Diferencia entre revisiones de «MGranaMaterialesdetrabajo»

De Grupo de Inteligencia Computacional (GIC)
Línea 2: Línea 2:
= Clasificación =
= Clasificación =


El método multivariante más "sencillo" es el Naive Bayes [http://en.wikipedia.org/wiki/Naive_Bayes_classifier] que asume independencia entre las variables y, usualmente, modela con distribuciones normales las distribuciones de probabilidad condicional (verosimilitud/likelihood) de las clases.
*El método multivariante más "sencillo" es el Naive Bayes [http://en.wikipedia.org/wiki/Naive_Bayes_classifier] que asume independencia entre las variables y, usualmente, modela con distribuciones normales las distribuciones de probabilidad condicional (verosimilitud/likelihood) de las clases.
 
*  Extreme Learning Machines: los clasificadores/regresores en dos etapas se construyen haciendo que la primera etapa se genere de forma aleatoria y la segunda se resuelve por mínimos cuadrados. [http://www.ehu.es/ccwintco/groupware/webdav.php/apps/phpbrain/420/ELM_basics.pdf]

Revisión del 19:51 13 may 2011

Clasificación

  • El método multivariante más "sencillo" es el Naive Bayes [1] que asume independencia entre las variables y, usualmente, modela con distribuciones normales las distribuciones de probabilidad condicional (verosimilitud/likelihood) de las clases.
  • Extreme Learning Machines: los clasificadores/regresores en dos etapas se construyen haciendo que la primera etapa se genere de forma aleatoria y la segunda se resuelve por mínimos cuadrados. [2]