI agents
stop, ∀i,−→vi = 0; f = Cbi the problem is solved.

Each color goal has an attraction well spanning the entire space, therefore
the gravitational analogy. The magnitude of the attraction drops proportion-
ally with the Euclidean distance d between the goal and the SI agent, but
it never disappears. If d is less than nearenough then we make d = 0, and
the agent’s speed becomes 0 stopping it. This is, again, departs from the
Reynolds boid system, where boids never stop moving. Figure 1 shows the
interface of the software implementation of this system. In the flowchart of
figure 2 we can see how the algorithm works for each SI agent.

Fig. 1 Snapshot of the software interface of the SI applied to solve the GCP
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Fig. 2 SI Agent behavior flowchart for GCP

2.1 A Supervised coloring

The algorithm can be thought of as a supervised algorithm in the sense that
we provide the number of colors when we specify the number and places of
color goals. The chromatic number is the minimum number of colors needed to
color the graph. When specifying C color goals we assume that the chromatic
number is k or lower. If the algorithm converges then we are right, if not then
we assume that the chromatic number is greater than k. Search for the graph’s
chromatic number can be done starting with a large k and decreasing down
to the value until the algorithm fails to converge, or the other way, starting
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with low values of k increasing them until the algorithm converges for the first
time. If the chromatic number is known, then we can validate our algorithm
against this ground truth.

For validation, it’s a good idea to use well-known benchmarking graphs,
whose chromatic number is known. The Mycielsky graphs [24] are a family
of graphs whose chromatic number is equal to the degree of the graph plus
one K = m + 1 where m is the Mycielsky number. There are also collec-
tions of benchmark graphs, such as the DIMACS graphs [18, 19]. For graphs
whose chromatic number is unknown the algorithm validation comes from
the comparison to other graph coloring algorithms [28, 5].

2.2 Unsupervised coloring

Another way to attack the problem of determining the chromatic number
is to remove the color goals and let the SI agents move according to their
friend/foe relations. After a long period of time the movement of the SI agents
becomes stable, so we can say that the actual configuration as the solution
of the problem. The SI agents will never stop, because in the speed function,
there is no term to approach a specific place. The solution to the coloring
problem would come from the detection of clusters of agents moving together.
The attraction to the color goals is substituted by the attraction to friendly
agents. Here again we obtain only an approximation to the real solution,
because the SI agents can generate a heterogeneous group of clusters. We
think that the unsupervised coloring can be used to find a starting upper
bound of the chromatic number of a graph, taking into account that there is
no stopping condition.

2.3 Coloring waterfall

We can use a mixed strategy to find the solution for the coloring of a graph.
First, apply the unsupervised coloring method to estabilishing an upper
bound to the problem. Second, in an iterative way, apply the supervised
coloring method to look for solutions with lower chromatic number, decreas-
ing the number of goals, until the algorithm cannot stop and give a solution
in a given computational time. The pseudo code of the Algorithm 1 specifies
this coloring waterfall.
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Algorithm 1 Coloring waterfall
Input: G the graph to color.
Upper_bound = unsupervised_coloring(G)
while Upper_bound > 1 do
let Upper_bound = Upper_bound - 1
solution = supervised_coloring(G,(Upper_bound),max_time)
if not solution then

chromatic_number = (Upper_bound+1)
exit while

end if
end while

3 Convergence issues

We discuss in this section the convergence of the algorithm from an intuitive
point of view. The SI agents start in a position p0 = {x0, y0} and with an
initial speed −→v0 . The direction and value of the speed vector changes with
the dynamics of the system. The value of the SI agent’s speed is in the range
[0, 1]. It depends on the distance between the SI agent and its target color
goal, when the distance is below a threshold the SI agent stop. Initially each
SI agent tries to get to the nearest goal. The attraction of the goals is strong
when the SI agent is far away and weak when the SI agent is near the goal,
becoming 0 when the SI agent is inside the goal radius. If antagonistic SI
agents are already inside the goal, it tries to expel them out of the goal. An
expelled SI agent tries to go to the second nearest goal and so on, until it can
enter in a goal without enemies.

If all the SI agents speed is zero, then the algorithm has converged to
some fixed state where all of them are inside a goal. Thus, we have solved a
part of the convergence problem, now we have to demonstrate that the color
assignment is a solution for the problem. That is, the cost function value is
equal to the number of nodes when the system converges.

When a SI agent tries to enter inside a goal, if there is one or more enemies
in the goal it will try to find another goal empty of enemies. If there is no
one, then it will proceed to expel the enemies from one of the goals. The
SI agent selects a random foe and evaluates its λ parameter. If it is zero,
then that enemy is expelled from the goal to a random point pr with a speed
vector −→vr towards a random goal. All the enemies’ Comfort inside that goal
decreases. It doesn’t matter if other enemies λ = 0, the SI agent can only
expel one SI agent at a step. The SI agent doesn’t stop because it can be still
more enemies in that goal and must wait until the next step to get inside.
With this behavior, when a SI agent is inside a goal, it’s sure that there are
no enemies in the goal. So when our algorithm stops because all the agents
have stopped, it has reached a GCP solution, because no two adjacent nodes
are in the same color goal and all the agents are “inside” a color goal. If the
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agents never stop, the algorithm is unable to find a solution with the stated
number of colors

4 Experimental results

We have implemented our algorithm in a graphic development platform try-
ing to obtain an intuitive visualization of the process rather than an efficient
implementation in computational terms. Our algorithm is about SI agents
moving around the search space, where each step of time all the SI agents
move, or stay stood. After each step of time, the cost function must be evalu-
ated to see if the problem is solved or not. For this reason, the time is always
referred as iteration steps. When we are evaluating the next position of a SI
agent in the step t, we take into account the position of the other SI agents
in the step t− 1.

Each time step is similar to a generation of a genetic algorithm, or a
simulated annealing phase [16], because we have to move all the SI agents
(all the SI agent with speed > 0), and evaluate the cost function. The real
computing time of our algorithm depends on the programming language and
the computer used, but the steps will be always the same.

For comparison, we have also executed a backtraking implementation, a
DSATUR Brèlaz algorithm and a Tabu Search algoritm implementation but
we have a lot of tests and benchmarks in the bibliography like[14] where
the Mycielsky graph are tested needing between 4 and 416.000.000 backtrack
where our GSI algorithm needs only between 21 and 417 steps or [21] where
Leightn and DJS aleatory geometric graphs are tested. In [4]the fullins graph
family cannot be solved but our algorithm can.

In table 1 we show the results of applying the greedy algorithms. DSATUR
is a particular case of backtracking and the results are similar. Backtracking
and DSATUR are fixed algorithm so the result is always the same, we let them
1.000.000 cycles until we stop them. Tabu search is not a fixed algorithm and
the results can change from an execution to another, so we have tested 20
times with a maximun number of tabus of 2000, showing the tabus or steps
and the % of success. These methods are useless when the graph is medium
or big, because greedy algorithms are no good for NP-hard problems, and
the Tabú search needs a lot of memory to keep a large amount of no valid
solutions.

The * denotes that the algorithm stop without finding a solution.
In table 2 we show results on a group of well known graphs [19, 20] whose

chromatic number is known. We have launched the algorithm 20 times for
each graph instance and we allow them 2000 steps to find a solution. We
show the number of vertices, edges, the density of the graph calculated as
#edges/#complete_graph_edges, the graph’s chromatic numberK, the per-
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Graph name k #Backtracking #DSATUR #Tabu Search %Tabu success
Myciel3 4 1 1 11 100
Myciel4 5 1 1 34 100
Myciel5 6 1 1 107 100
Myciel6 7 1 1 290 100
Myciel7 8 1 1 597 100
queen5_5 5 5 5 442 95

anna 11 * * * 0
david 11 * * * 0
huck 11 * * * 0

Table 1 Backtracking, DSATUR and Tabu Search results

centage of success over 20 experiments and the average number of steps
needed to get the solution.

Graph name #Vertices #Edges Density K Success % Average #Steps
anna 138 986 0.10 11 100 300
david 87 812 0.21 11 100 209
huck 74 662 0.22 11 100 84
jean 80 508 0.16 10 100 165

myciel3 11 20 0.36 4 100 21
myciel4 23 71 0.28 5 100 25
myciel5 47 236 0.21 6 100 97
myciel6 95 755 0.17 7 100 92
myciel7 191 2360 0.13 8 100 417

queen 5x5 25 160 0.53 5 100 302
1_fullins_3 30 100 0.23 4 100 37
1_fullins_4 93 593 0.14 5 100 76
1_fullins_5 282 3247 0.08 6 100 222
2_fullins_3 52 201 0.15 5 100 67
2_fullins_4 212 1621 0.07 6 100 176
miles250 128 387 0.04 8 100 317

Table 2 Experimental results

We can see in table 22 that the algorithm success in all graphs and rep-
etitions of the process. Our algorithm compared with the results in table
11is faster and is can solve all the graphs in a reasonable time. The greedy
algorithm are exact and always solve the problem but in an exponetial time.

The number of steps is not clearly related to the size or density of the
graphs, because some small graphs require higher number of steps than bigger
ones, and some sparse graphs require more steps than dense ones, and the
contrary is true also. We need to perform an exhaustive exploration over
a collection of random graphs in order to make any inference about time
complexity. The fact is that the algorithm requires on average much less
steps than the allowed maximum.
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5 Conclusions

We proposed a new algorithm for the Graph Coloring Problem using Swarm
Intelligence. We have modeled the problem as a collection of agents trying to
reach some of a set of goals. Goals represent node colorings, agents represent
graph’s nodes. The color goals exert a kind of gravitational attraction over
the entire virtual world space. With these assumptions, we have solved the
GCP using a parallel evolution of the agents in the space. We have argued
the convergence of the system, and we have demonstrated empirically that
it provides effective solutions in terms of precision and computational time.
We will continue to test our algorithm on an extensive collection of graphs,
comparing its results with state of the art heuristic algorithms.

For future work, we have to improve our implementation of the algorithm
to make it faster. Even though our algorithm finds the global optimum of the
problem, we will search for new nature inspired behavior rules to improve the
algorithm.
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