
Review of Hybridizations of Kalman Filters with
Fuzzy and Neural Computing for Mobile Robot

Navigation

Manuel Graña, Iván Villaverde, Jose Manuel López Guede, Borja Fernández?
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Abstract. Kalman Filters (KF) are at the root of many computational
solutions for autonomous systems navigation problems, besides other ap-
plication domains. The basic linear formulation has been extended in
several ways to cope with non-linar dynamic environments. One of the
latest trend is to introduce other Computational Intelligence (CI) tools,
such as Fuzzy Systems or Artificial Neural Networks inside its computa-
tional loop, in order to obtain learning and advanced adaptive properties.
This paper offers a short review of current approaches.

1 Introduction

Navigation, defined as the the process of determining and maintaining a course
or trajectory to a goal location[8], has been considered the most basic and key
problem in mobile robotics since the beginning of the research on that area.
Opposite to a “wandering” behavior of the robot, in which it simply “moves
around” by just avoiding obstacles in its path, navigation implies a knowledge
of the structure of its environment and the ability to self-locate itself in it and in
respect to its goal. That first condition requires that the robot has some a priori
information about its surroundings. Autonomy increases inversely withe a pri-
ori information needed by the system to navigate in its environment. Maps[23]
are the world representation used to guide navigation. The most autonomous
form of navigation is Simultaneous Localization and Mapping (SLAM)[6, 1, 7],
in which the robot builds a map while localizing itself in it, and uses this posi-
tion estimation to integrate new measurements from the environment into the
previous map. This basic dynamic models in SLAM are probabilistic, and the
computational solutions are stochastic ones such as Expectation Maximization
algorithms, Monte Carlo particle filters and Kalman Filters (KF). The latter
were developed in the early 60’s by R. E. Kalman and R. S. Bucy[11, 24]. The
origin of the use of Kalman Filters in mobile robotics can be traced back to the
80’s, when the actual formulation was introduced by Smith, Cheeseman and Self
[22, 21].
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Because the KF is in essence a linear method, the classical extensions found
in the literature to cope with non-linear phenomena are linearization strategies.
In this paper we explore the diverse hybridizations of the KF with of Compu-
tational Intelligence (CI) tools, which follow an intrinsic non linear modelling
approach. These hybridizations may help to improve the accuracy and tracking
power of the KF. This survey is intended to help opening avenues for research n
Hybrid Systems and their applications in mobile robotics. We have found that
the main KF hybridizations are: (1) using KF as an estimation algorithm to train
computational systems (Artificial Neural Networks, Fuzzy Systems), instead of
the simple gradient descent algorithms, (2) using CI tools to model the KF
elements more realistically, (3) mixing EKF with other (fuzzy) representations.

The structure of the paper is as follows: We give a short review of the Kalman
filters (KF) and their variants that have found application in mobile robotics in
section 2. In section 3 we present the approaches to hybrid KF. Finally, section
4 gives final conclusions and comments.

2 Kalman Filters and non-linear variants

In a typical mobile robot SLAM navigation, the robot moves around taking
measurements of its environment trying to self-localize in the world, and uses
them also to build a map to refer this localization. Uncertainties in the mea-
surement come from the sensor noise, and from the inaccurate realization of the
commanded actions (i.e. wheel skid). Formally, at each time instant k the robot
would be at state xk ∈ <n, and its motion is assumed to follow a given model
xk = f(xk−1, uk−1, wk−1), which becomes xk = Akxk−1+Bkuk+wk in the linear
case, where wk−1 is the motion noise, and uk−1 the motion command issued to
the system at time k − 1. At each time instant the robot makes some environ-
ment measurements zk that can be assumed to follow a model zk = h(xk, vk) of
the system state xk and observation noise vk, which becomes zk = Hkxk + vk in
the linear case.

The KF is a recursive method to estimate the state of a system. The knowl-
edge of state of the system at time k will be represented by its estimation x̂k and
its related error covariance matrix Pk. This error covariance is a measure of the
accuracy of the state estimation, defined as Pk = E[eke

t
k], being ek = xk − x̂k

the estimation error. State estimation is performed by means of a two step
prediction-correction feedback process. In the first step, the Prediction step, an
a priori estimation of the state (x̂−k and P−k ) is done. Then, measurements of
the environment are taken into account in a second step, the Correction step,
to compute the a posteriori estimation (x̂+

k and P+
k ), which becomes the sytem

estimation (x̂k+1 and Pk+1) at time k + 1. This recursive computation schema
is the core of the KF, and all their variants.

The Discrete Kalman Filter (DKF) is the classical formulation of the linear
KF for linear problems with known noise covariance matrices, the well know
Prediction-Correction equations are as follows:

x̂−k = Ax̂k−1 +Buk−1; P−k = APk−1A
T +Q, (1)



x̂+
k = x̂−k +Kk(zk −Hx̂−k ); P+

k = (I −KkH)P−k , (2)

where Kk is known as the Kalman Gain, and is a factor that relates the
uncertainty between the state estimation and the residual prediction error.

The Extended Kalman Filter (EKF) is an improvement of the DKF to deal
with non-linear problems. Assumed that the non-linear model is known, the
state is predicted according to its model, and aPredictive step and the performed
observation follows the bare application of this model:

x̂−k = f(x̂k−1, uk−1, 0); ẑ−k = h(x̂−k , 0). (3)

A linear approximation of the non-linear model is performed at the point
(
x̂−k , ẑ

−
k

)
:

xk ≈ x̂−k +A(xk−1 − x̂k−1) +Wwk−1; zk ≈ ẑ−k +H(xk − x̂−k ) + V vk, (4)

where A and W are the Jacobian matrices of f relative to x and w, respectively,
and H and V are the Jacobian matrices of h relative to x and v, respectively.
From this point the EKF is equal to a DKF, it applies the coorresponding
equations adapted from 1 and 2. EKF is not an optimal estimator (as the DKF
was) and it is very sensitive to wrong initial condition estimation and bad process
models. The way it linearizes the functions it is also source of inefficiency. As
second and higher terms of the Taylor series are discarded, if those terms are
not negligible, it introduces error and bias in the transformation, as the local
linearity assumption is broken. Also, the derivation of the Jacobian matrices is
not usually trivial and can be very difficult in some applications.

The Unscented Kalman Filter (UKF) [9] replaces the linear approximation
of the EKF with the unscented transformation. The aim of this transformation
is to calculate the statistics of a random variable which undergoes a non-linear
transformation. The basic idea is that is easier to approximate a probability
distribution than an arbitrary non-linear function, and it does so by applying
the non-linear function to a set of points {χi} sampled deterministically from
a hypothetical population of points with mean x̄ and spatial covariance Px and
calculating the mean and covariance of the transformed points. The non-linear
dynamic system model is applied to these points γi = f [χi] and first and second
order statistics are computed (applying convenient weights {Wi}):

ȳ =
2n∑
i=0

W
(m)
i γi; Py =

2n∑
i=0

W
(c)
i (γi − ȳ) (γi − ȳ)T

. (5)

The UKF uses these estimations as the a priori estimation computed at the
Prediction step, x̂−k = ȳ and P−k = Py as computed in 5. The system observation
prediction ẑ−k and its covariance matrix Pzk

is computed in an analogous way.
Finally, the correction step is computed:

x̂k = x̂−k +Kk

(
zk − ẑ−k

)
; Pk = P−k −KkPzk

KT
k , (6)

where the gain is computed as Kk = PxzyzP
−1
zk
.



Other variants proposed in the literature try to cope with non-stationary
processes by estimating the noise covariance matrix at each time step, or work
with agregates instead of the original variables to reduce the dimensionality of
the state vector [12], or merge KF with Monte Carlo techniques [15].

3 Hybrized approaches

We will consider three kind of hybridizations found in the literature: The use of
KF as estimation (learning, tuning) algorithm, the enhancement of KF elements
with nonlinear modeling abilities, and the mixture of representations. Although
the first one is not greatly relevant to mobile robotics navigation, we discuss it
for the sake of completeness.

3.1 KF as an estimation algorithm

The KF can be viewed as a parameter estimation algorithm with the added abil-
ity to take into account the uncertainty of the estimation to provide an adaptive
gain in the learning steps. It can be, thus, used as the training algorithm for the
CI leaning approaches, such as Artificial Neural Networks or Fuzzy Systems. Fol-
lowing this philosophy, the EKF has been applied as the basic learning algorithm
for the estimation of Radial Basis Functions (RBF) parameters [14, 20] inside a
growing architecture. The Node Decoupled learning applies an EKF to each net-
work node independently, the system state corresponds to the RBF weights, both
hidden units mean and variance and the hidden to output weights, the observa-
tion being the desired output. The Kalman gain is computed on an estimation of
the network prediction error covariance, assuming a constant noise distribution.
EKF improves over gradient descent because it introduces an adaptive learning
gain (the Kalman gain) depending on the uncertainty of the network prediction,
thus ensuring smooth convergence. The EKF has been also applied to tuning the
membership functions in Mamdani type of fuzzy systems with correlation infer-
ence [19]. There the estimation of the optimal membership parameters is found
equivalent to nonlinear dynamic system identification problem, solved applying
the EKF.

3.2 Non-Linear Enhancement of KF

There have been some attemps to embedd CI algorithms to relax the strong
assumptions of the KF and its extensions (EKF, UKF). Superseding the linear
dynamical and observation model, relaxing the constraints on the assumed noise
distribution or the computation of the Kalman gain are some of the KF algorithm
elements that have beed influenced by CI techniques.

Because EKF relies heavily on the assumption of white noise, it can ben
enhanced by introducing a noise covariance estimation algorithm that can cope
with coloured noise or systematic error bias. The work in [4] uses Artificial
Neural Networks to model the noise in the motion and sensing of a mobile robot,



showing improvements over the accuracy of positioning. The main handicap of
their approach is that the ANN training must be performed off-line, so the
environment has to be well defined, as well as the robot characteristics. For
SLAM applications it is desirable that the noise modeling is done on-line with
the state updating and control. This endeavor is taken in [3] where they apply a
Neuro-Fuzzy System (NFS) approach to perform the instantaneous estimation
of the observation noise covariance matrix parameters. Independent NFS are
used for each parameter, consisting of thre IF-THEN fuzzy rules defined on
the covariances of the innovation sequences, which in turn are estimated by
a moving average filter. They perform simulations of SLAM navigation on a
2D simplified synthetic world, where they experiment with induced systematic
errors, so their advance to real world conditions is a compelling challenge. In
[17] a Takagi-Sugeno approach is applied to approximate the local behavior of
the system, then it is decomposed in a set of linear systems that are dealt with
by conventional DKF; the output of the decoupled systems is linearly combined
to obtain an estimate of the global system state. Again, results are shown on
simulation environments and the T-S system parameters must be trained off-line
on accurate sampling of the data that the system will encounter. To approach
on-line performance some authors built their fuzzy inference system based on
theoretical physical understanding of the robot-environment-sensing relations,
such as in the work reported in[18] where the GPS measurements noise covariance
is estimated by this means.

Another way to mix Fuzzy Systems and EKF is performing the Kalman
gain estimation by Fuzzy techniques. This approach is demonstrated in [16]
on a prototype land mine detector robot. One critical feature of this robot is
an accurate map of the terrain undulations, needed to align the sensor with
terrain. The DKF is used to maintain an accurate estimation of the terrain
model integrating the laser rangefinder readings. To avoid non-linear modelling,
the Kalman gain is set according to the terrain classification performed by a
Takagi-Sugeno system, trained on measurement samples from an in-house terrain
database.

Finally, a way to improve convergence of the EKF is manipulate the state
covariance predictor multiplying it by a diagonal matrix of “fading memory
factors”, which is equivalent so a low pass FIR applied to the state covariance
predictor. A suboptimal algorithm to set the filter coefficients has been called the
Strong Tracking Kalman Filter (STKF). In [10] an adaptive method to set the
STKF parameters has been proposed, based on a Takagi-Sugeno fuzzy system
defined on the innovation (the difference between the predicted and observed
sensor information) divergence. However, the rules of the Takagi-Sugeno are built
beforehand, with membership functions defined arbitrarily. Results are shown on
simulations of GPS based localization of mobile systems.

3.3 Information fusion

The state representation and dynamics of the KF type algorithms can be com-
bined with the results of other CI techniques, allowing for the increase in robust-



ness and a kind of symmetric validation in some cases. EKF has been used along
with Fuzzy Occupancy Maps (FMO) to perform localization of legged robots
in the context of Robot Soccer [13]. The FMO is a grid representation of the
playing field, each cell in the grid has a fuzzy ocuppancy value which is updated
when the robot performs a movement. Updating is done by blurring the FMO
in the direction of commanded movement, and correcting the position estimate
on the basis of visual detection of known landmarks. The state definition of the
EKF is the robot position and orientation, and an analytical expression for the
Jacobian matrix is given. The fusion of both methods allows the easy initial-
ization of the EKF, which performs a computationally efficient local process of
continued localization of the robot, increasing the accuracy of the FMO with
large cell sizes. One way to realize the fusion of both methods consists in run-
ning the EKF and the FMO in parallel, using each other to confirm the results,
being the FMO the main reference. When occupancy fuzzy values are low, the
system tends to confuse. Then a population of EKF’s are running in parallel,
maintaining competing hypothesis about the robot position. The ones that show
lower agreement with the FMO can be removed. Another way to perform the
representation fusion is reported in [2], where a collection of KF is used with
diverse noise covariances, the resulting estimation is fused by a Takagi-Sugeno
Fuzzy System, providing an improved traking in mobile localization.

4 Conclusions

In summary KF approaches have used as estimation methods for learning pro-
cesses as well as they have used learning processes to estimate some of their
computational elements, namely the noise covariance, the Kalman gain or the
non-linear model linear approximation. The KF aproach provides a convenient
way to adapt the estimation process to improve convergence, while, on the other
hand, its linear assumptions are too strong for most real-life applications, so
that non-linear learning algorithms help to make the KF approaches applicable
to applications such mobile robot navigation.

There are a number of approaches that will be worth to explore, like em-
bedding DKF or EKF into Evolutionary Strategies (ES) in order to use the
uncertainty management of KF approaches to improve the self-tuning of the ES
parameters, or to deal with uncertain fitness functions. Also, there are few works
on the non-linear modelling of the sensor information, so that non-linear obser-
vation functions could be learned from the data, even on-line. Training Neural
Networks or other Computational Intelligence tools for this functionality can be
a promising line of research.

One avenue for further research in the application of the KF and hybridized
approaches is that of Multi-Robot Systems, such as swarms of modular robots.
For instance, it would be appealing to explore the application of distributed
KF approaches to task like the cooperative map building among swarms of au-
tonomous robots [5].
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