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Introduction

• Kalman Filters (KF) are at the root of many
computational solutions for autonomous systems
navigation problems, besides other application
domains.

• KF have been used for Simultaneous Localization
and Mapping (SLAM):
– To estimate the actual position, while creating a map of

the environment
– To estimate its uncertainty
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Introduction

• The basic linear formulation has been
extended in several ways to cope with non-
linar dynamic environments.

• Introduce Computational Intelligence (CI)
tools, inside its computational loop, such as
– Fuzzy Systems or
– Artificial Neural Networks.
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Introduction

•  We have found that the main KF
hybridizations are:

1. using KF as an estimation algorithm to train
computational systems , instead of the simple
gradient descent algorithms,

2. using CI tools to model the KF elements more
realistically,

3.  mixing EKF with other (fuzzy)
representations.
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Kalman Filters

• SLAM: Simultaneous self-localization and
mapping

• System state at time k :
• Dynamic model

– Linear case
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Kalman filters

• Environment measurements
• Observation model

– Linear case
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Kalman filters

• The KF is a recursive method to estimate
the state of a system.

• Two steps
– Prediction

• A priori state and error covariance matrix predicted
by the dynamical model

– Correction
• Based on the actual observation
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 Kalman filters

• Discrete (linear) Kalman Filter (DKF)
– Prediction

– Correction

– Kalman Gain
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Kalman filters

• The Extended Kalman Filter (EKF)
– Deals with non-linear models via linearization
– Assumes that the non-linear models are known, so we

can use them for the prediction step

– The correction step needs to compute the Jacobian
matrices at each time instant
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Kalman filters

• EKF correction step is based on the
linearized model

• So that the DKF correction equations apply.



HAIS 2009, Salamanca, June, 11,  2009 12

Kalman filters

• EKF disadvantages
– Sensitivity to initial conditions
– Computation of Jacobian matrices
– Unstable numerically
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Kalman filters

• Unscented Kalman Filter
– Replaces the linearization with the unscented

transformation
• Chose a set of points according to the error

covariance matrix
• Apply the non-linear model to them
• Compute weighted averages
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Kalman filters

• UKF prediction

• UKF correction

• UKF gain
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Hybridizations

• EKF as a training algorithm
– Replaces gradient descent
– Includes an error covariance estimation

• Gives a measure of the quality of learning
• Can be used to stop the learning process

– Applied to Radial Basis Function (RBF)
networks

• State corresponds to the RBF weights
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Hybridizations

• The error
covariance is
used to
determine
regions of the
input space
which deserve
more detailed
training
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Hybridizations

• The response of the system is an
aggregation of the hierarchy of networks
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Hybridizations

• Non-linear enhancements of KF
– Estimation of the covariance in the case of

colored noise
– Estimation of the Kalman gain in non-linear

unknown systems
– Modify the state covariance predictor
– Perform non-linear estimations of the local

behavior of the system
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Hybridizations

• Estimation of the Kalman gain for a
landmine detection robot SLAM
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Hybridizations

• The DKF is used to maintain an accurate
estimate of the terrain model
– Integration of range finder readings

• Critical to align the sensor to the terrain
slope
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Hybridizations

• To avoid non-linear modelling, the Kalman gain is set
according to the terrain classification performed by a
Takagi-Sugeno system, trained on measurement
samples from an in-house terrain database.
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Conclusions

• Hybrid KF and Computational Intelligence
systems:
– Training of RBF
– Providing approximations to components of

linear KF
• Noise covariance
• Kalman Gain



HAIS 2009, Salamanca, June, 11,  2009 23

Further work?

• Integration of KF into Evolution Strategies
for improved self-tuning

• Approximation of non-linear observation
functions

• Applications to multi-robot systems…


