Diferencia entre revisiones de «Endmember Induction Algorithms»

De Grupo de Inteligencia Computacional (GIC)
Sin resumen de edición
Sin resumen de edición
Línea 27: Línea 27:
     ''Two lattice computing approaches for the unsupervised segmentation of hyperspectral images''
     ''Two lattice computing approaches for the unsupervised segmentation of hyperspectral images''
     ''Neurocomput.'', vol. 72, nº. 10-12, págs. 2111-2120, 2009.
     ''Neurocomput.'', vol. 72, nº. 10-12, págs. 2111-2120, 2009.
* '''Incremental Strong Lattice Independent Algorithm (ILSIA)'''
** MATLAB: [[Media:EIA_ILSIA.m | download (xxx MB)]]
** SCILAB: [[Media:EIA_ILSIA.sci | download (xxx MB)]]
    M. Grana, D. Chyzhyk, M. García-Sebastián, y C. Hernández
    ''Lattice independent component analysis for functional magnetic resonance imaging''
    ''Information Sciences: an International Journal'', vol. 181, pág. 1910–1928, May. 2011.

Revisión del 13:20 5 abr 2011

Download the latest Endmember Induction Algorithms (EIAs) toolbox here:

This software is distributed under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

The here available Endmember Induction Algorithms (EIAs) toolbox have been developed with MATLAB 7.4 (licensed copy is needed to use it) and SCILAB 5.2 (open source and freely distributed).

If you are using the Endmember Induction Algorithms (EIAs) toolbox for your scientific research, please reference it as follows:

   Endmember Induction Algorithms (EIAs) toolbox.
   Grupo de Inteligencia Computacional, Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), Spain. 
   http://www.ehu.es/ccwintco/index.php/Endmember_Induction_Algorithms_%28EIAs%29_for_MATLAB_and_SCILAB

Copyright 2010 Grupo Inteligencia Computacional, Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU).

Acknowledgements to Prof. Antonio Plaza from the Department of Technology of Computers and Communications, University of Extremadura (Spain), and coordinator of the Hyper-I-Net project; and to Prof. Chein-I Chang from the Remote Sensing Signal and Image Processing Laboratory, University of Maryland (USA).

Endmember Induction Algorithms collection

Here you can find the EIAs included in the collection and their respective bibliographical references:

   M. Grana, I. Villaverde, J. O. Maldonado, y C. Hernandez
   Two lattice computing approaches for the unsupervised segmentation of hyperspectral images
   Neurocomput., vol. 72, nº. 10-12, págs. 2111-2120, 2009.
   M. Grana, D. Chyzhyk, M. García-Sebastián, y C. Hernández
   Lattice independent component analysis for functional magnetic resonance imaging
   Information Sciences: an International Journal, vol. 181, pág. 1910–1928, May. 2011.