GIC-experimental-databases/Cocaine feature vectors
De Grupo de Inteligencia Computacional (GIC)
Revisión del 17:02 13 feb 2013 de Mai.termenon (discusión | contribs.)
Datasets of features extracted from a database of 124 subjects: 61 healthy controls and 63 cocaine adicted patients
These features are based on two feature extraction pipelines: one based on Pearson's correlation and other based on voxel based morphometry (VBM) methodology. For the moment, we work over the GM voxel intensity values after image preprocessing. We apply different smooth kernels (k) to the data: k=0; k=3; k=6; k=9; k=12.
Feature sets extracted applying Pearson's correlation
k=0 - k=3 - k=6 - k=9 - k=12 -
Feature sets extracted applying VBM
k=0 - k=3 - k=6 - k=9 - k=12 -