

Review of Hybridizations of Kalman Filters with Fuzzy and Neural Computing for Mobile Robot Navigation

M. Graña, I. Villaverde, J.M. Lopez Guede, B. Fernandez Grupo Inteligencia COMputacional UPV/EHU www.ehu.es/ccwintco

Contents

- Introduction
- Some definitions of Kalman Filters
- Hybridizations
- Conclusions

Introduction

- Kalman Filters (KF) are at the root of many computational solutions for autonomous systems navigation problems, besides other application domains.
- KF have been used for Simultaneous Localization and Mapping (SLAM):
 - To estimate the actual position, while creating a map of the environment
 - To estimate its uncertainty

Introduction

- The basic linear formulation has been extended in several ways to cope with non-linar dynamic environments.
- Introduce Computational Intelligence (CI) tools, inside its computational loop, such as
 - Fuzzy Systems or
 - Artificial Neural Networks.

Introduction

- We have found that the main KF hybridizations are:
 - 1. using KF as an estimation algorithm to train computational systems , instead of the simple gradient descent algorithms,
 - 2. using CI tools to model the KF elements more realistically,
 - 3. mixing EKF with other (fuzzy) representations.

- SLAM: Simultaneous self-localization and mapping
- System state at time k: $x_k \in \Re^n$
- Dynamic model $x_k = f(x_{k-1}, u_{k-1}, w_{k-1}),$
 - Linear case $x_k = A_k x_{k-1} + B_k u_k + w_k$

 w_{k-1} is the motion noise u_{k-1} the motion command

- Environment measurements z_k
- Observation model $z_k = h(x_k, v_k)$

- Linear case $z_k = H_k x_k + v_k$

observation noise v_k ,

- The KF is a recursive method to estimate the state of a system.
- Two steps
 - Prediction $(\hat{x}_k^- \text{ and } P_k^-)$
 - A priori state and error covariance matrix predicted by the dynamical model
 - Correction $(\hat{x}_k^+ \text{ and } P_k^+)$
 - Based on the actual observation

- Discrete (linear) Kalman Filter (DKF) – Prediction $\hat{x}_k^- = A\hat{x}_{k-1} + Bu_{k-1};$ $P_k^- = AP_{k-1}A^T + Q,$ – Correction $\hat{x}_k^+ = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-);$ $P_k^+ = (I - K_k H)P_k^-,$
 - Kalman Gain K_k

- The Extended Kalman Filter (EKF)
 - Deals with non-linear models via linearization
 - Assumes that the non-linear models are known, so we can use them for the prediction step

$$\hat{x}_k^- = f(\hat{x}_{k-1}, u_{k-1}, 0);$$

$$\hat{z}_k^- = h(\hat{x}_k^-, 0).$$

 The correction step needs to compute the Jacobian matrices at each time instant

• EKF correction step is based on the linearized model

$$x_k \approx \hat{x}_k^- + A(x_{k-1} - \hat{x}_{k-1}) + Ww_{k-1};$$

$$z_k \approx \hat{z}_k^- + H(x_k - \hat{x}_k^-) + Vv_k,$$

• So that the DKF correction equations apply.

- EKF disadvantages
 - Sensitivity to initial conditions
 - Computation of Jacobian matrices
 - Unstable numerically

- Unscented Kalman Filter
 - Replaces the linearization with the unscented transformation
 - Chose a set of points according to the error $\{\chi_i\}$ covariance matrix
 - Apply the non-linear model to them $\gamma_i = f[\chi_i]$
 - Compute weighted averages

$$\bar{y} = \sum_{i=0}^{2n} W_i^{(m)} \gamma_i \qquad P_y = \sum_{i=0}^{2n} W_i^{(c)} (\gamma_i - \bar{y}) (\gamma_i - \bar{y})^T$$

HAIS 2009, Salamanca, June, 11, 2009

13

• UKF prediction

$$\hat{x}_k^- = \bar{y}$$
 and $P_k^- = P_y$

• UKF correction

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k} \left(z_{k} - \hat{z}_{k}^{-} \right);$$
$$P_{k} = P_{k}^{-} - K_{k} P_{z_{k}} K_{k}^{T},$$

• UKF gain $K_k = P_{x_z y_z} P_{z_k}^{-1}$.

- EKF as a training algorithm
 - Replaces gradient descent
 - Includes an error covariance estimation
 - Gives a measure of the quality of learning
 - Can be used to stop the learning process
 - Applied to Radial Basis Function (RBF) networks
 - State corresponds to the RBF weights

• The error covariance is used to determine regions of the input space which deserve more detailed training

 Qinggang Meng and Mark Lee. Error-driven active learning in growing radial basis function networks for early robot learning. *Neurocomputing*, 71(7-9):1449–1461, March 2008.

• The response of the system is an aggregation of the hierarchy of networks

 Qinggang Meng and Mark Lee. Error-driven active learning in growing radial basis function networks for early robot learning. *Neurocomputing*, 71(7-9):1449–1461, March 2008.

- Non-linear enhancements of KF
 - Estimation of the covariance in the case of colored noise
 - Estimation of the Kalman gain in non-linear unknown systems
 - Modify the state covariance predictor
 - Perform non-linear estimations of the local behavior of the system

• Estimation of the Kalman gain for a landmine detection robot SLAM

Autonomous Systems, 55(2):96–106, February 2007.

- The DKF is used to maintain an accurate estimate of the terrain model
 - Integration of range finder readings
- Critical to align the sensor to the terrain slope

 To avoid non-linear modelling, the Kalman gain is set according to the terrain classification performed by a Takagi-Sugeno system, trained on measurement samples from an in-house terrain database.

16. Homayoun Najjaran and Andrew Goldenberg. Real-time motion planning of an autonomous mobile manipulator using a fuzzy adaptive kalman filter. *Robotics and Autonomous Systems*, 55(2):96–106, February 2007.

Conclusions

- Hybrid KF and Computational Intelligence systems:
 - Training of RBF
 - Providing approximations to components of linear KF
 - Noise covariance
 - Kalman Gain

Further work?

- Integration of KF into Evolution Strategies for improved self-tuning
- Approximation of non-linear observation functions
- Applications to multi-robot systems...