|
|
Línea 3: |
Línea 3: |
|
| |
|
| === IC Synthetic Hyperspectral Collection === | | === IC Synthetic Hyperspectral Collection === |
| ==== Legendre Collection ====
| |
| {| border="1" cellpadding="10"
| |
| ! colspan="5"|Parameters
| |
| ! colspan="5"|Signal-to-Noise Ratio (SNR)
| |
| |-
| |
| ! ne
| |
| ! size
| |
| ! min
| |
| ! max
| |
| ! Coef
| |
| ! Without noise
| |
| ! 20db
| |
| ! 40db
| |
| ! 60db
| |
| ! 80db
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:2e64x64LegendreDefault.zip | download]]
| |
| | [[Media:2e64x64LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:2e64x64LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:2e64x64LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:2e64x64LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:2e64x64LegendreMaxOrder5.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:2e64x64LegendreMaxCoef10.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:2e64x64LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:2e64x64LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:2e128x128LegendreDefault.zip | download]]
| |
| | [[Media:2e128x128LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:2e128x128LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:2e128x128LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:2e128x128LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:2e128x128LegendreMaxOrder5.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:2e128x128LegendreMaxCoef10.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:2e128x128LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:2e128x128LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:2e256x256LegendreDefault.zip | download]]
| |
| | [[Media:2e256x256LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:2e256x256LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:2e256x256LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:2e256x256LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:2e256x256LegendreMaxOrder5.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:2e256x256LegendreMaxCoef10.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:2e256x256LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:2e256x256LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:3e64x64LegendreDefault.zip | download]]
| |
| | [[Media:3e64x64LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:3e64x64LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:3e64x64LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:3e64x64LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:3e64x64LegendreMaxOrder5.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:3e64x64LegendreMaxCoef10.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:3e64x64LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:3e64x64LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:3e128x128LegendreDefault.zip | download]]
| |
| | [[Media:3e128x128LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:3e128x128LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:3e128x128LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:3e128x128LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:3e128x128LegendreMaxOrder5.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:3e128x128LegendreMaxCoef10.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:3e128x128LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:3e128x128LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:3e256x256LegendreDefault.zip | download]]
| |
| | [[Media:3e256x256LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:3e256x256LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:3e256x256LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:3e256x256LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:3e256x256LegendreMaxOrder5.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:3e256x256LegendreMaxCoef10.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:3e256x256LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:3e256x256LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:4e64x64LegendreDefault.zip | download]]
| |
| | [[Media:4e64x64LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:4e64x64LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:4e64x64LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:4e64x64LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:4e64x64LegendreMaxOrder5.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:4e64x64LegendreMaxCoef10.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:4e64x64LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:4e64x64LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:4e128x128LegendreDefault.zip | download]]
| |
| | [[Media:4e128x128LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:4e128x128LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:4e128x128LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:4e128x128LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:4e128x128LegendreMaxOrder5.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:4e128x128LegendreMaxCoef10.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:4e128x128LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:4e128x128LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:4e256x256LegendreDefault.zip | download]]
| |
| | [[Media:4e256x256LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:4e256x256LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:4e256x256LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:4e256x256LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:4e256x256LegendreMaxOrder5.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:4e256x256LegendreMaxCoef10.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:4e256x256LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:4e256x256LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:5e64x64LegendreDefault.zip | download]]
| |
| | [[Media:5e64x64LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:5e64x64LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:5e64x64LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:5e64x64LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:5e64x64LegendreMaxOrder5.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:5e64x64LegendreMaxCoef10.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:5e64x64LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:5e64x64LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:5e128x128LegendreDefault.zip | download]]
| |
| | [[Media:5e128x128LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:5e128x128LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:5e128x128LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:5e128x128LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:5e128x128LegendreMaxOrder5.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:5e128x128LegendreMaxCoef10.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:5e128x128LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:5e128x128LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 100
| |
| | [[Media:5e256x256LegendreDefault.zip | download]]
| |
| | [[Media:5e256x256LegendreDefaultSNR20.zip | download]]
| |
| | [[Media:5e256x256LegendreDefaultSNR40.zip | download]]
| |
| | [[Media:5e256x256LegendreDefaultSNR60.zip | download]]
| |
| | [[Media:5e256x256LegendreDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 100
| |
| | [[Media:5e256x256LegendreMaxOrder5.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5SNR20.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5SNR40.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5SNR60.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 1
| |
| | 10
| |
| | 10
| |
| | [[Media:5e256x256LegendreMaxCoef10.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxCoef10SNR20.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxCoef10SNR40.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxCoef10SNR60.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxCoef10SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 1
| |
| | 5
| |
| | 10
| |
| | [[Media:5e256x256LegendreMaxOrder5MaxCoef10.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5MaxCoef10SNR20.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5MaxCoef10SNR40.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5MaxCoef10SNR60.zip | download]]
| |
| | [[Media:5e256x256LegendreMaxOrder5MaxCoef10SNR80.zip | download]]
| |
| |}
| |
|
| |
| ==== Spheric Gaussian Fields Collection ====
| |
| {| border="1" cellpadding="10"
| |
| ! colspan="3"|Parameters
| |
| ! colspan="5"|Signal-to-Noise Ratio (SNR)
| |
| |-
| |
| ! ne
| |
| ! size
| |
| ! theta1
| |
| ! Without noise
| |
| ! 20db
| |
| ! 40db
| |
| ! 60db
| |
| ! 80db
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 100
| |
| | [[Media:2e64x64SphericGFDefault.zip | download]]
| |
| | [[Media:2e64x64SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e64x64SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e64x64SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e64x64SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 50
| |
| | [[Media:2e64x64SphericGFTheta1_50.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 150
| |
| | [[Media:2e64x64SphericGFTheta1_150.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:2e64x64SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 100
| |
| | [[Media:2e128x128SphericGFDefault.zip | download]]
| |
| | [[Media:2e128x128SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e128x128SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e128x128SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e128x128SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 50
| |
| | [[Media:2e128x128SphericGFTheta1_50.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 150
| |
| | [[Media:2e128x128SphericGFTheta1_150.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:2e128x128SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 100
| |
| | [[Media:2e256x256SphericGFDefault.zip | download]]
| |
| | [[Media:2e256x256SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e256x256SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e256x256SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e256x256SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 50
| |
| | [[Media:2e256x256SphericGFTheta1_50.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 150
| |
| | [[Media:2e256x256SphericGFTheta1_150.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:2e256x256SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 100
| |
| | [[Media:3e64x64SphericGFDefault.zip | download]]
| |
| | [[Media:3e64x64SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:3e64x64SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:3e64x64SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:3e64x64SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 50
| |
| | [[Media:3e64x64SphericGFTheta1_50.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 150
| |
| | [[Media:3e64x64SphericGFTheta1_150.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:3e64x64SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 100
| |
| | [[Media:3e128x128SphericGFDefault.zip | download]]
| |
| | [[Media:3e128x128SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:3e128x128SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:3e128x128SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:3e128x128SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 50
| |
| | [[Media:3e128x128SphericGFTheta1_50.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 150
| |
| | [[Media:3e128x128SphericGFTheta1_150.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:3e128x128SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 100
| |
| | [[Media:3e256x256SphericGFDefault.zip | download]]
| |
| | [[Media:3e256x256SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:3e256x256SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:3e256x256SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:3e256x256SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 50
| |
| | [[Media:3e256x256SphericGFTheta1_50.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 150
| |
| | [[Media:3e256x256SphericGFTheta1_150.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:3e256x256SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 100
| |
| | [[Media:4e64x64SphericGFDefault.zip | download]]
| |
| | [[Media:4e64x64SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:4e64x64SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:4e64x64SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:4e64x64SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 50
| |
| | [[Media:4e64x64SphericGFTheta1_50.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 150
| |
| | [[Media:4e64x64SphericGFTheta1_150.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:4e64x64SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 100
| |
| | [[Media:4e128x128SphericGFDefault.zip | download]]
| |
| | [[Media:4e128x128SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:4e128x128SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:4e128x128SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:4e128x128SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 50
| |
| | [[Media:4e128x128SphericGFTheta1_50.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 150
| |
| | [[Media:4e128x128SphericGFTheta1_150.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:4e128x128SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 100
| |
| | [[Media:4e256x256SphericGFDefault.zip | download]]
| |
| | [[Media:4e256x256SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:4e256x256SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:4e256x256SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:4e256x256SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 50
| |
| | [[Media:4e256x256SphericGFTheta1_50.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 150
| |
| | [[Media:4e256x256SphericGFTheta1_150.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:4e256x256SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 100
| |
| | [[Media:5e64x64SphericGFDefault.zip | download]]
| |
| | [[Media:5e64x64SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:5e64x64SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:5e64x64SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:5e64x64SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 50
| |
| | [[Media:5e64x64SphericGFTheta1_50.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 150
| |
| | [[Media:5e64x64SphericGFTheta1_150.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:5e64x64SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 100
| |
| | [[Media:5e128x128SphericGFDefault.zip | download]]
| |
| | [[Media:5e128x128SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:5e128x128SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:5e128x128SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:5e128x128SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 50
| |
| | [[Media:5e128x128SphericGFTheta1_50.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 150
| |
| | [[Media:5e128x128SphericGFTheta1_150.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:5e128x128SphericGFTheta1_150SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 100
| |
| | [[Media:5e256x256SphericGFDefault.zip | download]]
| |
| | [[Media:5e256x256SphericGFDefaultSNR20.zip | download]]
| |
| | [[Media:5e256x256SphericGFDefaultSNR40.zip | download]]
| |
| | [[Media:5e256x256SphericGFDefaultSNR60.zip | download]]
| |
| | [[Media:5e256x256SphericGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 50
| |
| | [[Media:5e256x256SphericGFTheta1_50.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_50SNR20.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_50SNR40.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_50SNR60.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_50SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 150
| |
| | [[Media:5e256x256SphericGFTheta1_150.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_150SNR20.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_150SNR40.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_150SNR60.zip | download]]
| |
| | [[Media:5e256x256SphericGFTheta1_150SNR80.zip | download]]
| |
| |}
| |
|
| |
| ==== Exponential Gausian Fields Collection ====
| |
| {| border="1" cellpadding="10"
| |
| ! colspan="4"|Parameters
| |
| ! colspan="5"|Signal-to-Noise Ratio (SNR)
| |
| |-
| |
| ! ne
| |
| ! size
| |
| ! theta1
| |
| ! theta2
| |
| ! Without noise
| |
| ! 20db
| |
| ! 40db
| |
| ! 60db
| |
| ! 80db
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:2e64x64ExponentialGFDefault.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:2e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:2e128x128ExponentialGFDefault.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:2e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:2e256x256ExponentialGFDefault.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:2e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:3e64x64ExponentialGFDefault.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:3e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:3e128x128ExponentialGFDefault.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:3e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:3e256x256ExponentialGFDefault.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:3e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:4e64x64ExponentialGFDefault.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:4e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:4e128x128ExponentialGFDefault.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:4e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:4e256x256ExponentialGFDefault.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:4e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:5e64x64ExponentialGFDefault.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:5e64x64ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:5e128x128ExponentialGFDefault.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:5e128x128ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 0.7
| |
| | 1.3
| |
| | [[Media:5e256x256ExponentialGFDefault.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFDefaultSNR20.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFDefaultSNR40.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFDefaultSNR60.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 0.5
| |
| | 0.8
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_5Theta2_0_8.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR20.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR40.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR60.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_5Theta2_0_8SNR80.zip | download]]
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 0.9
| |
| | 1.9
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_9Theta2_1_9.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR20.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR40.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR60.zip | download]]
| |
| | [[Media:5e256x256ExponentialGFTheta1_0_9Theta2_1_9SNR80.zip | download]]
| |
| |}
| |
|
| |
| ==== Rational Gausian Fields Collection ====
| |
| {| border="1" cellpadding="10"
| |
| ! colspan="4"|Parameters
| |
| ! colspan="5"|Signal-to-Noise Ratio (SNR)
| |
| |-
| |
| ! ne
| |
| ! size
| |
| ! theta1
| |
| ! theta2
| |
| ! Without noise
| |
| ! 20db
| |
| ! 40db
| |
| ! 60db
| |
| ! 80db
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 1.6
| |
| | 1.5
| |
| | [[Media:2e64x64RationalGFDefault.zip | download]]
| |
| | [[Media:2e64x64RationalGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e64x64RationalGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e64x64RationalGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e64x64RationalGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 1.2
| |
| | 0.85
| |
| | [[Media:2e64x64RationalGFTheta1_1_2Theta2_0_85.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_1_2Theta2_0_85SNR20.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_1_2Theta2_0_85SNR40.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_1_2Theta2_0_85SNR60.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_1_2Theta2_0_85SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 0.85
| |
| | 2
| |
| | [[Media:2e64x64RationalGFTheta1_0_85Theta2_2.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_0_85Theta2_2SNR20.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_0_85Theta2_2SNR40.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_0_85Theta2_2SNR60.zip | download]]
| |
| | [[Media:2e64x64RationalGFTheta1_0_85Theta2_2SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 1.6
| |
| | 1.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 1.2
| |
| | 0.85
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 0.85
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |}
| |
|
| |
| ==== Matern Gausian Fields Collection ====
| |
| {| border="1" cellpadding="10"
| |
| ! colspan="4"|Parameters
| |
| ! colspan="5"|Signal-to-Noise Ratio (SNR)
| |
| |-
| |
| ! ne
| |
| ! size
| |
| ! theta1
| |
| ! theta2
| |
| ! Without noise
| |
| ! 20db
| |
| ! 40db
| |
| ! 60db
| |
| ! 80db
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 10
| |
| | 1
| |
| | [[Media:2e64x64MaternGFDefault.zip | download]]
| |
| | [[Media:2e64x64MaternGFDefaultSNR20.zip | download]]
| |
| | [[Media:2e64x64MaternGFDefaultSNR40.zip | download]]
| |
| | [[Media:2e64x64MaternGFDefaultSNR60.zip | download]]
| |
| | [[Media:2e64x64MaternGFDefaultSNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 5
| |
| | 0.5
| |
| | [[Media:2e64x64MaternGFTheta1_5Theta2_0_5.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_5Theta2_0_5SNR20.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_5Theta2_0_5SNR40.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_5Theta2_0_5SNR60.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_5Theta2_0_5SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 64
| |
| | 20
| |
| | 2
| |
| | [[Media:2e64x64MaternGFTheta1_20Theta2_2.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_20Theta2_2SNR20.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_20Theta2_2SNR40.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_20Theta2_2SNR60.zip | download]]
| |
| | [[Media:2e64x64MaternGFTheta1_20Theta2_2SNR80.zip | download]]
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 128
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 2
| |
| | 256
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 64
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 128
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 3
| |
| | 256
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 64
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 128
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 4
| |
| | 256
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 64
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 128
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 10
| |
| | 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 5
| |
| | 0.5
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |- align="center"
| |
| | 5
| |
| | 256
| |
| | 20
| |
| | 2
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |}
| |